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The matrix ND ' method in the determinantal approximation is applied to the study of the P» mN

phase shift using three coupled channels: s.lV, o X, and eX. The e meson (also denoted by Se) is an S-wave
T=O ~71- resonance at a mass of about 730 MeV. Good agreement between the results of the model and ex-
perimental data is obtained for both the phase shift 511 and the absorprion coefFicient g11 in the range from
threshold to ~600-MeV pion laboratory kinetic energy.

I. INTRODUCTION

ECENTI, Y a bootstrap calculation involving
coupled mS and eS channels in the J~=-,'+,

T'=
~ state showed that the Roper resonance E can be

considered as a self-consistent eÃ bound state. ' e (also
designated by Sp) is a J =0+, 7=0 2sr S-wave resonant
state with a mass around 730 MeV, ' while phase-shift
analyses of xE scattering2 ' and other experimental
evidence' ' indicate that E is a J = 2+, T= —,

' resonance
with a mass in the range of 1400-1500 MeV.

In this paper we study the behavior of the real part
of the Prq srIV phase shift (brt) and the absorption
coefficient (ster) using the forces involved in the self-
consistent calculation. ' The basic experimental features
of the E~~ phase shift, which one attempts to reproduce
theoretically, are that the real part of the phase shift
stays extremely close to zero up to 180 MeV" (pion
laboratory kinetic energy) and then rises up through
90' at 600 MeV, while the absorption coefficient g~~

starts decreasing rapidly from a value of 1.0 at 300
MeV. %e consider here a coupled three-channel
problem (srlV-+sr', srlV-+ oE, sr' —+ eN, alar olV,
aX~ eN, and elV —+'eN) using the matrix ED '
method in the determinantal approximation. In the
~E~mS channel we use as input forces E exchange,
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Canada.
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the 1V pole, and. JV* (J'~=-'+ T= ', , 1238 M-eV) ex-
change. In the AS —+ crE we use E and E.exchange and
in x4V —+ eS, O.X—+ t.S, and eS'~ eS we use only 8
exchange. LThe effect of including JV exchange in the
latter three channels (i.e., g,Ntts/4trWO) is discussed in
Sec. HIj. The EsrlV and RoX coupling constants can
be determined from the corresponding experimental
partial widths of the Roper resonance, while the E6$
and os couplings are treated as free parameters as
determined from a best fit to the data. In part, this
calculation serves to indicate the effect of including the
0-S channel on the self-consistent value obtained in
Ref. 1 for the Ee/ coupling constant. It should be
noted that the E'~~ phase shift has also been studied
with models using various other channels. " '

Vhth regard to the coupled two-channel model of
Ref. 1 (sr%, eÃ), it is worth noting that although the
model can account for the rise in phase shift reaching
a value of 90' at around the Roper mass, it fails
completely in accounting for the behavior of the
absorptive codFicient. The &S' threshold corresponds
to about 864 MeV (pion laboratory kinetic energy)
with the result that in such a model q~~ stays fixed at
1.0 up to that value, while experimentally it starts
decreasing rapidly below 1.0 at 300 MeV. This
result clearly indicates the necessity of including the
e&ects of channels with lower-energy thresholds. The
channel responsible for this departure of g~~ from 1.0
is clearly the three-body mmE channel. As discussed by
Schwarz, " in the El~ state the two pions can be in an
S-wave state relative to the nucleon. Therefore, one
might try to avoid the complications of a three-body
channel by considering this S-wave state of the two
pions as a resonance, the 0 meson, ' with a mass of
about 410 MeV, since the S-wave m.m forces are very
strong whereas the S-wave m.S forces are relatively
weak. "The oE threshold corresponds to a pion labora-
tory kinetic energy of about 350 MeV. Another candi-
date for the inelastic channel is sr'* (1V* being the 3, 3
m.lV resonance). 's "Experiment, ' however, indicates that

"D.Atkinson and M. B.Halpern, Phys. Rev. 150, 1377 (1966)."J.H. Schwarz, Phys. Rev. 152, 1325 (1966)."J.S. Ball, G. L. Shaw, and D. Y. Wong, Phys. Rev. 155, 1725
(1967).

"Philip W. Coulter, Phys. Rev. 167, 1352 (1968).
"M. Uehara, Progr. Theoret. Phys. (Kyoto) 38, 1347 (1967).
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the dominant inelastic decay mode of the Roper
resonance is O.X and it therefore seems worthwhile as a
first step to consider the addition of just the 0-S channel
to the mE, eÃ system.

