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(b) the Hilbert' density, defined by
dr;b(x q;—(r,))q"(q"+ eA")

In general, neither 5R, nor 5RII will separate un-
ambiguously into "particle" and "field" parts. In the
case of classical electrodynamics we have

and

dr;f ,'rn;q;"-q;"g„„(q)+eq,"A „(q;)j
1

dx ( g)ilsF„„F gvrgrr

16m

Trrv" (x)=P rn; dr;t't(x q;(r;))—q,"q,"

1
(F,—F„—' 'F'g )——

4x

9 See the treatment of the symmetric stress energy tensor in
L. D. Landau and E. M. Litshitz, The Classical Theory of Fields
(Addison-Wesley Publishing Co., Reading, Mass. , 1962), revised
2nd ed.

+ (A—&F"r F—rA' "x&+'x&g"-rF') (p,—+-+ v)
4m.

In this case, the Hilbert definition provides a "natural"
particle angular momentum density depending only on
the particle variables. In quantum electrodynamics, on
the other hand, the cueomicol expresssion has a part
containing only the Dirac field g. It is the familiar
spin-plus-orbit expression used in (16).To lowest order
in P, the interaction angular momentum is the same

in both definitions, namely (4).
Whether there is a "natural" separation of angular

momentum which (i) reduces to the Hilbert separation
for particles and field in the case of zero interaction
and (ii) is still asymptotically a covariant separation
for interacting particles is unknown.
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We investigate whether faster-than-light propagation of particles and wave motions is consistent with
Lorentz invariance of the S matrix in the general context of relativistic, off-shell scattering theories. We do
three things. First, we show that Lorentz invariance of the Green's functions implies that of certain weight
functions; jn a field theory, these weight functions are the Wightman functions. Secondly, we show that any
og-she]l scattering theory with Lorentz-invariant Green's functions arises from a field theory with causal
equal-time commutators. Thirdly, we show that in particle theories with normal connectedness structure, the
equal-time commutators are necessarily canonical. These results show that there are great difhculties facing
theories of faster-than-light motion which aspire to relativistic invariance.

1. INTRODUCTIOH

'HE question of particle and wave motions faster
than light has recently been of interest. Feinberg'

has exhibited a theory of relativistically covariant
quantized fields describing noninteracting, faster-than-
light, spinless Fermi particles. In this model, neither
the particle number nor the no-particle state is Lorentz-
invariant. Ruderman and Bludman' have considered,
more phenomenologically, faster-than-light motions in

' G. Feinberg, Phys. Rev. 159, 1089 (j.967).' S. 1lludman and M. A. Ruderman, Phys. Rev. 170, 117 (1968).

various classical (i.e., nonquantum) contexts. Aber's
et al.' raise the possibility of particles with spacelike
momenta in infinite-component field theories.

We wish to investigate quite generally whether non-
causal behavior of this general kind is possible con-
sistently with Lorentz-invariance; specifically, we con-
sider theories with Lorents invariant Green s f-unctions
We show that noncausal eGects are impossible in a large
class of theories of this kind. It is to be emphasized
that we make no causality assumptions at all

' E. Abers, I. T. Grodsyk, and R. E. Norton, Phys. Rev. 159,
1222 (1967).
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(in particular, no assumptions about commutation
relations).

In Sec. 2 we consider the relation between Lorentz
invariance of Green's functions and Lorentz invariance
of Wightman functions. We work mainly in momentum
space. Starting from Lorentz-invariant Green's func-
tions and making a very weak assumption about
analyticity in energy variables, we establish an integral
formula of the Bergrnann-Oka-Weil type, and prove
that the weight functions are also Lorentz-invariant.
These weight functions coincide with the Wightman
functions if the Green's functions are those of a field
theory; otherwise they may be used to define a field
theory (by the Wightman reconstruction). Thus the
Lorentz invariance of the Green's functions implies that
of the Wightman functions, without causality assump-
tions. This shows that a theory of interacting particles
generalizing Feinberg's' can either be replaced by one
with a Lorentz-invariant vacuum, or cannot have
invariant Green's functions. 4

In Sec. 3, we go on to consider the support properties
of equal-time commutators. We show that these com-
mutators are causal. This is of course sufhcient to
exclude faster-than-light propagation from this class
of theories. We then exploit the connectedness structure
of the Green's functions to show that the equal-time
commutators are c numbers and, if particles are present,
are canonical. We conclude with a discussion of various
proposed models and of technical assumptions.

