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An investigation of the electromagnetic properties of baryons is made with a quark-diquark model using
broken SU(6) wave functions. The magnetic moments are calculated assuming no orbital contributions
and equal gyromagnetic ratios for the quarks. The resulting magnetic-moment sum rules deviate slightly
from the SU(3) and SU(6) predictions. The electromagnetic mass splittings are assumed to be composed
of intrinsic splitting in the quark and diquark, Coulomb terms, and magnetic terms. We obtain fewer sum
rules than with the quark model under analogous assumptions about symmetry breaking.

I. INTRODUCTION

A NUMBER of authors' ' have obtained sum rules
for the electromagnetic mass splittings of hadrons

and the magnetic moments of baryons on the basis of
the quark model. ' In some of these papers, general
properties of two-body quark interactions were as-
sumed' and in others more explicit assumptions were
made about the details of the quark-quark interaction. ' '

In one specific dynamical model of the quark-quark
interaction, 7 two quarks form a tightly bound state or a
diquark, which in turn interacts with a third quark to
form a baryon. The diquark was assumed in this model
to belong to a six-dimensional representation of SU(3).
Using this model, the electromagnetic mass splittings of
the hadrons and the baryon magnetic moments have
been calculated. "

One defect of the model as originally proposed is that
it is not even approximately invariant under SU(6).
For this reason it was not possible previously to obtain
the striking prediction'e of SU(6) that the ratio of the
proton to the neutron magnetic moment is —~3. Rather,
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the gyromagnetic ratios of the quark and diquark were
taken as two distinct parameters chosen so as to 6t the
experimental value of the proton and neutron magnetic
moments. Recently this quark-diquark model has been
generalized" so as to be approximately invariant under
SU(6). This is done by taking a quark to belong to a
six-dimensional representation of SU (6) and the diquark
to belong to a 21-dimensional representation of SU(6).
It is the purpose of this paper to calculate the baryon
electromagnetic properties using this generalized version
of the quark-diquark model.

In some earlier papers7 ~ the quark-diquark model has
been called a fermion-boson model or a triplet-sextet
model. Both of these terms have defects: the erst be-
cause the quarks may obey parastatistics, and thus the
quark may not be a fermion and the diquark may not be
a boson. In the second case we used the term "triplet"
to refer to the quark and "sextet" to refer to the
diquark. However, according to SU(6), the diquark
belongs to a 21-dimensional representation of SU (6) and.
contains both an SU(3) sextet of spin 1 and an SU(3)
triplet of spin 0. Thus it is more convenient to have the
terms "sextet" and "triplet" both refer to the diquark
and to use the term "quark" to refer to the triplet of
half-integral spin.

We shall assume that a diquark has the same quantum
numbers as a bound state of two quarks with zero
orbital angular momentum. Furthermore, we shall use a
two-quark model to infer some other properties of the
diquark. Nevertheless, we shall assume the diquark to
be essentially elementary in combining it in an S state
with a quark to form a baryon.

In making calculations of electromagnetic properties
in the quark-diquark model, we shall use perturbation
theory. However, the baryon wave functions will not
necessarily be SU(6) wave functions but rather wave
functions modified to take into account a syrrunetry
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breaking due to the medium-strong interactions. "Thus
we obtain the electromagnetic properties by taking the
expectation values of the electromagnetic operators be-
tween baryon states which are almost but not quite
eigenstates of SU(6). We obtain the SU(6) result by
letting certain small parameters which measure the
difference from the SU(6) wave functions go to zero.

In addition to calculating the baryon electromagnetic
mass differences and magnetic moments as in Ref. 9, we
shall also calculate certain transition magnetic moments
and mass differences. In calculating the magnetic mo-
ments of the baryons we shall assume simple additivity
of the magnetic moments of the constituent quark
and diquark. In calculating the electromagnetic mass
splittings of the baryons we shall assume that they arise
from two causes: first, from the intrinsic electromagnetic
mass splittings of the quark and diquark multiplets, and
second, from Coulomb and magnetic interactions be-
tween the quark and diquark constituents of the
baryons. "