Finally it should be noted that although the coupled
two-channel model of &S and O-lV, using the forces
and approximations of the model described in Ref. 1,
can account for the experimental behavior of g~~, it
yields a phase shift that rises too quickly with energy
(see Sec. III). A similar phase-shift energy dependence
was obtained in the coupled 7r"V, ~.&V* model of Ref. 12.

II. ND ' EQUATION AND INPUT FORCES

We start by considering the following matrix T(/o)
(in channel space) scattering amplitude:

the amplitude for e/V —+ 0/V. T0„.—=g,0+'/' (= T&~) is the
amplitude for a.E —& o.E.

In matrix form the unitarity condition for T(~o) is
given by

where
ImT(00) '= —/0(00) (3)

qi8(q ')
/(~) =

0

0 0
q08(q0') 0

0 q08(q02).

q2 and q3 are the center-of-mass momenta in the OX
and. 0/V systems, respectively; 8(q,2) are step functions
such that 8(q,2) =1 for qP)0 and 8(q,2) =0 for q 2(0.

YVe will actually factor out the threshold behavior
of the amplitudes in the usual way, and write the
1VD ' equations for a matrix amplitude t(0/) defined
as follows:

f 1/2 (~) h 1/2 (~) h 1/2 (~)
T(M) = h. i, 0'"(~) g.~'"(~) g-~'"(~)

(~) g.w- (00) g.0+ (/o)-

p
B,
.H,

H B,
G G„
G., G, .

as an analytic function in the complex co plane, where
cv is the total center-of-mass energy. The channels m.E,
o/V, 0/V will be labeled by 1, 2, 3, respectively. T» = fi '"
is the scattering amplitude for mA —+ m.E in the state
J= / —s= 1—

2
= 2, T= —'„and it is normalized so that

with~»~8

F=[ /0(/E, m)7 f,—'/'

H. =
[(Ei—m) (E0+m) 7'/'

1
fi / (0/) = exp[i8i (0&)7 sinai i/'(0/) (2)

qi(~)

where 6~ '" is the P~~ mA phase shift, which is real for
no+/i (0/(m+/i. and complex for 0/) m+/i, . qi is the
center-of-mass momentum in the m-Ã system and m is
the nucleon mass. Ti0=—hr0, 1 (= T21=—h 1,0

' by time-
reversal invariance) is the scattering amplitude for
~/V~ oN (oiV~ n.iV) where the final (initial) state
has t=0, J=O+-,', T= ,' and the initial (fin-a-l) state has
l=1,"J=1——,'=-,' T= ,'. Similarly T»-—=h, o, i'" (= T»
=—h, i 0'/') is the amplitude for nA/ ~ cd (0/V ~ 7lriV). .
T22—=g p+ f is the amplitude for ~E —+ o.E in the state
J=l+s=0+i0= —,', T= 0i, and, similarly, T» =—g„+'" is

H, = hap, 1 )

[(E,—nz) (E,+m)7«'

G, = [~/(E0+an) 7g.o+'",

G,= [~/(E0+~) 7g,0+'",

1/2

[(E,+m)(E,+ )7'/'

where E; is the nucleon energy in the center-of-mass
system of the ith channel. The t matrix satisfies the
unitarity condition

Imt '(0/) = r(0/), —
where

r(0/) =
qi8(qi2) (Ei—m)/0/

0
0

0
q, 8 (q00) (E,+m)/0/

0

0
0

q08(q0') (E0+~)/~.

The ZVD ' equations for t(0/) are then given by" and

t(io) =/V(00)D '((o), where
D;, (/o) =8,,—

1
ZV;, (0/) =8,, (0/)+—

Ckv'

&,/, . (0/')

X r /, (00')/V„, (0/') . (10)
M GO CO COp

8,/„(/o) r/, (0/')X, (/d') (9)
M GOp

' Since the intrinsic parity of the m is negative and that of the
cr is positive, parity conservation requires that a transition from

a-state with orbital angular momentum l to one with l' can occur
only if (—1)'= —(—1)' i.e., only if l'=1~1."E. Abers and C. Zemach, Phys. Rev. 131,2305 (1963)."E. N. Argyres, Ph, D. thesis, Tufts University, 1966 (un-
published).
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The functions B,, (cu) are the input "forces" in the
respective channels. The integration limits in the
integrals in Eqs. (9) and (10) are given by the 8 func-
tions in the phase-space factor r,;; e.g. , 8(qP) yields the
integration ranges of —~ (cu'& —(m+p ) and m+p
(ar'& ~. The determinantal approximation consists
of setting N;;(u&) =B;,(~) and substituting in Eq. (10)
to obtain the D matrix.

