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The Brueckner-Goldstone perturbation method has been applied to the calculation of the di-
pole polarizability (nd) and antishielding factor (pd) for lithium-atom ground state. The com-
plete set of states utilized is the same as those employed in earlier calculations of the hyper-
fine constant and correlation energy. Our results are ud =24.84 A, and yd = 0.988, as com-

O

pared to a recent experimental value for nd = 22 + 2 As and yd = 1.000 from the Hellmann-Feyn-
man theorem. The relationship between the Brueckner-Goldstone and the Hartree-Fock per-
turbation procedures is discussed with reference to specific physical effects.

I. INTRODUCTION

In an earlier paper, ' referred to as I, we have
applied the Brueckner-Goldstonea (BG) formalism
to the study of the hyperfine constant and the ener-
gy of lithium as a test of the atomic ground-state
wave function. In the present work, we shall in-
vestigate the atomic dipole polarizability (od) and
the induced electric field at the nucleus which is
characterized by the shielding factor (yd), both of

which have been studied earlier for beryllium and
oxygen atoms by Kelly. sy~ These properties re-
quire the ground-state wave function as well as the
perturbed wave function in an external field, and
therefore provide additional test of the unperturbed
wave function. Our aim in the present work is two-
fold; first, to utilize the diagrammatic technique
to study the relative importance of various physi-
cal effects that contribute to the polarizability,
similar to our earlier analysis of the hyperfine in-
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teraction; and second, to establish the relationship
between the BG and the conventional HF perturba-
tion theory in the various approximations. Among
the physical factors that contribute to the polariz-
ability are: first, the intrinsic effect connected
with the individual perturbation of the orbitals;
second, the self-consistency effect; and third, the
correlation effect.

The physical implication of self-consistency in
the present situation is that the distortion of each
electronic orbital is influenced by that of other or-
bitals through the averaged Coulomb and exchange
potentials produced by them. Correlation is inter-
preted as the dynamic dependence of one electron
on another. In the language of many-body theory,
the former is represented by single-particle exci-
tations and the latter by two- or more-particle ex-
citations. We will show that Hartree-Fock pertur-
bation theory does include some two-body excita-
tions. Since conventionally the Hartree-Fock theo-
ry, however, is defined so as to include only self-
consistency effects, we define correlation in the
presence of an external perturbation as the two-
or more-body excitations neglected by usual Har-
tree-Fock theory. The conventional Hartree-Fock
perturbation procedures as summarized by Lang-
hoff, Karplus, and Hurst' (LKH) necessarily ne-
glect correlation effects which present no addition-
al difficulties to the BG method. Thus the calcula-
tion of ed and yd by the BG procedure allows one
to evaluate the importance of correlation effects in
the wave function in the peripheral and the central
regions of the atom.

We have chosen the lithium atom as the example
with which to study the features of the BG proce-
dure primarily for three reasons. The polarizabil-
ity of the lithium atom has been measured quite ac-
curately, contrary to the situation in beryllium
and oxygen where no experimental values are cur-
rently available. Secondly, since the properties of
the lithium atom have been extensively studied ear-
lier, '~' meaningful comparisons can be carried out
between the BG results and previous ones. Fur-
thermore, we have made use of the same complete
set of states for both the present calculations and
the earlier ones on energy and hfs. The over-all
results would thus be expected to shed light on the
question of the feasibility of obtaining a variety of
properties of an atom using the BG procedure with
the same complete set of states.

II. BRUECKNERWOLDSTONE PERTURBATION METHOD
-RELATION TO,HARTREE-FOCK THEORY

The perturbation Hamiltonian for an atom in a
uniform electric field E is given by

N N
H"= Q h. '= EQ r.P, (cos8-.)

i=1 i=1
where Pi =(r;, Hi, yi) represents the coordinates of
the ith electron with respect to the nucleus, the
z axis being taken along the direction of E. The
summation runs over the N electrons in the atom.
From usual perturbation theory considerations,
the polarizability is given by

N
where y = Q P, (cose. }/r.'.

op

The quantity y~ has often been referred to as the
dipole shielding factor in the literature. By the
Hellmann-Feynman theorem, ' 'Yd =1 for the neu-
tral lithium atom.