We do not treat mesons in this paper for the following
reason: In the model, a meson can be composed of a
quark and antiquark or a diquark and antidiquark. .
(Other combinations, such as quark-antidiquark do not
have the correct quantum numbers, and must be
assumed to have more energy if, indeed, they are bound
at all. )

It is obviously simpler to choose the quark-antiquark.
model to describe mesons, in which case we have nothing
to add to the usual treatment. ' "Mesons have already
been considered in the SU(3) version of the diquark-
antidiquark model, ' but our present attitude is that
such states do not correspond to the ground-state 35-
dimensional multiplet of SU(6). If mesons are dis-

covered which belong to a 27-dimensional representation
of SU(3), the diquark-antidiquark model of mesons will

merit further consideration, since such a multiplet
cannot be achieved in the quark-antiquark model.

The plan of the paper is as follows. In Sec. 2 we dis-
cuss the electromagnetic properties of the diquark as a
bound state of two quarks. In Sec. 3 we obtain the
magnetic moment of the baryons including the E*-V
and Z-A transition magnetic moments and the magnetic
moment of the 0 on the basis of the quark-diquark
model. In Sec. 4 we calculate the electromagnetic mass
splittings of the members of the baryon octet and
decuplet and obtain a number of sum rules.

2. ELECTROMAGNETIC PROPERTIES
OF THE DIQUARK

We assume that two quarks combine to form a
diquark which belongs approximately to a 21-dimen-
sional representation of SU(6). The SU(3) and SU(2)
content of such a 21-dimensional representation is an
SU(3) sextet of spin 1 and an SU(3) triplet of spin 0

1—S=~i,)(m,+S,) . (2)

We assume m,))8,))e,. Then neglecting e„ the quark
moments are

~(qi) = 3uo, p(q2) = 31 o, ~(q~) = —3~—0(1—~) (3)

This violation of U-spin invariance has been previously
considered in the quark model in Ref. i.

We now turn to the properties of the diquark. The
quantum numbers are shown in Table I, together with
the symbols for the particles and for the mass-splitting

"C. A. Levinson, H. J. Lipkin, and S. Meshkov, Phys. Rev.
Letters 7, 81 (1962).

belonging to the 3 represents, tion of SU(3):

21g36+ ~B.

The group SU (6) is broken by letting the central mass
of the sextet diquark be different from the central mass
of the triplet diquark. The group SU(3) is also broken.
The sextet diquark splits into an isospin triplet of
hypercharge I'= -'„an isospin doublet with V= —-'„and
an isospin singlet with I'= ——,. Similarly, the SU(3)
triplet splits into an isospin singlet of hypercharge —, and
an isospin doublet with I'= —3. These isospin multiplets
are assumed to be split further by the electromagnetic
interaction. %e can consider two possibilities: (a) that
the electromagnetic splitting is invariant under U-spin
transformations, and (b) that because of the indirect
effect of the SU (3)-breaking medium-strong interaction,
there is a small violation of U-spin invariance by the
electromagnetic interaction.

Before discussing the properties of the diquark we

briefly recapitulate the electromagnetic properties of the
quark. The electromagnetic mass-splitting parameter
which splits the quark isospin doublet we call e,. If
U-spin invariance holds, "then the isospin singlet quark
will also have an electromagnetic mass splitting e~. Any
deviation from U-spin invariance can be absorbed as an
electromagnetic correction to the medium-strong mass-
splitting parameter 5, which separates the isodoublet
from the isosinglet.

If we assume that the quark magnetic moments p(q;)
are proportional to their charges Q;, we obtain

u(q') = ~oQ. ,

where po is a parameter, which will turn out to be the
magnetic moment of the proton, and Q, is the charge of
the ith quark. With this assumption, U-spin invarianre
holds, but Eq. (1) is more restrictive than U-spin
invariance. On the other hand, we can assume that
quarks all have the same gyromagnetic ratio. Then the
quark magnetic moments are as follows:

p(q~) = 3po i p(q2) = 3po~cl (~a+ ee) ~

~(q, ) = 31.omq/(m—qq Sq+.q), -

where m, is the quark mass. We define the quantity 5 by
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TABLE I. Quantum numbers and parameters of the diquark.

