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The bremsstrahlung matrix element calculated from the Schrodinger equation for two particles inter-
acting with each other via a local potential and with the electromagnetic field in the standard gauge-invar-
iant manner is shown to satisfy the soft-photon theorem. That is, the first two terms of the expansion of
the radiative matrix element in powers of the photon's energy are calculable from a knowledge of the non-
radiative matrix element. The proof is given first without, then with, spin for arbitrary order of perturba-
tion theory in the strong interaction. While the derivation is very different from the one which Low used
for a relativistic theory, the final formulas are similar in appearance and agree in the nonrelativistic limit.
For low particle momenta, it is found that there is a relation between the on- and off-energy-shell deriva-
tives of the nonradiative T matrix to the leading order in the momentum. Furthermore, the P-wave con-
tribution to the internal-emission matrix element is of the same order in the momentum as the s-wave part.
For particle momenta much less than the reciprocal of the s-wave scattering length, the second term of the
expansion of the bremsstrahlung matrix element in powers of the photon's energy is negligible compared
with the first term.

I. INTRODUCTION

I 'HE Low theorem was originally derived by him
using the Lippmann-Schwinger equation, ' but

the published version' is given in terms of relativistic
quantum field theory. Since several calculations of
nucLeon-nucleon bremsstrahlung have been performed
using a potential model, it was considered worthwhile
to publish the explicit derivation of the theorem accord-
ing to that model. This can also serve as a check on
those calculations.

The idea of the theorem is that it is possible to write
the matrix element for the radiative process

terms of an invariant off-mass-shell T matrix, for
process (3), as

~."l=&lI.(pl'/pl' ~)(pl'+~, p2'I&Ipl, p2)
(p' p'I—~lp vp)p—./p vj (4)

and e„ is the polarization vector of the photon. While
no explicit formula can be written for the internal-
emission contribution 3f~i2l LFig. 1(c)j in this general
theory, gauge invariance requires that

y~„—=y„(M„"'+M„fs')=0.

Pl+P2 ~ Pl +P2 +7 (1)

(with the symbols standing for particle labels and
momenta) in the form

A/y+ 8+0(y), (2)

where both A and 8 are given in terms of matrix
elements for the nonradiative process
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at a set of momenta k; which are related to the momenta
p;. This relation will be made clear during the deriva-
tion.

II. DEMVATION FOR SPINLESS PARTICLES
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Fio. 1.In a general theory, bremsstrahlung matrix elements are
classified as external emission (a) and (b} and internal emission
(c), the circles indicating the strong interaction. If particle 2 also
interacted with the electromagnetic field, there would be additional
external diagrams (a') and (b'). For the Schrodinger equation
with a local potential the only possible internal emission is shown
in (d), where the potential acts before and after the radiation.

U. S. Atomic*Work performed under the auspices of the
Energy Commission.' F. K. Low (private communication).' F. E. Low, Phys. Rev. 110, 974 (1958).
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In the general problem the contributions to the
bremsstrahlung matrix are classified according to
whether the photon comes off an external line or an
internal line. See Fig. 1, where particle 1 is charged and
2 is neutral. Low' wrote the external-emission contribu-
tion LFigs. 1(a) and 1(b)j as (various factors times)
e„M„&",with the four-vector M„& ) given explicitly in
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and
E;(p)—=p'/2m;, E=Ei(pi)+Eg(pg),

E'=—E (p ')+E.(p.').
The (half) off-energy-shell T-matrix elements in Eq.
(6) refer to elastic (nonradiative) scattering. While
this equation looks like the spatial components of
Eq. (4), neither the T matrices nor the energy denom-
inators in Eq. (6) have any relativistic invariance
properties.

The internal-emission contribution M&'&, also called
the double-scattering term, is represented by the
diagram in Fig. 1(d).Whereas in the general derivation
one did not have an explicit formula for the internal
emission, here one does, 4 and we shall make use of it
to prove the following theorem:

8jM"'=—Z(pi', p2'I T(E')
I pi —k—v, P2+k)

k

X LE'—Ei(pi—k—y) —E2(pu+k)+s~j-'(pi —k)

XLE—Ei(pi —k) —E2(p2+k)+~~ j '

X(pl k p2+kI T(E) I pi, p2).

' See, e.g., E. Merzbacher, Quantum Mechanics (John Wiley R
Sons, Inc. , New York, 196j.), Chap. 4.

4 For the two-potential formalism, see M. Gell-Mann and
M. L. Goldberger, Phys. Rev. 91, 398 (1953);for the application
to bremsstrahlung, see M. I. Sobel and A, H. Cromer, ibid. 132,
2698 (1963),

This is sufFicient to yield the result' that the first two
terms of an expansion of M„ in powers of y can be
obtained in terms of the physical T matrix for process
(3). It was assumed that as y„~0, M„&'&-+ const,
independent of the direction of the photon.

Even though the Schrodinger equation has no
I.orentz-invariance properties, the existence of a charge-
conservation law' with (current/density) =p/m means
that (neglecting p'/m' compared with unity) Eq. (4)
and the entire I.ow derivation can be carried over to
the potential problem. %e shall proceed in a different
manner that provides some insight into the way charge
conservation produces the result.