2. INVARIANCE OF GREEN'S FUNCTIONS
AND OF WIGHTMAN FUNCTIONS

We suppose 6rst of all that we have a theory with
Lorentz-invariant Wightman functions W" (xi x ).
Sy using the Wightman reconstruction, we can suppose
that they arise from fields pr(xr) . .p„(x„) and a
vacuum state ).2 (In the present section, this will be
merely a notational convenience. ) We shall write out
the details only for the case of a single, neutral scalar
Bose field g(x), s since the extension to several fields and
to higher spin types, Fermi statistics, and so forth,
will be immediate. Then we have

Unless otherwise mentioned, we shall truncate these
Wightman functions. ' Then the r products (configura-
tion-space Green's functions) are defined by

(xi) ' 'xn)=Z 812 t)34 ' ' 'lI (x&(rl ' 'x&l&l) ) ( )

4In Feinberg's original theory, Green's functions are not ex-
plicitly covariant, because of the noninvariance of the vacuum;
however, our result will apply if the transformation properties
of the 6elds are so chosen as to compensate for the noninvariance
of the vacuum, giving covariant Green's functions.' All such expressions involving real arguments are to be under-
stood as distributions in the usual way.' That is, with vacuum intermediate states removed.

where
i)12 —t)(xp(ll xp(2)), etc.

and the sum in (2) is over all permutations I' of 1 N.
We wish to perform the Fourier transformation on (2),
having regard to the fact that W" is (by translation
invariance) a function of difference variables only. More
precisely, we introduce into each term of the sum (2)
a separate set of difference variables~ 8

so that
xp(r) xp(r+1) ) (1 &~ r &~ 22 —1)

erP= 8(yP), etc.

(4)

Then we associate with each space-time argument x;
the momentum p; and define

=E pr t'& ~

i=1

Momentum conservation will imply

n

P p, =o,

so that for any permutation P,
n—1

E p * = E q'y'.

Thus changing rr to 22+1 in (2) and using the convolu-
tion property of the Fourier transform, we obtain~ for
the Green's function:

Gn+1(p . . .p )

=i"p
P

p~ (si,qi, , s.,q.) II . (8)'=»' —q'o+ ie

For the moment, we will omit the ie.
In Eq. (8), the Green's function G"(pi p„) is

the Fourier transform of r"(xi x„), and p&"(sr,qr,~, s„,q ) is the Fourier transform in the q„r of
W"+"(yi, ,y ~), with (s;,q;) =q;~ and with the other
superfices I' omitted for clarity. ' "Equation (8) has the
important spectral property that the s; intergation is
over the range

s;~&+ (q;2+2222)'12,

where m is the smallest mass in the theory. "We may
include cases where particles of negative m' arise, '
provided that all values of s and q in (8) are real, and

2 M. M. Broido and J. G. Taylor, J. Math. Phys. (to be pub-
lished). See also J. G. Taylor, Bozdder Lecture Ãotes, 1966, edited
by W. E. Brittin, A. O. Barut, and M. Guenin (Gordon and
Breach Science Publishers, Inc. , New York, 1967), VoL 9A.

2 H. Araki, J. Math. Phys. 2, 163 (1961).
2 Subtractions may be necessary in (8). They are irrelevant

here, and we will ignore them.
'0 Thus all the functions pg are the same momentum-space

Wightman function, only of diferent arguments.
"We do not need to assume that this smallest mass is nonzero.
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that the Wightman function vanishes in a neighborhood
of some real point.

Now we assume that the Wightman functions are
invariant under proper Lorentz transformations. Then
the invariance of each term of (2) under Lorentz trans-
formations is obvious when each argument y„ is time-
like. When causality is assumed" it assures us that for
any spacelike y~P, a term containing

If (x' ' '»&»~»v+ii' ' ')

can be combined with a term with

W (x' ' xp&p+ii, xi &»
' ')

to give an invariant result. Since we do not assume
causality, we proceed otherwise.

Consider a set of connected Green's functions which
are invariant under the proper Lorentz group. If they
possess the usual one-particle poles of mass m and
two-particle cuts, and only correspond to positive-
energy states, then the Bergmann-Oka-Weil representa-
tion expressing the corresponding cut-plane maximal
analyticity in energy variables is precisely Eq. (8),
where the region of integration satisfies (9).' This repre-
sentation is plainly unique, since the discontinuity in
G when the variables q, o pass across the two-particle
cuts [i.e., in Eq. (8)$ is precisely the weight function p.
Since the values of G across the cuts are analytic con-
tinuations of one another [guaranteed by the form (8)j,
these analytic continuations will also be invariant (say,
by the Bargmann-Hall-Wightman theorem), hence so
will be their limiting difference p. Q.E.D.

