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The matrix ND! method in the determinantal approximation is applied to the study of the Piu«V
phase shift using three coupled channels: 7V, ¢V, and eN. The e meson (also denoted by .So) is an S-wave
T'=0 == resonance at a mass of about 730 MeV. Good agreement between the results of the model and ex-
perimental data is obtained for both the phase shift 8;; and the absorprion coefficient #y; in the range from
threshold to ~600-MeV pion laboratory kinetic energy.

I. INTRODUCTION

ECENTLY a bootstrap calculation involving
coupled #V and eN channels in the JP=1t
T=1% state showed that the Roper resonance R can be
considered as a self-consistent e/V bound state.! ¢ (also
designated by So) is a JP=0%, T'=0 27 S-wave resonant
state with a mass around 730 MeV,? while phase-shift
analyses of 7wV scattering?® and other experimental
evidence™ indicate that Ris a JP=3+ T=1 resonance
with a mass in the range of 1400-1500 MeV.

In this paper we study the behavior of the real part
of the Py; wN phase shift (§;;) and the absorption
coefficient (51;) using the forces involved in the self-
consistent calculation.! The basic experimental features
of the Py; phase shift, which one attempts to reproduce
theoretically, are that the real part of the phase shift
stays extremely close to zero up to ~180 MeV © (pion
laboratory kinetic energy) and then rises up through
90° at ~600 MeV, while the absorption coefficient 71,
starts decreasing rapidly from a value of 1.0 at ~300
MeV. We consider here a coupled three-channel
problem (#N — «N, #N — oN, 7N — eN, N — oN,
oN — eN, and eN — eV) using the matrix ND?
method in the determinantal approximation. In the
7N — wN channel we use as input forces V exchange,
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the N pole, and N* (JP=3§+, T=4%§, 1238 MeV) ex-
change. In the #V— ¢V we use NV and R exchange and
in 7N — eN, oN — N, and eN — eV we use only R
exchange. [The effect of including V exchange in the
latter three channels (i.e., gevny?/4n5%0) is discussed in
Sec. III]. The RxN and ReN coupling constants can
be determined from the corresponding experimental
partial widths of the Roper resonance, while the ReV
and ¢VN couplings are treated as free parameters as
determined from a best fit to the data. In part, this
calculation serves to indicate the effect of including the
oN channel on the self-consistent value obtained in
Ref. 1 for the ReN coupling constant. It should be
noted that the P;; phase shift has also been studied
with models using various other channels. =4

With regard to the coupled two-channel model of
Ref. 1 (xN,elN), it is worth noting that although the
model can account for the rise in phase shift reaching
a value of 90° at around the Roper mass, it fails
completely in accounting for the behavior of the
absorptive coefficient. The eV threshold corresponds
to about 864 MeV (pion laboratory kinetic energy)
with the result that in such a model 911 stays fixed at
1.0 up to that value, while experimentally it starts
decreasing rapidly below 1.0 at ~300 MeV. This
result clearly indicates the necessity of including the
effects of channels with lower-energy thresholds. The
channel responsible for this departure of 71 from 1.0
is clearly the three-body 7=V channel. As discussed by
Schwarz,? in the Py, state the two pions can be in an
S-wave state relative to the nucleon. Therefore, one
might try to avoid the complications of a three-body
channel by considering this S-wave state of the two
pions as a resonance, the ¢ meson,? with a mass of
about 410 MeV, since the S-wave wr forces are very
strong whereas the S-wave =N forces are relatively
weak.!? The oV threshold corresponds to a pion labora-
tory kinetic energy of about 350 MeV. Another candi-
date for the inelastic channel is 7V* (V* being the 3, 3
NV resonance).'>15 Experiment,? however, indicates that
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( B _17 S. Ball, G. L. Shaw, and D. Y. Wong, Phys. Rev. 155, 1725
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the dominant inelastic decay mode of the Roper
resonance is ¢V and it therefore seems worthwhile as a
first step to consider the addition of just the ¢V channel
to the IV, eV system.