The free-atom Hamiltonian H can be separated
into two parts

(4)

H =Ho+H'

N N
with Po= p T.+ Q V.

i=1
N Ne'= Qv. .—P V. ,

i&j j i= 1
(8)

where T. = —~2% .2-g/r.t '
z

(8)vi. = 1/l ri-r. I,

and V; is a suitably chosen one-electron potential.
The two choices of interest in this work, VN and

1, have been discussed by Kelly and are de-
fined below in terms of their matrix elements:

N
(P IV li) = P ((Pn lv lin)-(Pnlv lni)) (9)n=l

and
N-1

(P I V li) = Q ((Pn lv lin)-(Pn lv lni)). (10)
n=l

The states N are chosen to be the lowest Hartree-
Fock states, whereas the states P and i satisfy
Eq. (11) as explained in I.

(T+V)P, =e,P, . (11)

There are two important differences between
the yN and &N-1 potentials. The pN potential re-
produces all the one-electron Hartree-Fock wave
functions for the atom, while the VN 1 potential
reproduces the Hartree-Fock wave function for
only the i = N state omitted in the summation in
Eq. (10). The more crucial point of difference be-
tween the two potentials is in the nature of the
higher states they generate. The PN potential
leads only to continuum higher states while VN-1.
produces both bound and continuum states. The
presence of these bound states in the complete set
is desirable since they resemble the actual exci-
tations of the atom more closely.

In the BG method the exact free-atom wave func-
tion 40 is obtained from 4, by the linked-cluster
expansion' (described in I)

n = —2 (4, I
H" l%,)/(0, I +,), (2)

where 4, is the exact free-atom wave function and
4, the first-order perturbation in the wave func-
tion due to H". Similarly the induced electric
field at the nucleus due to the perturbed electrons
is given by

E,„d=&r„= 2(-+Olr, l+i)/8. l+0&,
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(12)

where L means that only linked diagrams are to
be included. Similarly the function perturbed once

by 0" is given by'

HII

That is, the expansion includes all possible linked
diagrams with H" occurringinany relativetimeor-
der to the H's. The diagrams for 4, have been
given in previous papers. Diagrams for 4, involv-
ing zero and first order in H are given in Fig. 1,
where we have used--- for H", and are classified
according to their physical meanings. Diagram
(a) represents the intrinsic perturbation of the
one-electron states by the external field. It is
seen that diagrams (b) (g) and their corresponding
exchange diagrams will sum to zero if V in Eq. (7)
is chosen as VN. However, for a different choice
of V, some residual diagrams will remain and
they will be called HF correction diagrams. ' Dia-
grams (h) and (i) are interpreted as representing
self-consistency effects among electrons P and q.
Finally, diagrams (j) and (k) seem to represent
correlation effects, since they involve simulta-
neous excitation of two electrons. However, the
physical significance of these two diagrams will
be further discussed later in this section.

For the choice of VN-1 as applied to Li, dia-
grams (b)-(g) will not contribute when the unexcit-
ed state i is the 2s state. On the other hand, when
both i and j are 18 states, the residual diagrams k
=2s and the corresponding exchange diagrams
must be included. These can be summed to all or-
ders by the shifted-energy denominator technique'~4

[h.'(I)-e.]p.'(I)+ [h.-'(1)-e.']P, (I)

N

+ Q [g& .' I
—(I-&„)l 4 .)

1

+12j=l
j0i

+&&. l
—(I-&„)I4' ')]0 (I) =o,1

+12
(14b)

(Isa)

(Isb)

is the one-electron HF Hamiltonian, yz the HF or-
bitals, and cp the perturbed orbitals. P» is a
permutation operator introduced to include ex-
change. Notice that

to correct this 1s to the HF 1s' state. This HF
correction is assumed to be included whenever it
applies in future discussions.

In order to justify our interpretation of diagrams,
we now discuss the relationship of the perturbation
theory to the conventional Hartree-Fock perturba-
tion theory. We recall the fully coupled HF pertur-
bation equations, referred by LKH as Method a.'
The identical forms, called Eqs. (8a) and (8b) by
LKH, are given below:

[h'(I)-~.]0.'(I)+ [h '(1)-~.')4' (1)

+ Z [&4 '~—(I-» ) ~& )
1 j yl2

+ &4 I
—(I-&„)~4 ')]0 (I) = 0 ( 4a)
+12

(a) (b) (c) (d)

h'=T+ V

N-1
h)O=T]+ V.

(16a)

(16b)

(e)

k

when g is the highest-state N. The uncoupled ap-
proximation termed Method b by LKH is obtained
by neglecting all terms involving y&' in Eq. (14b)
for y&'.