Symbol

$1

$2

S4

S5

$6

f3

Mass

ms+ &1

me+ 62

my+ to3

m, +&4+8,
m, +e5+b,
m, +&6+8,'

mt+Ey

mt+ E8+~g

&«+ ~9+&~

Isospin

1
2
1
2

Hypercharge
I"

3

3
2
3
1
3
1
3

3

1
3
1
3

Charge

Q

1
3
2
3
2
3

1
3
1
3
2
3

Spin Baryon number

2
3

3
2
3
2
3
2
3

'2
3

parameters. First we consider the sextet diquark of
spin 1. If U-spin invariance holds, we conclude that the
electromagnetic contribution to the mass splitting of s2

is equal to that for s4, since s2 and s4 belong to the same
U-spin multiplet. Similarly, the contribution to s3, s5,
and s6 are equal. Thus from U-spin invariance we have

eg= e4,

Since the parameter ~~ can be absorbed into the defini-
tion of m„we can write all the electromagnetic mass
splittings of the sextet in terms of two electromagnetic
mass-splitting parameters ~~ and ~3, provided that U-

spin invariance holds. Subtracting Eq. (4) from Eq. (5),
we obtain

64. (6)

But since s3 and s2 belong to the same isospin multiplet,
we conclude that their entire mass difference arises just
from the electromagnetic contribution to the mass
splitting, and similarly for s5 and s4. We thus have the
sum rule

m ($o) —I ($o) = ei ($o) —m ($4) .

The triplet diquark has only one electromagnetic mass-
splitting parameter. Thus U-spin invariance gives no
new information.

We now turn to the magnetic moments. The sextet
diquark has six magnetic moments, and U-spin invar-
iance leads to the following relations among them:

t1 ($2) = t1($4), t1($o) = t1($o) = t1($o) . (8)

Thus there are three independent magnetic moments
among the members of the sextet if we invoke U-spin
invariance. Since the triplet diquark has spin 0, its
magnetic moment is zero. However, there are possible
transition moments which refer to the matrix elements
of the magnetic-moment operator between the triplet
and sextet states, when the s component of the sextet
spin is zero. We call these transition moments t1(t,$;),
noting that t1 ($,t,) =p(t;$,). There are three non-
vanishing transition magnetic moments, p(t1$.), t1 (t.$4),
and t1(to$o). From U-sPin invariance two of them are

equal:
t1 (t,$,)=P (t ,$,), . (9)

t ($1) ot0&

t1 ($o) = otto,

t ($o)= —ouo,

t ($4)=ot o(1+~),
t1(») = —ot1o(1 —o~)

t ($o)= —
ot o(1—~),

t1(t1$o) =po, t1(to$4) =po(1 —p),
(12)

p(to$o) 3t1o5 t ($&t ) t" (t $ )

Thus the diquark moments are given in terms of the
quark moments.

We can obtain the magnetic moments of the diquarks
assuming U-spin invariance for the magnetic moments

so that there are two independent parameters describing
the transition moments. Thus there are altogether five
magnetic-moment parameters describing the diquark.
These are too many parameters to enable us to make
any meaningful predictions about the magnetic mo-
ments of the baryons.

However, we can add the additional assumption that,
just as with the quark, the magnetic moments of the
diquark. sextet a,re proportional to their charges. This
assumption reduces the number of parameters de-
scribing the magnetic moments of the diquark from five
to three. (In Ref. 9, since a triplet diquark was not
assumed to exist, the transition moments were, of
course, zero, and only one parameter described the
diquark moments. ) The number of parameters can be
reduced from three to zero from the assumption that the
diquark magnetic moments can be calculated from the
magnetic moments of the quark constituents, assuming
additivity of the quark moments. With this assumption
the magnetic-moment operator p~ of the diquark is
given by

tJ d= t11+tJO,

where the subscripts 1 and 2 refer to the first and second
qua, rks in the diquark and not to quarks of type 1 and
type 2. Then, assuming that the gyromagnetic ratios are
the same for all quarks, i.e., that the quark moments are
given by Eq. (3), we obtain the following results for the
magnetic moments of the diquarks:
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rather than for the gyromagnetic ratios by letting the
parameter 8 go to zero in Eqs. (11) and (12). Then the
magnetic moments of the members of the sextet and
transition magnetic moments can be simply written

p (s,)=ppQ, , i= 1, , 6

14(i s&) =p(s&'i )=pp, i = 1, 2, j=2i

IJ, (s,t,) =0 otherwise.