Finally it should be noted that although the coupled
two-channel model of 7V and o/, using the forces
and approximations of the model described in Ref. 1,
can account for the experimental behavior of 7, it
yields a phase shift that rises too quickly with energy
(see Sec. ITI). A similar phase-shift energy dependence
was obtained in the coupled =V, #V’* model of Ref. 12.

II. ND—* EQUATION AND INPUT FORCES

We start by considering the following matrix 7'(w)
(in channel space) scattering amplitude:

fi12(w)  hooi(w) Do P (w)
T(w)= |ho1,0*(®)  gros'(w)  goeot'*(w)| (1)
he,o (@) greor' (@) geot!* (@)

as an analytic function in the complex w plane, where
w is the total center-of-mass energy. The channels 7V,
oV, eN will be labeled by 1, 2, 3, respectively. T11= f1-/?
is the scattering amplitude for #V— 7V in the state
J=l—s=1—%=% T=1, and it is normalized so that

(@) =—— explib ()] sing1 (@), (2)

ga(w

where 8;_1/2 is the Py; NV phase shift, which is real for
m~+p-<w<m-+u, and complex for w>m-+u,. 1 is the
center-of-mass momentum in the 7V system and m is
the nucleon mass. 7'19=l,0,1'? (= T21=h,1,0'"* by time-
reversal invariance) is the scattering amplitude for
7N —oN (¢N — wN) where the final (initial) state
has /=0, J=0-+%, 7=} and the initial (final) state has
=18 J=1—1=% T=1%. Similarly T13=he,i}”?* (=T
=/e1,0'/%) is the amplitude for 7N — eN (eN — 7).
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the amplitude for eV — eN. T93=g,e0+!* (= T'3,) is the
amplitude for oV — o/V.

In matrix form the unitarity condition for T'(w) is
given by

ImT (w)™'=—p(w), 3)
where
q10(g:%) 0 0
plw)= 0 7:0(g2%) 0 ; 4)
0 0 7:0(¢4)

g» and g¢3 are the center-of-mass momenta in the oV
and eV systems, respectively; 6(¢) are step functions
such that 6(¢2)=1 for ¢*>0 and 6(¢?*)=0 for ¢2<O0.

We will actually factor out the threshold behavior
of the amplitudes in the usual way, and write the
ND™! equations for a matrix amplitude #(w) defined
as follows:

F H, H.
t= H, Ga— Gve y (5)
He Goe G
withi7.18
F=[w/(E1—m)]fr-'",
w
H‘,: '75110,11/2;
[(Er—m)(Extm) ]
w
= 11/2 , (6)

[Er—m) Eatm) ]
Ga= [w/ (E2+m):|g00+1/2 3
Ge=[w/ (Estm) Jgeo 2,

Goe= “ £

L(Eatm) (Egtm) ]2

where E; is the nucleon energy in the center-of-mass
system of the ith channel. The ¢ matrix satisfies the
unitarity condition

60+l/2 )

T99=gs0+'/* is the amplitude for oV— oV in the state Imi(w)=—7r(w), (7)
J=l4+s=04+4=3, T=1, and, similarly, Ts;=ge,!/? is where
q160(g?) (Ex—m)/w 0 0
rw)= 0 QQG(QQz)(Ez‘{"m)/O) 0 . (8)
0 0 q:8(gs?) (Es+m)/w

The ND™! equations for #(w) are then given by’ and

— A 1 w—w
t(w)=N(w)D(w), where Dis(e)= b 0

dw’

Nij(w)= Bi;‘(w)"l-; / [Bik (@)

w'—w

OBik(w)jlrkm(w')ij(w’) ©)

W' —wy

16 Since the intrinsic parity of the  is negative and that of the
g is positive, parity conservation requires that a transition from

™

X / o (@)1 ()
——1u ()N ().
(o' —w) (' —wo)

a state with orbital angular momentum / to one with I’ can occur
only if (—1)t=—(—1)¢,1i.e., onlyif I'=[31.