[h .'(1) = -e ]4 . '(1) + [h'(I)-e . ']q (1) = 0.

Similarly Method c is obtained from Eq. (14a)

[h'(1) -e,.]q,.'(I)+ [h'(I)-e,']q,.(1) = o. (18)

(h) (k)

FIG. 1. Diagrams for 4~ involving zero and one order.
in H'. P and q are unexcited states while i and j denote
excited states.

Clearly Method c is equivalent to the BQ proce-
dure in keeping only the lowest-order diagram,
Fig. 1(a), where the states q andj are solutions
of Eq. (11)with the choice' V= V . It is easy to
see that Method b is equivalent to the same dia-
gram with appropriate corrections but with the



MANY- BODY CALCULATION

hp

(b) (c)

choice4 V= V&-1. In Methods b and c only the in-
trinsic contributions of the individual electrons
contribute to the polarizability, therefore diagram
(a) is called intrinsic, and diagrams (b)-(g) HF
correction, as discussed previously. LKH ob-
served that Method c includes an extraneous self-
potential term which does not arise in Method b.
In the BG diagrammatic language, this term can
be identified with the self-coupling diagrams (h)
and (i) when J =j with V=V&. However, when V
= VN 1, the diagrams (i) and (h) for f =j=N are
cancelled by the residue of diagram (d} and its ex-
change. When it j in (h) and (i), these diagrams
represent the self-consistency terms which appear
in Method a but not Methods b and c. (The expan-
sion of the perturbed orbitals in terms of the un-
perturbed carried out by LKH is helpful in illus-
trating this point. )

Let us now examine the self-consistency terms
inEqs. (14a) and (14b) more carefully. We observe
that in the summation the two direct terms are
equal and the two exchange terms are not equal.
However, in the diagrammatic representation
there is only one direct term Fig. 1(h). To re-
solve this apparent discrepancy, let us turn to the
"correlation" diagram Fig. 1(j). Now polarizabil-
ity diagrams are obtained from Fig. 1 by closing
the free lines with A as indicated in Fig. 2; e.g. ,
Fig. 1(j) becomes Fig. 2(a). Upon combining with
a similar diagram Fig. 2(b), 'we obtain Fig. 2(c)
which is identical to the self-consistency polariza-
bility diagram obtained from Fig. 1(h). Similarly
Fig. 1(k) combines with its counterpart to give the
first exchange term, and Fig. 1(i) accounts for the
second exchange term in Eq. (14a) and (14b). Thus
the polarizability diagrams obtained from Fig. 1,
when summed to all orders'~' by the shifted-energy
technique, are equivalent to the fully coupled HF
method (Method a). Note that the factor of 2 com-
ing from inverting diagrams is already accounted
for in the definition of polarizability in Eq. (2}. If
Figs. 1(j) and 1(k) are to be interpreted as corre-
lation, then the coupled HF method includes corre-

lation. On the other hand, if correlation is de-
fined as the difference between the exact and the
HF approximation results, then Figs. 1(j) and 1(k)
represent self-consistency and not correlation ef-
fects.

Another point of possible confusion is the treat-
ment of doubly occupied orbitals briefly discussed
by LKH. They have reformulated Method b so that
the coupling terms are dropped after the doubly
occupied orbitals are assumed to have the same
spatial function. In other words, this formulation
includes the intrashell consistency effect, and will
be called Method b'. To be specific, they let

and Method b' is described by

y.'(I)-~ ]tj '(1)+[&'(I)-e ']y. (I) =o,
i if jf i

where
N 2

f,'=T+ (0 l
—(2-&„)i&.)

1
jyl2j=1

(2O)

(21)

In Eq. (21), the summation term on the right rep-
resents' the direct and exchange effects of elec-
trons in all the doubly occupied states jei. The
last term consists of two parts, one part involving
1/r» represents the direct interaction with the
other electron in state i, while the exchange-like
term arises from self-consistency effects involv-
ing the first-order perturbation of the orbital 4i.
In the BG approach with V&-1, this intrashell con-
sistency effect is accounted for by diagram (h)
where i and j are the equivalent .lectrons. In this
case, diagram (i) is zero because the spins are
necessarily antiparallel. Since diagrams (lh) and
(lj) have been found quite large in the case of
beryllium by Kelly, ' it is not clear whether the im-
provement of Method b' over Method c in the polar-
izability results quoted by LKH is due to the inclu-
sion of intrashell consistency or to the exclusion
of the extraneous self-potential term. In the cal-
culation of the polarizability of Li, the former is
not expected to be important, and therefore 7&-1
appears to be a more desirable choice than V'&.