(13)

These results are obtained by taking the matrix ele-
ments of the diquark operator p„=p~z+pgz between
states of the diquark.

In order to compute the magnetic contribution to the
electromagnetic mass sp1ittings of baryons, it is con-
venient to have the matrix elements of p A, where A is
any vector, between diquark states. These matrix
elements are easily computed, but since there are many
of them, we shall not write them here.

We now wish to calculate the electromagnetic mass
splittings of the diquark under the assumption that this
mass splitting arises from the intrinsic electromagnetic
mass splitting of the quark. isospin doublet and also
from Coulomb and magnetic contact interactions be-
tween the two quarks. The assumption that mass
splittings of bound states of quarks can be calculated
from the sum of the electromagnetic mass splittings of
the constitutent quarks plus a sum of two-body quark-
quark Coulomb and magnetic contact interactions has
been previously made in Refs. 4, 5, and 9.

We assume that the electromagnetic interaction V,
between two quarks in an 5 state is given by

l'.=aQ~Qg —bt ~ t g/~p'

where again the subscripts 1 and 2 refer to the first and
second quark in the diquark and not to quarks of type 1

and type 2. The constant a is the effective inverse dis-
tance between the two quarks bound in the diquark,
while the constant b is proportional to the absolute
square of the quark-quark wave function at the origin.
The constants a and b are both positive according to the
model. These constants depend on the details of the
strong forces between the quarks since these strong
forces largely determine the wave function of the two
quarks in the bound states. This means that the con-
stants a and b can be expected to be somewhat different
for the sextet diquark, and for the triplet diquark, since
their masses are different because of SU(6) symmetry
breaking in the medium-strong forces. Similarly, SU(3)
breaking can lead to different constants u and b for
diquarks with different isospin. However, we shall
neglect these effects as being small. It is now straight-
forward. to obtain the result that the electromagnetic
contributions to the masses of the sextet and triplet

3. MAGNETIC MOMENTS OF BARYONS

We can use the properties of the quark and diquark
obtained in Sec. 2 to calculate the magnetic moments of
the baryons. Our results will depend on whether we
assume U-spin invariance for the quark and diquark.
magnetic moments or for their gyromagnetic ratios. We
shall obtain the baryon magnetic moments assuming
that U-spin invariance holds for the gyromagnetic
ratios rather than for the moments themselves. In other
words, we shall use the quark moments of Eq. (3) and
the diquark moments of Eqs. (11) and (12). ln making
the calculation we assume zero orbital angular
momentum.

The magnetic-moment operator p, for a baryon is
given by

PZ=14dZ+I4eZ ~z (19)

Since the magnetic moments of the baryons are given by
expectation values of this magnetic-moment operator

diquarks are given by to first order in 6'= bb:

.,=4(a b)—/9,
eg ——e,—2 (a—b)/9,

eg
——2e,+ (a—b)/9,

e4
——e, 2(a—b+—8')/9,

ep 2e——e+ (a b+—8')/9,

ep
——2e,+ (a—b+2b')/9,

e7 ——e,—2 (a+3b)/9,
eg = e,—2 (a+3b —35')/9,

eg
——2e,+ (a+3b—35')/9.

Of more interest are the electromagnetic mass differ-
ences between members of the same isospin multiplet.
We have

m(s, )—m(sg) = e,—-', (a—b),
m(s, ) m(—s,) = e,+-', (a—b),

(17)
m(s, )—m(s4) = e,+-', (a—b)+-', b',

m(tg) —m(tg) = e,+-,'(a+3b) —b'.