Alternatively, we may show the invariance by operat-
ing one Eq. (8) with a Lorentz transformation and
averaging both sides with Haar measure over the
Lorentz group. We may, under suitable analytic con-
ditions, invert the order of the integration (8) and the
one involved in the averaging. The result of this is
Eq. (8) with a weight function p' which has been aver-
aged over the Lorentz group and so is Lorentz-invariant.
By uniqueness, p'= p."

3. CAUSAL COMMUTATORS

We now go over to the use of complete (not truncated)
Wightman functions and of complete (not connected)
Green s functions. Since this is a linear process, our
invariance results will still hold. We shall make little
use of the invariance of the Wightman functions, but
we will rely heavily on the invariance of the Green's
functions.

We start from Eq. (2), where the Wightman func-
tions either are defined from Eq. (1) (if we start from
a field theory) or are the configuration-space weight

"Ke note in particular that Araki (Ref. 8) assumes causality
both ways —for his Wightman functions (his axiom W2) and for
his retarded functions (his axiom R2).

"Because we are using time-ordered rather than more general
retarded products, the great complications in Ref. 8 connected

,wjth Steinmann relations do not appear here.

functions p [given by the Bergmann-Oka-Weil rep-
resentation (8) (if we start from Green's functions);
then the field(s) are those given by the Wightman
reconstruction, provided certain additional technical
conditions hold).

The S-matrix element (in momentum space) is
obtained by multiplying with g;(p;s —m') and taking
the liinit P;s~ eP. We assume that we start with in-
variant Green s functions, so this is an invariant process
and must give invariant results. We shall carry it out
in configuration space so as to investigate questions of
causality. It will be sufhcient to consider the difference
variables xi—xp (0=2 e), since the additional effects
for other x,—xI, will add linearly; thus we operate with
the one operator Q,,s+ms. We shall write

(a'+up)y(x) = j(x),
so that

(Cl.,'+m') "(x, ,*„)
=& 0»'es4' "(&(»&i~)" j(»)" 4(x~(-)))

(10)

P C[x„x;j. (13)

Each term in (12) is a function of the difference vari-
able y, =x&—x;. Consider the effect of a Lorentz trans-
formation on the function (13). The support of the
transformed function will be contained in the union
(on i) of the planes (Ay;)p ——0. If (13) is invariant, it
must have an invariant support, which latter must be
contained in the set

&p U' {3':(Ar')o=0}.

Since the union is 6nite, we may commute it with the
intersection, and obtain easily the set U; {y;=0}.
Without loss of generality we can assume that y;/y,
for i&j [otherwise the fields p(x~) and p(x;) always
appear together in the 7- product and can be lumped
together, etc.j. Thus each term (12) has support at
y;=0 only and must be separately invariant, so that
its y; dependence (as a distribution) is of the form
P( ')6'(y, ), where P is some polynomial. Such a

+2 2 ~is'&p4 ".
i P not

1,i
X($(xi'(ii) ' 'C[xi,x;j 'g(xp( i)), (11)

where

C[xi,x,]= b(x;p —xip) [qL(xi),p(x;)]
+&(*'o-*o)[e(*),e(;)]. (»)

On the right-hand side of Eq. (11) the two terms must
be separately invariant because of their different sup-
port properties. This assumes that certain Schwinger-
like terms are absent from the first of these terms. We
shall show this in the note added in proof, Now
consider the second term. We see at once that its in-
variance is equivalent to that of



DOES LORENTZ I NVARIAN CE IM PLY CAUSALITY? 1609

distribution cannot have a factor 3(y;); thus the second
term in (12) must vanish for all Green's functions, and
we have

9 (*),~(")3-1*.=*. =O. (14)

As for the first term in (12), its form shows that we
must have E=const. Thus

B(x)/(x')3-I ~ 0
=»'(x —«'), (15)

where A is some operator. Equations (14) and (15)
show that Lorents invar-iant Green's functions imply
causal commutators.