Specifically, we consider the following input. For
xS —+mÃ we take

co—2m —3f' 2m —M*—cv

3p+
Eg*+m

+ (Eg—m) Q, (x*)

pp+ 2m+M* M*—2m —co-

3p+
Eg"'+m Eg*—m

(18)

take"
ql 2gNN 2

f& '"(N* exch. )= (Eq+m)Q, (x*)
9coq)'

where'7
alid

B&q ——[co/(Eq —m)][fq '"(N exch.)+fq '"(N pole)]
+B~(N* exch. ), (11)

x*=1—[oP+M*2—2(m2+p 2)]/2qP (19)

x = 1—[a)'+m' —2(m'+ p, »')]/2qP. (13)

Q&(s) is related to the Legendre polynomial E&(s)
through

1 ' P((x)
Q (s)=— dx

2 ] s g
(14)

The N-pole contribution is given by'

fq 'I'(N exch. )

g~~ 1 tr cd —m co+m
Q (*")+ Q.(*") I, (»)

O'll 4' EEy m Ey+m )
with

y= 1—[~'+M*'—2(m'+p»')]/2q&*'. (20)

q&* and E&*are the momentum and energy of the nucleon
in the mE center-of-mass system evaluated at ~=M*.
(M* is the N* mass. ) The N* force in Eq. (17) involves
therefore a single parameter co+ and, like the E* force
used in Ref. 17 with the smooth damping function
[Eq. (16)], is equal to the Born approximation at
threshold and varies as 1/~ for large co. It is also
possible to relate the parameter y to the cutoff param-
eter'r Z [Eq. (16)] by noting that the Born term
[~/(Ey —m)]fy '~' m Eq. (18) multiplied by the damp-
ing function varies as

fg "'(N pole)=—
gNN» 3 (El m)

4' 2(o ((u—m)
(15)

g~x.' Z'

3m'(Eg"+m) 4'

as ~ ~~. For ~+ values of, e.g. , 5p, 2p, , and —5~
we find that the corresponding values of y are 27.2,
57.4, and 128, respectively, and using Eq. (21) the
corresponding values of Z are 1.4, 2.03, and 3.05 BeV,
respectively. The nucleon bootstrap calculations of
Abers and Zemach'~ involved Z values in the range
2—4 BeV. One could also consider E and p exchange in
zE~mE but their effect is small compared to the
other Horn terms.

nd E exchange,

with g ~N'/4m=14. 5. Since the N* exchange force
diverges like co as co —+~, it is necessary to introduce
some form of cutoff mechanism. This can be achieved,
for instance, by a simple upper-limit cutoff in integrals
involving the N* (cutoff mass), "or through a smooth
damping function of, e.g., the type'~

[1+((o' —rpr')/Z'] ', (16)

X[hp, x"'(E exch. )+hp, g'~(N exch. )), (22)

where cur is m+p and Z is a parameter with units of For ~N —+ aN we consider R a
mass. It will be noted that both approaches'~ "involve
a single parameter. Because of the uncertainty as to M

the exact form of the damping mechanism, we have
considered for simplicity in this paper a single-pole
expression for the N* force [in Eq. (11)],

Bg="r/(~ ~@) . where ho y
' for E exchange is given by

(17)

co+ is a parameter in the range'p —(m+ p )«oq ((m+ p )
and for each value of co+ we determine 7 by requiring
that B~ equal [cv/(E2 —m)]fq 'I' (N* exchange) at
threshold &or=m+p . For f~ 'I (N* exchange) we

"S. C. Frautschi and J. D. Walecka, Phys. Rev. 120, 1486
4'1960).

~This range is determined by the condition that B~ be real
along the physical cuts in the complex au plane, xi = (m' —mz'+p '—2E~~,)/2q, q, , (24)

gRm'NgRo jhow

hp, y'~'(R exch. )=—
16xmq&qp

X ([(Eq+m) (E2—m)]'I'(~ —m~1m)Q~(x~ )

+[(Eg—m)(E2+m)]"'((a+md)Qp(xP)) (23)
with
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and ~2 is the energy of the 0- in channel 2. The value of
hp 1 I for S exchange is obtained from the above
expressions by replacing the Roper mass mR with the
nucleon mass m everywhere, and the gR N, gR N

couplings by g~N~, gNNo.