U we let 8 +0 in E-q. (17), we obtain the sum rule
Eq. (7) which follows from U-spin invariance. We also
get an additional sum rule connecting the mass splitting
of the quark to the mass splitting of the sextet diquarks.
This sum rule is

2m(sg) —m(sq) —m, (2) =3m(gg) —3m(g~) . (18)

The electromagnetic properties of the diquark which
we have obtained in this section will be useful in calcu-
lating the electromagnetic properties of baryons. How-
ever, as stated in the Introduction, we shall regard the
diquark as essentially elementary in calculating the
properties of baryons. This means that we shall not
impose any symmetry requirements on the baryon wave
function under the interchange of quark and diquark.
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with respect to baryon wave functions, the results will

depend on details of the wave functions. In Ref. 11 it
was shown that the mass splittings of the quark and
diquark lead to deviations of the baryon wave functions
from those given by SU(6) and SU(3). Therefore, we
shall obtain our results for wave functions which differ

by a small amount from the SU(6) predictions. '
We shall introduce symmetry-breaking parameters p

and y,. The g is a measure of SU(6) breaking, while

y, (i= 1, , 4) are a measure of SU(3) breaking. The
broken-SU(6) wave functions are given in the Appendix
and the parameters g and y, are defined there. The q
and p; presumably arise from medium-strong symmetry-
breaking interaction. Also defined in the Appendix are
additional symmetry-breaking parameters 8;. However,
for simplicity, we let them equal their SU(3) values in
the main body of this paper. In terms of the g and p;,
the magnetic moments of the baryons in units of p, o are

p(p) =1—-,'sin'g,

p(n) = —3+3 sin'g,

p(A) = + 5+ (1—b) S1I1 ( +—p ),
~(&+)=1—9~—3 (1—3~)»n'(~+v3)

~(&') =l——:~—l(1—:~) '(~+& ),
p(& ) = ——',—-',8+ (28/9) sin'(g+y, ),

(20a)

(2ob)

(20c)

(2od)

(20e)

(20f)

p(') = ', +48/9+—-'-, (1 ', 8) sin'(g—+—7,), (20g)

p( ) = —3+48/9 —(28/9) sin'(g+y4), (20h)

(20i)

where without loss of generality we have set p&=0. VVe

have included the magnetic moment of the 0 because
in principle it should be measurable. The magnetic
moment of the Z is more remote from experiment, but
we have included it anyway. The transition magnetic
moments are given in terms of the off-diagonal matrix
elements of the magnetic-moment operator. The two
transition moments which are most accessible to experi-
ment are p(1P+p) and p(Z'A). In units of po they are

p(1P+p) = ~~v2 cosy, (21a)

~(&'A) = —(V'3) cos(n+va) cos(n+v2) (21b)

The above expressions are exact for any value of y; and
g. It can be seen by expanding Eqs. (20) in powers of g
and 7; that there are no corrections to the magnetic
moments to first order in g and y;. The first-order
corrections are zero because the magnetic-moment
operator has no matrix elements between states of the
56-dimensional representation of SU(6) and states
belonging to other representations.

Without making further assumptions, we can use

Eqs. (20) to derive the following relations:

2~(-". )+~(=')— (~l ) 2~(~ )+~(~')—~(~ ).(=- )-.(=--) .(~+)-.(~-)
—p(Q ) = 1—5 (22)

3[~(p)+~(N)3

~(&') =5[~(&+)+~(& )j. (23)

But the last relation just follows from the linear form of
the magnetic-moment operator and the fact that isospin
is conserved. The above relations would hold for both
SU(3) and SU(6) breaking of the quark-diquark wave

function [with the quark and diquark individually

SU(3) and SU(6) symmetric J. However, it is not likely
that they will be tested experimentally in the near
future.

It is also possible to break SU(3) symmetry in the
wave functions in a more general way than that cen-
sidered here and still conserve isospin. This was in fact
done, but we do not think the results of sufhcient
interest to present here. This is because the resulting
expressions involve several extra parameters (the 0; of
the Appendix) and are considerably more complicated.

From the expressions of Eqs. (20), we obtain the
result that the ratio of the proton to neutron magnetic
moment is given by (in second order)

I (p)/I—(~)=&=5+—2n'

If the baryon wave functions are SU(6) symmetric,
g=y~=0 and we get the well-known result E.=—,'.
Experimentally" E.= j..46(2, so that any small devia-
tion from SU(6) in the wave function worsens the
agreement with experiment, provided that isospin is
conserved. The result that E& 32 also holds for a more
general small SU (6) breaking in the model in its present
nonrelativistic version with no orbital angular mo-

mentum, provided that isospin is conserved. This result
is also true in the quark model. It seems unlikely that a
correction as large as the 3% necessary to obtain
agreement with experiment arises from a violation of
isospin, since the first-order correction is zero. The
correction might arise from exchange currents, rela-
tivistic effects, or nonzero orbital angular momentum.