For this reason we have utilized the P&-1 poten-
tial as defined in I for the calculation of the hyper-
fine coupling constant and energy in lithium.

(e)

FIG. 2. Double excitation diagrams (a) and (b) and
their exchange counterpart (d) and (e) that contributes
to the HF perturbation theory. In particular the contri-
bution of (a) and (b) together is equivalent to a single-
excitation diagram shown in (c).

III. NUMERICAL RESULTS FOR LITHIUM

The calculation of polarizabilities and shielding
factors by the Brueckner-Goldstone many-body
approach has been discussed by Kelly in applica-
tion to beryllium and oxygen atoms. ~~4 It is not
necessary to draw both polarizability and shield-
ing diagrams since they are identical except that
one vertex H" must be replaced by yoz for the lat-
ter as is evident from the definitions Rqs. (2) and
(4). To avoid double-counting, we place the re-
striction that pop must appear above H, and in
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+
2S

0---
I

ls

+ I

ls

(a) (b) (c) 28

1s

ls

ls

(e)

+
ls

2'I

ls

2s

2s 1s- I(,

ls
FIG. 4. Some correlation diagrams which represent

improvements over Hartree-rock perturbation methods.

(m) (n)

reference to a diagram the inclusion of its invert-
ed form is implied.

As in the case of the wave-function diagrams,
the polarizability diagrams given in Fig. 3 are
classified according to their physical content.
Thus, (a)-(e) are intrinsic diagrams, where (c),
(d), and (e) arise from incomplete cancellation of
the passive unexcited states with the single-parti-
cle potential V'& & as defined in I. Corresponding
exchange diagrams for (c), (d), and (e) are not
shown, but are included in the calculation. These
diagrams are to be associated with Method b.
However, the Method-b results given by LKH are
really Method b' which includes just intrashell
consistency effects. These are represented by
diagrams (f), (g), and (h) in Fig. 3. As explained
by Fig. 2. (g) and (h) add up to (f), and twice the
diagram (f) is the last term in Eq. (21), represent-
ing Method b . HF corrections similar to Fig. 3,
(c) and (d) also apply to all ls states, including
diagrams (f), (g), and (h). Diagrams (i)-(n) in
Fig. 3 represent intershell consistency effects
which are present in Method a only. In fact, dia-
grams (k) and (1) add up to diagram (i), and togeth-
er they account for the two direct terms in Eq.
(14b). Diagram (j) represents the second exchange
term which is monopole, and diagrams (m) and (n)
the first exchange term which is dipole in (14b).
Thus all diagrams in Fig. 3 including all HF cor-
rections and ladders should sum up to the results
of Method a.

Some higher-order diagrams' representing cor-
rections to the Method a are given in Fig. 4. They
are interpreted as true correlation effects, and
are numerically most significant for intershell

FIQ, 3. Polarizability diagrams for lithium using
V+ 1 which account for intrinsic and consistency effects.

correlation. If the sum of contributions from these
diagrams and even higher orders is large com-
pared with the contributions of Fig. 3, the Hartree-
Fock perturbation theory is of doubtful usefulness.

In evaluating the diagrams we have used the
same complete set of states as in the earlier hy-
perfine work. Consequently the matrix elements
involving vq~ vertices were the same, and most of
them were already available. Only matrix ele-
ments involving H" and yop vertices need to be cal-
culated. For example the polarizability diagrams
(a) and (i) in Fig. 3 are given by (the prime indi-
cates that summation is to be over excited states
only)

'(2s lh' Im)(m lh ~
I 2s)

m 2S tH

and

p'(2s Ih' Im)(m2s Iv Inls)(n Ih' I2s)
n m ls m 2s n

In Table I, we have listed the contributions to ed
and yd from the various diagrams discussed in the

Description

Intrinsic js

intras hell
inters hell

0.0321 0.845
25.031 2.752

Consistency -0,0042 -0.128
-0.156 -2.508

Correlation (0.04' (0.015)
Total before normalization 24.903 0.961

after normalization 24. 84+ 0. 10 0. 958 + 0.05

TABLE I. Contributions to o,' and y in the present cal-
culation. Numbers in parentheses are partial results not
included for the sake of consistency.
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TABLE II. Various dipole polarizability and shielding
factor results for lithium.