17 E. Abers and C. Zemach, Phys. Rev. 131, 2305 (1963).

18 E. N. Argyres, Ph.D. thesis, Tufts University, 1966 (un-
published).
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The functions B;j(w) are the input ‘“‘forces” in the
respective channels. The integration limits in the
integrals in Egs. (9) and (10) are given by the 6 func-
tions in the phase-space factor 7,;; e.g., 8(¢:?) yields the
integration ranges of — o <w'<— (m~+u-) and m~+pu,
<w'< . The determinantal approximation consists
of setting NV;;(w)=B;;(w) and substituting in Eq. (10)
to obtain the D matrix.

Specifically, we consider the following input. For
7N — 7N we take

Bu‘—" [(1)/ (El—m)][fl._l/z(N CXCh.)+f1_1/2 (ZV pole):l

+Byx(N*exch.), (11)
where!”
f1-12(NV exch.)
gNNwZ 1 w—m w—l—m
-2 (R0 ), @)
4 4dw\Ei—m 1Tm

with
N =1—[w?+m2—2(m*+p.*)1/2¢:%.

Q:(z) is related to the Legendre polynomial Pi(z)

(13)

through
1 1 Pz(x)
0u®)=" f Phhicy (14)
2 —1 Z—Xx
The N-pole contribution is given by’
gNN+2 3(Er—m)
FLME(N pole)=———— L (15)

dr 2w(w—m)

with g.nn?/4r=14.5. Since the N* exchange force
diverges like w as w— o, it is necessary to introduce
some form of cutoff mechanism. This can be achieved,
for instance, by a simple upper-limit cutoff in integrals
involving the N* (cutoff mass),!® or through a smooth
damping function of, e.g., the type!’

[+ —wr’)/ 2717, (16)

where wr is m~+pu, and Z is a parameter with units of
mass. It will be noted that both approaches!”-!? involve
a single parameter. Because of the uncertainty as to
the exact form of the damping mechanism, we have
considered for simplicity in this paper a single-pole
expression for the N* force [in Eq. (11)],

By=7/(w—wx). 17)

wy 1s a parameter in the range?® — (m+ur) <ws< (m+px)
and for each value of ws we determine y by requiring
that By equal [w/(E;—m)]f1-1? (N* exchange) at
threshold wr=m-+pu,. For fi 12 (N* exchange) we

1S, C. Frautschi and J. D. Walecka, Phys. Rev. 120, 1486
(1960).

2 This range is determined by the condition that B, be real
along the physical cuts in the complex  plane.
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take!?
8M*q1* gyna?
LA exch.) = { (Exbm)Qu(*)
Ywg® 4w
|iw—-2m—M*3 ¢Zm—M"‘—w} ( ) )
y + (Ei—m)Qo (x*
E&f+m . E¥—m ' Ol
w+2m—~+M* M*—=2m—w
x[ 3+ ]} . (18)
E1*+m El*—m
where x* and y are given by
= =[P M= 24D 22 (19)
and
y= 1= [ M= 2+ 20" (20)

¢1* and E;* are the momentum and energy of the nucleon
in the 7V center-of-mass system evaluated at w=M*.
(M* is the N* mass.) The N* force in Eq. (17) involves
therefore a single parameter wy and, like the V* force
used in Ref. 17 with the smooth damping function
[Eq. (16)], is equal to the Born approximation at
threshold and varies as 1/w for large w. It is also
possible to relate the parameter v to the cutoff param-
eter'” Z [Eq. (16)] by noting that the Born term
[w/(Ey—m)]f1-1* in Eq. (18) multiplied by the damp-
ing function varies as

gNNwZ Z2

AM*
— (1)
Im2(Eyv*+m) 4r o

as w—. For wy values of, e.g., Sur, 2ur, and —5u,
we find that the corresponding values of v are 27.2,
57.4, and 128, respectively, and using Eq. (21) the
corresponding values of Z are 1.4, 2.03, and 3.05 BeV,
respectively. The nucleon bootstrap calculations of
Abers and Zemach' involved Z values in the range
2-4 BeV. One could also consider R and p exchange in
7N — xN but their effect is small compared to the
other Born terms.
For 7V — oV we consider R and NV exchange,