In any case, it is plausible to assume that the effects
of SU(6) and SU(3) symmetry breaking are small for
the proton and neutron.

For the ratio of the A to neutron magnetic moment
we obtain

p(A)/p(e) = i[(1—8)—(1—38) sin'(g+y2)) sec'g (25)

In the event of no SU(3) breaking, that is, 8=y2 ——0, the
ratio reduces to ~~. Expanding Eq. (25) to second order in

'SA. Rosenfeld et al. , Rev. Mod. Phys. 39, 1 (1967); 40, 77
(1968).
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small parameters, we obtain

~(~)/~(~) = «(&—&—2nv. —v«').

Experimentally'

p (A.)/p (n) =0.38+0.08.

(26)

From the proton-neutron magnetic-moment ratio, we
saw that g' had to be small unless relativistic correc-
tions, orbital effects, or other corrections outside the
scope of our model are important. If we further assume
that the second-order terms in gy2 and y2' are also small,
we can get a first approximation for 8 from Eqs. (26)
and (27). We obtain

8=0.24&0.16. (28)

4. ELECTROMAGNETIC MASS SPLITTING
OF BARYONS

We assume that the electromagnetic mass splitting of
a baryon is the sum of three contributions. These are:
(a) an intrinsic contribution arising from the electro-
magnetic mass splittings among the different members
of the quark and diquark, (b) a Coulomb interaction
between the quark and diquark, and (c) a contact
magnetic-moment interaction between the quark and
diquark.

Ke write the electromagnetic mass operator AM so as
to exhibit these three contributions explicitly:

AM= I+U,+Y

Further relations may be obtained if the p; are
negligibly small compared to g. For such a case, we may
set y, =0 in our original expressions for the magnetic
moments, Eqs. (20), and then expand them to second
order in small parameters. From the resulting equations,
we obtain

u(p) —u(~')
= lb (="')—~(~)j= 5C (= )—~(~ )j
=ll:2 (1)—( )3=-'L (~')+ (~ )+2 (~)j

= (0.027+0.018)p (p),
where we have used Eq. (28). These sum rules differ

slightly from the well-known SU(3) and SV(6) pre-
dictions. ""At the present time the experimental values
of the magnetic moments are not well enough known to
check these sum rules.

3 (e p) =N* —N*++— (34)

Experimentally'3

3(e—p) =3.9 MeV, N* —1V*++=7.9&6.8 MeV.

Experiment must be improved considerably to check
this. The members of (33g) also satisfy the following
equations:

(=--—=-') —(=-*-—=-*')= l(f+») (&—~), (» )

(Z-—Z+) —(Y*-—Y*+)= —',(f+28) (1—8). (35b)

same for all baryons. Without this assumption, the
expressions for the mass differences would involve too
many parameters to be useful. With this operator we
have calculated the electromagnetic mass shifts using
the wave functions given in the Appendix with the
approximation of carrying the small parameters p and

p, to first order. The results are given in Table II. We
shall examine these results first for the case when

p, = &=0, then for p&0 while &;=0, and finally for
p, /0 and g&0.

For the case when q =y, =0, the following relations
are obtained:

( —p)+(=" —-"')—(~ —&') =0 (33 )

( * —."')—2(Y* —Y*')+(N* —N ')=0) (33b)

(N 40 N 4+) (YWO Y8+)
—(1V*——N"')+ (Y~ —Y*')=0, (33c)

3 (1V*'—1V*+)—(N* —N "++)=0, (33d)

(n —p) —(N*'—N*+)=0, (33e)

1V*-+N*+—2N*' —Z- —Z++2Z'=0, (33f)

H Hp H+ —H+p

+ (Y* —Y*+)—(Z —Z+) =0. (33g)

Equation (33a) is the Coleman-Glashow" relationship.
It has been obtained without assuming U-spin invari-
ance since we have kept 5 different from zero.