For xS —+ eS we consider only E. exchange,

~13 ~31 k, p, i'~'(8 exch. ), (25)[(E- )(E+ )j'"
where ho, P (E exch. ) is given by Eqs. (23) and (24)
with the replacement of the subscript 2 by the subscript
3 and of gR N by gR, N and p,, by p,

For 0-S —+ o.S we consider E. and. S exchange,

822 [M/ (E2+m)$[g.o+'"(E exch. )
+g.o+'12 (1V exch. )j, (26)

with
gg~gP 1 ((a—2m —mii

g 0+ ~ (E.excli. )= —
~ Qo(» )

4~ 4~( Eg—m

gii ~ as defined in Eq. (33a) involves the coupling of a
neutral pion to a Roper resonance and a nucleon, and
gz.z as defined, in Eq. (33b) involves the coupling of
the a meson to a Roper resonance and a nucleon. Follow-
ing the experimental data compiled in Ref. 2, we set
mR ——1470 MeV with a total Roper width of 210 MeV:
65%~X and 35%xxiV. These data then lead to
1 R N= 136.5 MeV, and since aS is the dominant mode'
in AS we have a maximum value for FR,N of 73.5
MeV. The corresponding coupling strengths are
gg~ pP/4m ——1.77 and gg.~'/47r = 0.206.

In the determinantal approximation, the solutions of
the SD ' equations depend on the subtraction point
cop which in principle is arbitrary. In the present model,
however, since we are explicitly introducing an S pole,
the output amplitude will have the correct residue at
co=m only if we choose eop=m. To see this explicitly
we note that at &o=m Eq. (10), with coo ——m, yields
D;;(m) =8,;.Thus

co+ 2m+ ming
Qi(»") I, (27)

E+m i'
~11(m) 2 ~ 1 j(D )jl ~11(m) ~

III. RESULTS AND CONCLUSIONS

(34)

gP= 1 —
[&g +mii 2(m2+—p,,~)j/2qP.

We proceed similarly fol g o+'I' (1V exchange) with the
replacements mR ~ m and gR N ~ gNN~.

For OS —+ eS we consider only R exchange,

The coupled three-channel model as described in the
previous section contains three parameters, gii.~'/4~,

180-

»P= (m~ mz +p—P 2E2+3)—/'2q2qs (31. )

Finally, for eS ~ eS we again consider only E.
exchange,

833——[~/(Ea+m)$g, ~'"(E exch. ) (32)

with g,~'l2 (R exch. ) given by Eqs. (27) and (28) with

subscript 2 replaced by subscript 3, gR,N —+ gR, N, and

pg + pq.
The couplings gR~N and gR~N can be obtained from

the experimental E.—+ xS and E.—+ 0-S widths' through
the equations

832= 823= g„o+'~'(E exch. ), (29)
[(E2+m) (Ea+m) j"'

with
gRNe gRNe

g,o+'"(E exch. )=
2+~2/m kug2q3

)(([(E2+m) (E3+m) ji~'(co —2m —mz) Qo (&23")

+[(E2—m)(E3—m)li" (a&+2m+mg)Qi(»P)}, (30)
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FIG. 1. The calculated P» phase shift (———) is plotted versus
the pion laboratory kinetic energy E for the coupled ~E, 0$, eN'

system. (a) gg, Nmj4m=16. 0, g~~, j47t-=1.2, and co~=2p . (b)
Same parameters as in (a) except co~ =Sp, .The experimental data
{g)are from Ref. 6 and the data {o)are from Ref. 4.
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2,/'4m and the parameter co+ related to the cutoff
mechanism for Ã* exchange. We obtaine goo g
ment with experiment for 5~~ and g», as indicated in
Figs. 1 and 2, with gtt, iv/4sr=16. 0 (which is to e
compared with a coupling strength of 14.0 as found in
Ref. 1 corresponding to the most reasonab .able S*
cutoff), gtvtv, s/4n =1.2, and to+=2tt . The position of
the Roper resonance agrees very well with the experi-
mental value of 1470 MeV, which is also the Roper
mass used in the input forces. From the residues of the
t and t22 amplitudes at the resonance it is possible
to calculate the output widths for which we n a
» an 22

1'g ~=139 MeV and Fg,~=85 MeV. These last two
widths are to be compared with the corresponding

73.5 MeV, Inexperimental input widths of 136.5 and 3. e, n
the above we have taken the entir mwÃ deecay mode
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Fio. 3. Curves (a) and (b) are phase shifts as calculated in the
l d 1V 1V model with gn&, '/4r=5. 0 and 3.0, respectively.

(c) g&z computed from the coupled vrE, eX model wi gn, n/ nith 4'
=16.0. For all curves au~ =2ttg .

~ 2

200 400 600

a(N v)

Fio. 2. The absorption coeflicient g» (- ———) as calculateu in
the- coupled three-channel model, with the same parameters as in
curve (a) of Fig. 1, is plotted against the pion laboratory kinetic
energy. The references for the experimental data are the same as
in Fig. 1.

to be o-E. The residue of the t» amplitude at the reso-
nance yields an output ReE coupling constant of 6.1,
and, since the input value was 16.0, we find that
crossing symme rmetry has not been completely maintained
in the third channel (e1V —+ elV).