Method Author
Qd
(A )

c
d
d
b'
b'
a'
al

BG
Experimental

LKH
LKH

LKH
CPD

LKH
LKH
CPD
CZ
SPB

7.5
21.0
24.9
21.0
24.99
25.2
21.7
21.2
24.84
22+ 2
20+3

1.52
3.61

3.62
3.47
0.988
1.96
1.94
0.958
1.000
1.000

previous section. The effects of ladder diagrams
are included by altering the energy denominators
d in the second-order diagrams to d-a, where g
is the matrix element associated with the pertinent
laddering vertices. '~'~ Practically all of the con-
tribution to eg arises from the 2s intrinsic diagram.
The result from the 1s orbitals is.small be-
cause they are very tightly bound, or, in our per-
turbation language, because the excited states are
well separated from the 18. Among the consistency
diagrams, the Method b' intershell contribution
is also small for the same reason. The Method a
intershell contribution from the 1s-2s interaction
is relatively larger due to the stronger perturba-
tion of the 2s state by the electric field. Some of
the representation diagrams in fourth order are
shown in Fig. 4. They represent correlation ef-
fects and are found to be unimportant. The influ-
ence of the normalization fa,ctor in Eq. (2) is small
and already calculated in the hfs case. Our cal-
culation of the polarizability gives a result of
24.84+ 0.05 A', where the uncertainty is mainly
due to the approximation in calculating ladder dia-
grams.

For the dipole shielding factor yd the 28 intrin-
sic diagram makes the leading contribution al-
though it is by no means as dominant as in the
case of o. . The 1s intrinsic contribution is now
sizable because of the nature of the operator yop
in (4) which emphasizes the region near the nu-
cleus. Thus, the 28 diagram contributes 2.752,
whereas the unmodified 1s diagrams contribute
0.603, and with HF corrections the latter becomes
0.845. Intrashell consistency effects in Figs. 3(f),
(g), and (h) contribute -0.128, and therefore the
result of our Method b' is 3.469. Intershell con-
sistency effects are much more important. The
two direct terms represented by Fig. 3(i) and the
sum of (k) and (1) each contribute -1.007, while
the exchange terms (j) and the sums (m) and (n)
contribute -0.097 and +0.016. In computing the ef-
fects of ladders it is easier to treat the single-
particle diagrams (i) and (j) separately from the
two-particle diagrams (k), (1), (m), and (n). The
former change from -1.103 to -1.311 and the lat-
ter from -0.991 to -1.197.

Some true correlation diagrams in Fig. 4 have
been examined and found to be quite small. For
example Figs. 4(c) and (d) are calculated to be
-0.015 and +0.015. These fourth-order diagrams
are tedious to calculate and seemingly unimpor-
tant, and therefore are neglected in the present
work. In the evaluation of the various diagrams,
we have, of course, included the contributions
from both discrete and continuum excited states.
It is of some interest, however, to mention that
the relative contributions to diagrams from con-
tinuum and bound excited states were different for
the perturbation of 1s and 2s orbitals. For 1s
state, over 90% of the contribution occurred from
the continuum states. For 2s state, the presence
of the'adjacent 2P excited state made its contribu-
tion preponderant over the continuum states. In
fact, for the intrinsic diagram 3(a) about 99% of
the polarizability came from the 2p state.

IV. DISCUSSION

In Table II, we have compared our results for
nd and 'Yd with the results of earlier authors and
experiment. For Yd the "experimental" value of
unity is that expected from the Hellmann-Feynman
theorem. '