The last three equations related mass differences be-
tween members of the octet to mass differences between
members of the decuplet. They differ from the corre-
sponding relations obtained in Refs. 8 and 9 in which

SU(6) was maximally violated. Unfortunately there is
no experimental evidence to check Eq. (33f). But Eqs.
(33d) and (33e) may be combined to form

where
I= Amg+Am«,

Y.=Agog«,
—&t ~. s «/~o'.

(30)

(31)

(32)

wp~ w~ wgp (36a)

(36b)

Since b and 8 are positive quantities and B(1,we may
write the following inequalities:

Here A is the average inverse distance between the
quark and diquark bound in a baryon and 8 is pro-
portional to the square of the quark-diquark wave
function at the origin. Ke assume that A and 8 are the

"S.Coleman and S. Glashow, Phys. Rev. Letters 6, 423 (1961).

It is easy to see that the size of the inequality depends
on how large the magnetic contribution is, that is, on the
magnitudes of the parameters b and B. If the magnetic
contribution is appreciably smaller than the Coulomb
contribution, we expect that " —™0and Z —2+ will be
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TA&LK II. Contributions to the electromagnetic mass differences of baryons. The symbol for a particle stands for its mass. Each mass
difFerence is equal to a sum of certain terms (given in the row at the top of the table) times the appropriate coeScients shown in the
table. The parameter ~, is a,n intrinsic electromagnetic mass-splitting parameter of the quark, a and b are electromagnetic mass-splitting
parameters of the diquark, 8 is a measure of the departure from SV(3) symmetry of the magnetic moments of the quark and diquark,
and A and 8 are measures of the strength of the Coulomb and magnetic interactions between quark and diquark. For exact definitions,
see the text. The parameter p is a measure of the departure from SU(6) symmetry of the baryon wave functions arising from medium-
strong interactions, and y3 and p4 are measures of the departure from SU(3) symmetry.

n —P
gp g+
z-—zp
M— MO

gg+ Qg++
ggp gg+
I +0 I Q+

gQ — +Qp

I +0
M$—Mgp

—1—2n
&(n—+ra)

2+5+73
2 (1—0—74)

4—1—1
2
2
2

1+29
4—q —y31-~(.+~ )

z(z —5&—5& )
4
1
1—2—2—2

—2 (1—n)-2+5(.+~ )
4—n —v3

2 (2+/+ /4)—8—2—2

2 (1—n)
8+g+p3

2+&(~+v )
Z (4+5&+5&,)

8
2
2

—,'S (b+ 28)

0—2—2

0
0
1
0
1
2

The present experimental errors are too large to con6rm
the prediction.

If it were true that the magnetic contribution is
appreciably smaller than the intrinsic and Coulomb
terms, then it is legitimate to neglect 8 since it is a small
correction to the magnetic term. But the intrinsic and
Coulomb terms in the mass operator are U-spin in-
varia, nt, and the magnetic term will be U-spin invariant
with the 5 neglected. Under this assumption we may
supplement our equations by

g QQ /g+ I'+0 P'g+

~yg— ~g0 I'g— y'g0 g— g0
M

(37a)

(37b)

The inequalities (36) still hold.
For the case y, =0, while q&0, the octet Coleman-

Glashow relation and equations among the members of
the decuplet are unaffected. In other words, SU(6)
breaking does not change relationships within an
irreducible SU(3) representation. Only Eqs. (33e)
(33g), which relate mass differences between the octet
and decuplet, change. They become

(e—p) —(iU" N*+) = 2g(A a+—b B)(9, (38a)— —
(s' —s+)—(E-—Z') —(iV"+ cV'++)+ (N*' N"+)— —

=-s, g(A a+b B), (38b)— —
(-" —="')—(=' —="')+(I' —I'")—(& —&')

= 2g(a A+B b)/9— (38c—).
Finally, for p &0 and p,/ 0, the Coleman-Glashow

relation no longer holds. A correction term is added of
th C for m

2(& —» ) (A —&)/9+2(» —4v ) (B—b)/9 (39)

only slightly larger than ™*—*' and V~ —I'*+,
respectively. The experimental results are"

0= 6.5 MeV,
Z~ —™*0=4.9~2.2 MeV,

Z —Z+= 7.9 MeV,
V* —I'*+=5.8~3.2 MeV.