It is found that both the RcE coupling constant and

co+ strongly affect the energy dependence of the phase
shift and the absorptive coeKcient. Larger values of

gg,~ lead to resonances at lower masses, while variation
of or+ affects the shape of b~q but has little effect on the
position of the resonance [Fig. 1, curve (b)j. This
feature of the co~ dependence. is similar to the results
obtained by Abers and Zemach, ' in which the position
of the bound state is weakly dependent on the param-
eter associated with the cutoff mechanism of the E*
exchange force. It should also be noted that our valuesf, parable to those obtained from E-Eor g~~, are compara

scattering data"" The analysis of the E-E data leads
to gtrN, '/4r=3 0-5 0 . Lar. g.er values of gsriv, in the
three-channel calculation cause g» to decrease too
rapidly with energy and lead to phase shifts which rise
too rapidly at low energies. We also And that including
E hange in those channels where only R exchangeexc an

Ehad been used (gtviv, s/4sr&0) results in output Itrr
an od R E widths which are exceedingly large. Also worth

Fi . 2noting is that the dip in rtit at around 550 MeV ( ig. )
seems consistent with recent data for the absorption
coeScient over a larger energy range. " If we study
the present model beyond 650 MeV, we find that
both 8» and p» increase too rapidly with energy when
compared with the experimental data."

In Fig. 3 we have presented the phase shifts resulting
from the coupled two-channel models. For the coupled
sriV, olV system [curves (a) and (b) of Fig. 3j, we find
that with gNtr. s/4+= 3.0 and 5.0 (con= 2tt ) as obtained
from E-E scattering data "" the model leads to
bound oE states, corresponding to m-E resonances at
energies below 350 MeV. For no value of g~~, was it
found possible to obtain a resonant o.E state. Variation

~' A. Scotti and D. Y. Wong, Phys. Rev. 138, 8145 (1965).~ J. S. Ball, A. Scotti, and D. Y. 8'ong, Phys. Rev. 142, 1000
{1966)."C. Lovelace, in Proceedings of the Heidelberg Internationa
Conference on Elementary Partectes, Her'delberg, Germany, 1967,
edited by H. Filthuth (North-Holland Publishing Co., Amster-
dam, 1968}.
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of co+ does not change this result. The 811 obtained from
the coupled xlV, el' model with gn, ~/4n. =16.0 and
~s, =2ls is Presented in curve (c) of Fig. 3. As Pointed
out in Sec. I, q11= 1..0 up to 864 MeV for the coupled
xX, cE model, in complete disagreement with experi-
ment. As in the three-channel case, inclusion of E
exchange in xA —+ e~ and eS ~ ~N leads to an exces-
sively large Roper width.

In summary, we see that the coupled three-channel
model of m-S, O.iV, and &.V presented here, using only

Born input forces in the determinantal approximation,
can, with relatively few parameters, account quanti-
tatively for the energy dependence of 8» and q11 in the
range from threshold to 600 MeV. This approach also
yields output partial widths for the Roper resonance
which are in good agreement with the experimental
data. '4

'4The calculations involved in this paper were carried out on
the IBM 7044 Computer at the McGill Computing Centre.
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Weak Parity-Nonconserving Poten«a]s*

D. TADIC)

Brookhaven National Laboratory, UPton, New Fork 11973
(Received 20 June 1968)

The weak parity-nonconserving potential due to the exchange of vector bosons and pions is calculated
for several wea¹interaction Lagrangians. Experimental tests using few-nucleon reactions are discussed.
Effects jn fhe reaction n+p —+ d+p are estimated in detail. A simple approximate determination of the
effective pptentjal for the complex nuclei is included. For reliable information on the weak-interaction
Lagrangians, comparison of several processes is needed.

I. INTRODUCTION

LTHQVGH the idea that weak interactions are

~ ~~

~~

~~ ~~

~~

~~

~~

~

~

described by Lagrangians that are certain com-

binations of the bilinear products of currents is a very
attractive one, it has not yet been exhaustively tested.
While very successful in explaining the semileptonic

decays, this theory is less directly testable in the case of

nonleptonic ones. Some successes of the current algebra
concerning them' seem to support it, but there are still

open questions about the nonleptonic decays of the

hyperons. ' 4 On the other hand, the nonrenormaliza-

bility of the theory and violent divergencies encount-

ered already in the second approximation seem to raise
some doubt in the basic soundness of the whole scheme.

Thus, it seems worthwhile to look. at the weak-inter-
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