Let us summarize the various methods appear-
ing in Table II. Method a is the fully coupled Har-
tree-Fock perturbation method where each elec-
tron is perturbed individually. Method a' is a
slight simplification where both the 1s orbitals
are restricted to have the same radial function.
The difference is believed to be unimportant.
Method b is the uncoupled approximation using
V+ and retaining the intrashell consistency
terms. The simplifying scheme which replaces
the exchange potential in Method b by a localized
potential is called Method d. Method c is a differ-
ent uncoupled approximation to Method a using V&.
The BG calculation is, in principle, exact; but be-
cause the contribution of correlation diagrams in
Li is smaller than the estimated accuracy, our
BQ results are essentially equivalent to those of
Method a. From Table II we notice that identical
methods by different authors may yield substan-
tially different results. The reason is that some
authors solve their equations variationally rather
than numerically. Thus their results may suffer
from the inflexibility of the form of their variation-
al functions. In particular, the variational per-
turbed orbital used by LKH consists of the product
of a polynomial and the corresponding unperturbed
orbital. ' Therefore their perturbed orbitals are
constrained to have at least the same number of
nodes as the unperturbed, and they are also forced
to have the same exponential decaying behavior in
the outer region. However, the variational per-
turbed orbital of Lahiri and Mukherji (LM) is
more flexible in that it is a linear combination of
Slater orbitals which are used to expand the cor-
responding unperturbed orbital. ' The effect of us-
ing these different variational functions on the val-
ues of both n and'Yd is best illustrated by the Meth-
od a' results. The LM value of 0. 988 for 1g as op-
posed to the LKH value of 1.96 speaks well for the
LM variational function. Hence we might expect
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that the LM value of 25.2 A' for n is more relia-
ble than the LKH value of 21.7. Support for this
contention is found in the Method d results for nd,
w'here the LKH value of 21.0 is substantially lower
than the Sternheimer (S) value of 24.9 which is ob-
tained through solving the identical equations nu-
mericaQy. " It is therefore not surprising that
the results of our Methods b' and a are not in close
agreement with the corresponding results of LKH.
On the other hand, our Method a results of 24.84
for nd and 0.958 for yd are in good agreement with
the LM values of 25.2 and 0.988. From the Method
c value for n, it is clear that our choice of V&-1
rather than V& is more desirable in lithium.

Unfortunately the ranges of errors in the two re-
cent experimental values"~" of (20+ 3) and (22+ 2)
A' for n are larger than both the self-consistency
and correlation effects, and therefore do not per-
mit a critical evaluation of these effects. From
our results of Table I it seems unlikely that errors
in the observed small self-consistency and corre-
lation effects can remove the discrepancy between
our theoretical value of 24.84~ 0.05 A' and experi-
ment.

%'e also mention here three additional theoreti-
cal calculations on ad for lithium. These have not
been listed in Table II because the methods for
these calculations are less amenable to direct
comparison with our calculation. Dalgarno and
Pengelly" obtained ad = 25.6 A' using the Coulomb
approximation. Stacey" used the Weiss 45-term
configuration-interaction wave function, and thus
included correlation. effects. He obtained a value
of 23.97 A' for nd. Using results of their calcula-
tion on the quadratic Stark effect, Murakawa and
Yamamoto" obtained zd = 23.9 As.

In the calculation of wd, the contribution of inter-
shell consistency terms was found to be very im-
portant, while the contribution of these respective
terms in o.d is relatively far less. This can be un-
derstood physically from the pature of the opera-
tor 7 op which emphasizes the region near the nu-
cleus, a region where both 1s and 2s electrons
contribute. Thus one expects intershell effects to
be characteristically more important for yd as
contrasted with nd. The effect of intrashell con-
sistency terms also contributes negligibly in the
value of nd for lithium. However, this does not
necessarily mean that the intrashell consistency
effect will always be small. A meaningful indica-
tion comes from the comparison in Table I of the
contribution from the intrinsic 1s electrons and
that from the intrashell consistency. The latter is
nearly 15% of the former. Thus in atoms where
there is more than one electron present in the va-
lence band, the effect of the intrashell consistency
terms could really be quite significant.

V. CONCLUDING REMARKS

We have analyzed the relation between various
approximations in the Hartree-Fock perturbation
method and the Brueckner-Goldstone many-body
method. In particular, Method a has been found to
be equivalent to the class of diagrams given in Fig.
1 (and for the case of lithium in Fig. 2). In gener-
al the polarizability is dominated by the outermost
shell, so the diagrams whose contributions are
comparable with Fig. 1(a)are Figs. 1(h), (i), and
(j)"with i and j representing electrons in the out-
ermost shell. Then Fig. 1(i) is of the same sign
as Fig. 1(a) and numerically larger than Fig. 1(h)
which is of opposite sign. Therefore, Method c
given by Fig. 1(a) using V+ leads to an underesti-
mation, because it neglects the dominating third-
order diagram represented by Fig. 1(i) when j=i
On the other hand, Method b, given by Fig. 1(a,)
using V&-I does not have Fig. 1(h) and (i) when j
=i and tends to overestimate, because it neglects
Fig. 1(h) when electrons i and j are equivalent,
which occurs for non-alkali-like atoms. This de-
fect is removed in Method b' which includes intra-
consistency, and leads to results in close agree-
ment with Method a. In lithium, correlation ef-
fects have been determined to be unimportant for
both the dipole polarizability and shielding factor.
Therefore, as expected, our results are in close
agreement with the fully coupled Hartree-Fock
method (I M), and also in good agreement with
experiment. However, it is not clear that correla-
tion effects are unimportant for any atom in gener-
al. It would be interesting to re-examine, from the
point of view adopted in this work, the BG calcula-
tion by Kelly on beryllium, ' where correlation and
consistency effects are expected to be more impor-
tant, since these effects can now occur in intra-
shell form between the two outer, deformable va-
lence electrons.