This must be less than or equal to 1 MeV, which is about
the total error in the measurement of mass in the
Coleman-Gla, show relation. This puts an upper limit on
the values that y; can assume.

This version of the model, incorpora. ting a,pproxirnate
SU(6) invariance, leads to several different sum rules
for the mass differences than the previous version,
which strongly violates SU(6) invariance. However,
since present experiments are not good enough to dis-
tinguish between these sum rules, the present evidence
for SU(6) does not seem compelling as far as the
electromagnetic mass splittings are concerned.

The model contains more parameters than the quark
model, and therefore gives fewer predictions. In par-
ticular, according to the quark model with SU(6)
breaking, we would not get Eqs. (38) but rather the
equations that would follow if

A a+b B=—0—
Thus, whereas the quark model predicts equalities for
certain linear combinations of the masses, the quark-
diquark model predicts inequalities. Better experiments
will be necessary to distinguish between the two cases.
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APPENDIX

We let the symbol for a, particle denote its wave
function in this Appendix. We use the symbols g;, s;,
and i, for the SU(3) wave functions of a quark, sextet
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diquark, and triplet diquark, respectively. Also, we
denote the spin wave functions of a quark by n (spin up)
and P (spin down), and the three spin wave functions of
the sextet diquark by a, b, and e. The triplet diquark has
spin 0, and we omit its wave function. We also define the
spin wave function X:

(A1)

Ke write the wave functions for the baryon octet and
decuplet in terms of these quark and diquark wave
functions. For the decuplet, we cannot break SU(6)
without also breaking SU(3). The most general wave
functions for a broken decuplet of spin ~3, assuming
isospin conservation, are (omitting the spin variables)

P = sinF, $ (/3)$, q, —(g-', )$,qQX+ cosF & t&q,n,
44=sinF& f(g-,')$2q& —(g-,')$&q,jx+cosF& t&qme,

A.= sinF2 (g-', ) ($4q&
—$&q&)X

+cosI 2 L(Qg) (t2g2 taql) sm83+tlqe cos84go ~

Z+= slnF3 ($yqe cos84—$4gy sin84)X+cosF3 t2q~n,

Z =S1I1F3 L$2qe COS84—(+2) ($4q2+$4qy) S11184$X

+COSFe (g-,') (t2q2+teqi)n,

Z = sinI'3 ($4q3 cos84—$4qu sin84) X+cosF3 t3q2Q

= sjnF4 ($4qp sln8& —
$4q& cos84)X+cosF4 t2q3Q,

= sinF4 ($4q3 sin84 —$4q2 cos84)X+cosF4 teqgl.

If SU(3) holds„ then

I"g=F2=F =F4

(A4)

(A5)
E*++= sgqg,

&"=(V'e)»q+(V'e)$ q~

and

sin84 = sin84= sin84 ——gs . (A6)

&*'= (v'-')$ q +(v'-')$ q

g* =s3g2,

F +=$yqe sin8~+$4qy cos8y,

&*'=$2qs sin8i+ (Q g) ($4q2+$4qi) cos8i,

I'* = $4qe sin81+$&q~ cosi4,

(A2)

If, in addition, the members of the baryon octet belong
to the 56-dimensional representation of SU(6), then

(A7)

We can introduce SU(6)- and SU(3)-breaking param-
eters explicitly by writing

F,=-4'n+g+y;, i=1, , 4
* = $4qe cos82+$4q~ sin82,

Q= s6q3,

where g is a measure of SU(6) breaking and the y, are
a measure of SU(3) breaking. Without loss of generality,
we have taken y~ ——0.

In the main body of this work, we have for simplicitly
restricted ourselves to the case

where 8~ and 8~ are parameters. If SU(3) is a good
symmetry, sin8;=g-', , i = I, , 5. (A9)

sin8q= sin82= gs~. (A3)

Then SU(6) also holds, and the members of the decuplet
belong to a 56-dimensional representation of SU(6).

Assuming isospin holds, the broken octet wave func-

tions are given by

This means that the sextet and triplet conserve SU(3)
separately in their coupling to the quark, with SU(3) or
SU(6) being broken by differences in the sextet or
triplet coupling. However, the statement that —t4(p)/
t4(e))-', is true in the general case for small SU(6) and
SU(3) symmetry-breaking parameters.