w
LEr—m) (Ext-m) ]2
X [ho,142(R exch.)+ho,12(NV exch.)],

B12= B21=

(22)
where /o,1!/2 for R exchange is given by

8RxNERoN
ho,i?(R exch.)= ————

161er1q:>,
XA{L(Ertm) (Ee—m) 2 (w—mp+m)Q1(x17)
+ L (Er—m) (Bat-m) ]2 (w+me)Qo(x1%)}  (23)
with

le= (m2-“mR2+[£v2'—2E1w2)/ZQ1Q2 s (24)
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and w, is the energy of the ¢ in channel 2. The value of
ho1/? for N exchange is obtained from the above
expressions by replacing the Roper mass mpz with the
nucleon mass m everywhere, and the gr.n, grown
couplings by gyy, gvno-

For 7N — €N we consider only R exchange,

w
Buy=Bu= heo, 12 (R exch.),

[(Er—m) (Es+m) ]
where %011 (R exch.) is given by Egs. (23) and (24)
with the replacement of the subscript 2 by the subscript
3 and of grow by gren and po by pe.

For ¢N — oV we consider R and IV exchange,
Bay=[w/(Ex+m)[gs0:'*(R exch.)
~+go0412(IV exch.) ],

(25)

(26)
with

gR.,N2 1 w~—2m—mR
go0+2(R exch.)= ——(
dr 4w

Qo (%2F)

Ey—m
w=-2m-+mg
Eyt+m
xof=1—[w?+mp?—2(m*+p.?) 1/ 2¢:. (28)

We proceed similarly for g-o;'/* (IV exchange) with the
replacements mg — m and gron — gNNo-
For ¢ N — €N we consider only R exchange,

o), @)

and

1)
Bj3s=Bag= oo (R exch.), (29)
L(Eot-m) (Es+m) ]
wit 1
8RNe §RNo
Zoeor2(R exch.)=
2/ 20/ dwqaqs

XAL(Eat-m) (Es+m) M2 (w—2m—mz)Qo(¥25%)
+[(Es—m) (Es—m)]2(w+2m~+mr)Q1(x25%)} , (30)

and
%o3®= (m?—mpP+ul—2Ew3)/292qs. (31)
Finally, for eN— eN we again consider only R
exchange,

Ba3= [w/ (E3+m):|geg+1/2(R CXCh.) (32)

with geoy!/? (R exch.) given by Egs. (27) and (28) with
subscript 2 replaced by subscript 3, grox — gren, and

Mo ™ Hee
The couplings gr.nx and gr.n can be obtained from
the experimental R — 7V and R — ¢V widths? through

the equations

grxn? q1(E1—m)
Tren=3 -, (33a)
47 MR w=mR
gron? ga(Eatm)
Tron= = (33b)
4 mr w=mR
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grxy as defined in Eq. (33a) involves the coupling of a
neutral pion to a Roper resonance and a nucleon, and
gron as defined in Eq. (33b) involves the coupling of
the ¢ meson to a Roper resonance and a nucleon. Follow-
ing the experimental data compiled in Ref. 2, we set
mp=1470 MeV with a total Roper width of 210 MeV:
65%mrN and 35%mwwN. These data then lead to
T'r-n=136.5 MeV, and since ¢/ is the dominant mode?
in 7wV we have a maximum value for I'z,x 0of~73.5
MeV. The corresponding coupling strengths are
gran?/4m=1.77 and gr,5*/4w=0.206.