In this calculation we are able to obtain good re-
sults by using only up to the second order of per-
turbation in the wave function. Thus, the unper-
turbed wave functions appear to converge quite
rapidly. Indeed the calculation of the hyperfine
coupling constant and the energy in I and the dipole
polarizability and shielding factor here indicates
that the BG wave function is good in all regions of
the atom. It then appears quite feasible to calcu-
late all atomic properties using the same set of
states in the Brueckner-Goldstone approach as
demonstrated for beryllium by Kelly and for lithi-
um here.
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The ratio of the nuclear g factor to the electronic g factor in the ground electronic state
of free Rb ' ~ atoms has been determined using optical pumping techniques in a magnetic
field of &50 G. Typical linewidths were &15 cps. The linewidth contribution due to magnetic
field effects was less than 1 cps. The ratio of electronic g factors for the Rb isotopes was
also measured. The results are -gl /g&(Rb") =4. 9699147'(1+0.Sx 10-') x10
gI gg(Rb@) 14664908x(1+9.1x 10 6) x10-, andg, (Rbtt)/g, (Rbtt) =1.0000000041

x(1+6,0x 10 ). These results were obtained from evacuated wall-coated cells having the
Lorentzian line shape. Cells filled with inert buffer gases exhibited small, uncontrollable,
systematic error due to non-Lorentzian line shape. In both types of cells, the Zeeman
resonances exhibited frequency shifts proportional to the pumping-light intensity. The ratio
g~(Rb ) /gl(Rb ) =0.2950736x (1+ 2. 3x10 ) was obtained by combining the results above.
The combination with results of other researchers yields the chemical shift of Rb+ in aqueous
solution relative to the free atom as her(Rb+aq/Rb) = -(211.6 + 1.2) && 10 . Absolute values in
units of the Bohr magneton for the shielded nuclear moments are derived using only g-factor
ratios for free atoms: gI(Rb ) =-0.9951414x10 x(1+1.0xlo ) andgI(Rb@) =-0.9936400
x10 &(1+2.2x10 )

I. INTRODUCTION

The basic motivation for this work followed from
the desire to measure ground-electronic-state al-
kali gJ ratios to high precision using optical-pump-
ing techniques incorporating the advantages of wall-
coated evacuated cells. Earlier efforts' using the
Rb isotopes were limited in resolution primarily
by the applied magnetic field. The work to be re-
ported in this paper is unique in enjoying a field
improved beyond the point where it contributed sig-
nificantly to the system resolution. In experiments
using this improved apparatus, when the then-
latest atomic-beam' determination for g~/g~(Rb")
was used in the Breit-Rabi equation to fat experi-
mental data, the gJ value derived from &E=0
Zeeman transitions in the E= 3 level complex dif-
fered significantly from the value for the E= 2
level complex. Accordingly, our experiment was

inverted to determine the gI/g& ratios for the Rb
isotopes. Following publication of preliminary
results, ' two other experiments 4~ ' were initiated
whose results confirmed our conclusion that the
earlier gI/g~(Rb") value was in error. This pa-
per reports the final results for our measurement
ofg /g in Rbss'7 andofg~(Rb~)/g (Rbs). TheJ J.
high resolution of the expertment permitted the
first observation of shifts in the 4E= 0 Zeeman
transitions of Rb induced by the pumping light.

II. THEORY

The energy levels of the Sy/2 electronic state of
an alkali atom in an applied magnetic field, H, are
assumed to be represented by the effective Hamil-
tonian

X =haI; J+g Pp J H+&IPpI H