This proof will be complete and will hold quite
generally, provided that all quantities are well-defined
and do not exhibit extrordinary pathologies. We will
now argue somewhat more heuristically that the oper-
ator A in (15) is actually a c number. We do this by
considering the connectedness structure in the variable
xi of the terms in Eq. (11.) A term will be called
disconnected in xi if it is of the form F(xi—x)G(x& x„),
where 6 is not a function of x,. It is clear that the @~-

disconnected parts of the term in (11) containing j(xi)
will be of the form

(&(j(»)e(x~)))r" '(x2" x-)

and one easily sees that the first factor represents
self-energy corrections to the disconnected scattering
of x~ into x;, with the other particles scattering among
themselves in an arbitrary fashion. The surviving
term (11)will have the factor 6'(xi—x;). This 5 function
is precisely what is required to give the free propagator
for disconnected x~-to-x; scattering. We define our
requirement of a normal connectedness structure by say-
ing that these two terms must combine together to form
the full propagator for x& to x; scattering, as given by
the Dyson equation for local polynomial interactions,
multiplied by the full Green's function for the scattering
of the remaining particles among themselves. It is well
known that this normal connectedness structure holds
in the usual local field. theories (where, however, can-
onical commutation relations are used). If we assume
that it holds in general, the second factor in the 5-func-
tion term from (11) must again ber" '(xr x„).This
can hoM for Green's functions of all orders only if
CI xi,x~), defined by Eq. (12), is actually a c number
n, so that Eq. (15) simplifies to

I:4 (x)A (x')3-I*;.=*;.=o&'(x—x') (16)

Our assumptions so far have not strictly excluded the
possibility that o.=0; but if we require further a cor-
rect particle interpretation, with the propagator having
unit residue at p'=m', we get at once a=iZ8 ', with
Z3

—
'«& 1; Z3 is given in the usual way by the Lehmann

representation I
which latter is a special case of Eq. (8)).

Thus we conclude that Lorents inwriant Gree-n's func
tions imply canonical equul time commutation rel-ations
for theories with particles having correctly normalized

propagators and a normal connectedness structure.
Concerning the possibility of Schwinger-like contribu-
tions and consequent de.culties in passing from Eq.
(15) to Eq. (16), however, see the Note added in proof.

We note that this result extends immediately to a
generally covariant theory, since such a theory is also
Lorentz-covariant.

4. DISCUSSION

The theory of Feinberg' is a theory of a covariant,
field, having a noninvariant vacuum. Thus the Wight-
man functions will not be invariant, and the work of
Sec. 2 shows that a theory with interactions of this
type cannot have invariant Green's functions either.

Faster-than-light propagation is forbidden in any
theory with causal commutators. Hence the work of
Sec. 3 shows that even noninteracting theories Of the
type proposed by Feinberg are inconsistent with in-
variant Green's functions. In the noninteracting case,
this means that faster-than-light propagation is in-
consistent, with the Feynman propagators for the free
fields, a result which is really not surprising. The same
argument shows that in the infinite spin-multiplet
theories, ' spacelike particle momenta are inconsistent
with invariant Green's functions. Other theories with
invariant vacuum and Green's functions, such as that
recently proposed by Kore and Fried, '4 are similarly
shown to be impossible.

We cannot make any such assertions about the more
phenomenological proposals of Ref. 2, since these are
nonrelativistic. Considerations of relativistic invariance
are of course fundamental in our argument. Reference 2
is concernedinter uliu with the propagation of vibrations
in crystals and similar problems in which translation
invariance may not hold. We consider it unlikely that
our methods can be applied even to relativistic theories
lacking in translation invariance, since all the argu-
ments of Sec. 2, based on the consequent use of dif-
ference variables, break down.

We may ask ourselves whether our technical assump-
tions are reasonable. The most important of these
concerns the passage from (2) to (8) and back by
Fourier transform. The terms of (2) and the integrands
of (8) are, formally, products of distributions, and may
contain ambiguities. There is a large class of theories
in which the Wightman functions are' boundary values
of genuine analytic functions in x space, " and then
we can distort the contour of x-space integration to
make the integrals in (8) well-defined. Similarly, when
starting from (8) we may expect to be able to distort
contours once Lorentz invariance is established. Beyond
this class of theories, it is very diKcult to make any
general statement about the validity of such operations.

"D.Korff and Z. Fried, Nuovo Cinmnto 52, 173 (196/).
'~ G. Kallbn and A. S. Wightman, Kgl. Danske Videnskab.