In the determinantal approximation, the solutions of
the VD! equations depend on the subtraction point
wo which in principle is arbitrary. In the present model,
however, since we are explicitly introducing an & pole,
the output amplitude will have the correct residue at
w=m only if we choose wy=m. To see this explicitly
we note that at w=m Eq. (10), with wy=m, yields
Di,-(m)=5ﬁ. Thus

fua(m) =,z;Blj(D—1>ﬂ=Bu(m>. (34)

III. RESULTS AND CONCLUSIONS

The coupled three-channel model as described in the
previous section contains three parameters, gg.y*/4r,

180}
160 ,
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Fic. 1. The calculated P;; phase shift (- —-) is plotted versus
the pion laboratory kinetic energy E for the coupled =N, oV, eN
system. (a) grev?/4r=16.0, gyn./4r=1.2, and wy=2u,. (b)
Same parameters as in (a) except wy = Sur. The experimental data
(@) are from Ref. 6 and the data (O) are from Ref. 4.
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the coupled three-channel model, with the same parameters as in
curve (a) of Fig. 1, is plotted against the pion laboratory kinetic
energy. The references for the experimental data are the same as

in Fig. 1.

to be ¢N. The residue of the #33 amplitude at the reso-
nance yields an output Re/V coupling constant of 6.1,
and, since the input value was 16.0, we find that
crossing symmetry has not been completely maintained
in the third channel (e — eNV).
It is found that both the Re/V coupling constant and
wy strongly affect the energy dependence of the phase
shift and the absorptive coefficient. Larger values of
grew lead to resonances at lower masses, while variation
of wy affects the shape of 811 but has little effect on the
position of the resonance [Fig. 1, curve (b)]. This
feature of the wy dependence is similar to the results
obtained by Abers and Zemach,'” in which the position
of the bound state is weakly dependent on the param-
eter associated with the cutoff mechanism of the N*
exchange force. It should also be noted that our values
for gnw. are comparable to those obtained from N-NV

174 P
gnno?/4m, and the parameter w4 related to the cutoff 180
mechanism for N* exchange. We obtained good agree-
ment with experiment for 8;; and »u, as indicated in w-
Figs. 1 and 2, with gra?/4r=16.0 (which is to be o T T T
compared with a coupling strength of 14.0 as found in v
. " 1401 / ,/ I
Ref. 1 corresponding to the most reasonable N YA /
cutoff), gywo?/4r=1.2, and we=2u,. The position of | /
the Roper resonance agrees very well with the experi- 120- ! // /
mental value of 1470 MeV, which is also the Roper ‘,’ ! /
mass used in the input forces. From the residues of the 100} [ /
i1 and #, amplitudes at the resonance it is possible - I ® /
to calculate the output widths for which we find that 2 gl ! ! /
Tr.y=139 MeV and I'z,y=85 MeV. These last two b } ;’ /
widths are to be compared with the corresponding 2 | / /
experimental input widths of 136.5 and 73.5 MeV. In o 6o | / //
the above we have taken the entir 77N deecay mode :" ! ©;
a0} I V4
[ J
I S/
10 20 /I // ///
- [ N\ / 7 Pyl
i ° \{ /// /// ///
§ Ofm ez’ 7
.8 e
\ -10 " 1 i L X 1
\ o 200 400 600
\ o E (MeV)
6
=S \\} F16. 3. Curves (a) and (b) are phase shifts as calculated in the
\ 3 coupled 7N, ¢N model with gyn.2/4r=>5.0 and 3.0, respectively.
. } (c) 811 computed from the coupled 7V, eN model with grev/4n
ar- e - =16.0. For all curves wy =2u,.
o
-2 scattering data.?** The analysis of the V-V data leads
to gyw.*/4wr=3.0-5.0. Larger values of gyw, in the
. . ) . . , \ three-channel calculation cause 7;; to decrease too
0 200 400 600 rapidly with energy and lead to phase shifts which rise
E (MeV) too rapidly at low energies. We also find that including
F1c. 2. The absorption coefficient 71y (- - - -) as calculated in  V €xchange in those channels where only R exchange
had been used (gww/475%0) results in output RxN

and ReN widths which are exceedingly large. Also worth
noting is that the dip in 5y, at around 550 MeV (Fig. 2)
seems consistent with recent data for the absorption
coefficient over a larger energy range.?® If we study
the present model beyond ~650 MeV, we find that
both 813 and #1; increase too rapidly with energy when
compared with the experimental data.??

In Fig. 3 we have presented the phase shifts resulting
from the coupled two-channel models. For the coupled
7w, oV system [curves (a) and (b) of Fig. 37, we find
that with gywy,?/4r=3.0 and 5.0 (wy=2u,) as obtained
from N-N scattering data,®? the model leads to
bound /N states, corresponding to w/N resonances at
energies below 350 MeV. For no value of gyx, was it
found possible to obtain a resonant ¢V state. Variation

2L A, Scotti and D. Y. Wong, Phys. Rev. 138, B145 (1965).
(1;26{5.) S. Ball, A. Scotti, and D. Y. Wong, Phys. Rev. 142, 1000

uC, Lovelace, in Proceedings of the Heidelberg International
Conference on Elementary Particles, Heidelberg, Germany, 1967,
edited by H. Filthuth (North-Holland Publishing Co., Amster-

dam, 1968).
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of wy does not change this result. The §;; obtained from
the coupled 7N, N model with grv?/4r=16.0 and
wy=2u, is presented in curve (c) of Fig. 3. As pointed
out in Sec. I, 711=1.0 up to ~864 MeV for the coupled
7w, eN model, in complete disagreement with experi-
ment. As in the three-channel case, inclusion of N
exchange in 7V — ey and eV — eV leads to an exces-
sively large Roper width.

In summary, we see that the coupled three-channel
model of 7N, oV, and eV presented here, using only
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Born input forces in the determinantal approximation,
can, with relatively few parameters, account quanti-
tatively for the energy dependence of 61; and 7y in the
range from threshold to ~600 MeV. This approach also
yields output partial widths for the Roper resonance
which are in good agreement with the experimental
data.

2 The calculations involved in this paper were carried out on
the IBM 7044 Computer at the McGill Computing Centre.
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Weak Parity-Nonconserving Potentials*

D. TapiCt
Brookhaven National Laboratory, Upton, New York 11973
(Received 20 June 1968)

The weak parity-nonconserving potential due to the exchange of vector bosons and pions is calculated
for several weak-interaction Lagrangians. Experimental tests using few-nucleon reactions are discussed.
Effects in the reaction #+p — d-+v are estimated in detail. A simple approximate determination of the
effective potential for the complex nuclei is included. For reliable information on the weak-interaction
Lagrangians, comparison of several processes is needed.

I. INTRODUCTION

LTHOUGH the idea that weak interactions are
described by Lagrangians that are certain com-
binations of the bilinear products of currents is a very
attractive one, it has not yet been exhaustively tested.
While very successful in explaining the semileptonic
decays, this theory is less directly testable in the case of
nonleptonic ones. Some successes of the current algebra
concerning them! seem to support it, but there are still
open questions about the nonleptonic decays of the
hyperons.2~* On the other hand, the nonrenormaliza-
bility of the theory and violent divergencies encount-
ered already in the second approximation seem to raise
some doubt in the basic soundness of the whole scheme.
Thus, it seems worthwhile to look at the weak-inter-
action problem from a somewhat different angle,
by exploiting the weak parity-nonconserving nuclear
effects.5 Up to now these effects have been measured

* Work performed under the auspices of the U.S. Atomic Energy
Commission. ) ]

1 On leave of absence from University of Zagreb and Institute
“R. Boskovié,” Zagreb, Yugoslavia.

18, L. Adler al%d R. F. Dashen, Current Algebras (W. A.
Benjamin, Inc., New York, 1968).

2§, Okubo, Ann. Phys. (N.Y.) 47, 351 (1968), and references
therein.

8 F, C. P. Chan, Phys. Rev. 171, 1543 (1968). )

4R. Nataf, Nuovo Cimento 52, 7 (1967), and references therein.

§ R. F. Dashen, S. C. Frautschi, M. Gell-Mann, and Y. Hara,
The Eightfold Way (W. A. Benjamin, Inc., New York, 1968),
p- 254.

using complex nuclei only,** where theoretical interpre-
tation is complicated. Moreover, the experimental
results themselves are not quite compatible or conclu-
sive. Fortunately, this situation is very likely to improve
in the near future, when few-nucleon reactions are
performed. One of these reactions, n+d— H34-y, is
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