Selskab Mat. Fys. Skrifter I, 6 (1958);G. Eall' and H. Wilhelms-
son, iMd 1, 9 (1939). .
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The only other handle on this type of technical prob-
lem is to investigate model theories. Since Lorentz
covariance is clearly a basic requirement, the only
available model would appear to be that of Thirring. "
The Green s functions of this model are indeed invari-
ant, but contain infinite constants which would appear
to invalidate the equivalence between (2) and (8). We
have a mass divergence, an infrared "problem, " and
divergences associated with vacuum fluctuations. '~

Since the model is nonperturbative, these divergences
must be taken seriously. The question is whether they
have anything to do with the relativistic invariance
properties. We consider the infrared problem to be
normal in any theory with massless particles, since there
will be a cut superimposed on the pole (compare also
the Bloch-Nordsieck model and its generalizations).
The vacuum fluctuations are satisfactorily dealt with
in Ref. 17. The mass infinities are removed in Ref. 17
by a cutoff procedure, and then (equivalently) by
introducing a measure of nonlocality into the theory.
There are then difhculties with relativistic covariance.
Essential though such steps may be in a "computation"
(and in quantum electrodynamics, for instance) they
seem to us to be at variance with the structure of the
model. This model contains local products of fields
which may be expected to give (possibly divergent)
ambiguities as a matter of course; in connection with
investigations of the general structure of the theory, we
feel that these should be dealt with by methods adapted
from the theory of distributions. '

This is all we can say about soluble models. For more
general theories, the question of whether the Fourier
transform is 'allowed' or not appears to be open.
Particularly great difhculties occur with "nonrenormal-
izable" local field equations, though again, the exact
extent of these (i.e., outside perturbation theory) is
unknown. "It seems possible that this type of question
must be dealt with separately in each theory.

Finally, we remark that the reinterpretation of the
indefinite metric solution of Heisenberg's "master
equation" by means of nonlocal interactions" most

"W. Thirring, Ann. Phys. (N. Y.) 3, 91 (1958).
'7 We have in mind the treatment of C. M. Sommerfield, Ann.

Phys. (N. Y.) 26, 1 (1964)."J.G. Taylor, Nnovo Cimento 17, 695 (1960).
'~ J. G. Taylor, Nuovo Cimento Suppl. 1, 857 (1963), paper

IV; M. B. Halpern, Ann. Phys. (N. Y.) 39, 351 (1966).
'~W. Heisenberg, in Solvay Conference, Brussels, 1967 (un-

published). See also H, P. Durr, Report at the International

probably rules out both these possibilities as giving
covariant results, especially since these theories are
constructed so that divergences are absent. It may be
possible that a nonlocal theory does, indeed, satisfy
microscopic causality, so that the nonlocality is only
apparent. This appears to us to be rather unlikely; we
hope to give a fuller discussion of this elsewhere.

Note added ill, proof. In the text we argued that the
Lorentz invariance of the right-hand side of Eq. (11)
implied that each of the two terms is separately invari-
ant. The basis of this argument is the observation that
where the first term depends in xt like, say, e(xt—x,),
the second term contains 6(xt—x,) or 8(xt—x;). The
0-like terms will be independent of the 8-like terms only
if the coefficients of the 8 functions are themselves not
too singular. Thus we must consider the possibility that
the Wightman-like function

(4 (»tt&' ' 'i(») ' ' '4'(x~t &) (A1)

may contain singular terms of the type h(xt, s—x;,s) or
3 (xt, s—x;,s); these are the possible terms which we called
Schwinger-like in the discussion following Eq. (12).

The only known situation in which Schwinger terms
are believed to exist is in theories with conserved vector
currents, and then only in time-ordered products in-
volving at least iso current operators. Thus we are not
forced to take such terms into account. Nevertheless, we
shall now show that they cannot affect our main results.

The most important point here is that since (A1) is
certainly covariant, 8(xr s—x, s) contributions are ab-
sent. Hence nothing from (A1) can cancel the manifestly
noninvariant last term of (12), which must therefore
vanish. This was the most important result in the text.

The possibility remains that (A1) contains a singu-
larity of the type 8(xt, s—x, ,s). Covariance of (A1)
implies that the singularity must be even 64(xt—x,).
The resulting contribution to (11) is poorly defined
Lhaving a factor 8(xt, s—x, , s)6'(xt —x,)), but will not
interfere with the support property of the commutator
Lp(xt), p(x,)) . Equation (15) will still hold, but the
connectedness-structure arguments leading to Eq. (16)
appear to break down. A term like 3'(xt —x,) corre-
sponds to disconnected scattering and seems rather un-
likely to appear in the term containing the currents,
but it is difficult to give decisive arguments for its
exclusion.

Symposium on Nonlocal Quantum Field Theory, Dubna, 1967
(unpublished).