In practice one chooses a particular gauge, q =0 with
~ y=o, and writes the bremsstrahlung matrix element
as

—(27r/y)'&'e (M &'&+ M "&), (5)

where M&'& arises, as before, from emissions which
either follow or precede all the scattering due to the
local potential. ' M "& is called the single-scattering term
and is represented by the diagrams in Figs. 1(a) and
1(b), which are now not Feynman diagrams.

M&'& = (ei/mi)(pi'I E—Ei(pi'+y) —K(pn') j—'

X(pi'+y, p2 I T(E) I ply p2)

+(pi', p2'I T(E')
I pi —v, p2)

XLE'-E (p -~)-E (p)]-'p }, (6)
where

It is clear that M &'& diverges as y -+ 0, but M &'& remains
finite. Therefore M&'& contributes to both A and 8 in
Eq. (2), but M&'& contributes only to J3.

The heart of the derivation is the following expression
for M&2&:

~i~& (pi+p2 p2 p& I T(e) I pi pn) l.-~
+O(v) (8)

The meaning of this statement is to take the completely
off-energy-shell T-matrix element with an energy
variable e that is unrelated to the momenta p;, take its
gradient with respect to the external momentum of the
charged particle, and then set the energy variable
equal to E, which can be taken to be the initial particle
energy E in the bremsstrahlung process or the final
energy E', or any energy that differs from these by an
amount of order y. This difference will be reQected in
the error term in Eq. (8) which is itself O(y). We shall
prove this result for arbitrary order of perturbation
theory in the potential V. (The electromagnetic interac-
tion is treated to first order throughout. )

Using the Lippmann-Schwinger equation

T(e) = V+ VG&+& (e)T(e),

VG&+& (e) VG'+& (e) G'+& (e) V

and the corresponding contribution to the matrix
element (pi+p2 —p2', p~'I T(&,) I pi, p2) is represented by
the diagram shown in Fig. 2(a) (for the case of third
order). Since the matrix elements of V depend only on
the momentum transfer, they are not functions of pj, ~

and this variable occurs only in the energy denom-
inators. For example, in third order,

T&'&=—(pi+ p2 —p2', p2'
I T(e) I pi, p,)&'&

= (V-matrix elements that are independent of pi)
XLs—Ei(pi —ki) —E2(p2+kl) g-

XI &'
—Ei(pi —k2) —E2(p2+k2) 1-'. (10)

Taking the gradient gives

T&3& / pl kl

mi (8 Ei(pi —ki) —E2(p2+ki)

p,-k2
(»)

e—Ei(pi —k2) —E2(p2+k2) ~

By writing out the perturbation expansion of both
T-matrix elements occurring in Kq. (7), it is seen that
for any diagram which contributes to the T-matrix

' This is true for a local potential. I am indebted to J.I . Gammel
for several valuable discussions concerning this derivation, for
the main idea of looking at an arbitrary order of perturbation
theory, and for pointing out the simplification that occurs if the
external momentum p1 is carried along the charged-particle line,

with G&+& (e)= (e+ie—II,)—' and Po the kinetic energy
operator for the two particles, an arbitrary order of the
perturbation expansion of this equation is given as
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true that the two sides of Eq. (8) can be analytically
continued to X= 1.

We now expand Eq. (6) for M&'& in powers of p,
k.eeping two terms, and will then combine the result
with Eq. (8) for M "&. First, it is necessary to parame-
trize an arbitrary T-matrix element (ki', k2'

~
T(e)

~
ki, k2)

in terms of scalar variables. Since the motion of the
c.m. merely provides a momentum-conserving b func-
tion b(ki+k2 —ki' —k2'), one introduces initial and final
momenta in the c.m. system

(ki k2 (ki' k2' 1 1 1
qt =I( ———,-=—+—,

(m, m2
'

(m, m2
'

Il mi m2
'

and defines four scalar variables to be

P
I

Pe

V

pe+kl

p-k
I e

p+k

k-ye

Pe

~—= 2(q''+qI')/2I
I—= (qt —q')'= (k2' —k2)'= (ki' —»)2,

6,=—e—(ki'/2mi+k22/2m2) = e, q /—2I2,

AI —=e—(ki"/2mi+k2"/2m2) =e, qI2/—2I2

(c)

Fro. 2. For any diagram that contributes to the nonradiative
T matrix in the Lippmann-Schwinger equation such as the
third-order one shown in (a), there is a set of corresponding
diagrams (b) and (c) (two in third order) that contribute to the
internal-emission bremsstrahlung matrix element. If particle 2
also interacted with the electromagnetic 6eld, there would be
additional diagrams (b') and (c'). Charge conservation (for a
local potential) requires that there be a contribution to the
bremsstrahlung matrix element from each segment of the p1 line.
This is the essence of the proof of Eq. (8).

in Eq. (8), such as Fig. 2(a), there is a set of corre-
sponding diagrams which contribute to M&2&, obtained
by attaching a photon of momentum y to each of the
internal charged lines in Fig. 2(a). One of these is shown
in Fig. 2(b). This particular diagram is obtained from
Eq. (7) by expanding (pi —k, p2+k

~
T(E)

~
pi, p2) to first

order (with k=ki) and(pi', p2'~ T(E')
~
pi —k—y, p2+k)

to second order. The contribution of this diagram to
M~2& has precisely the same V-matrix elements as
occurred in Eq. (10), multiplying

(E—Ei(pi —ki) —E2(P2+ki)] '(pi —ki)
XLE' —E (y —k —y) —E (p +k ))—'

XfE Ei(pl k2 p) E2(P2+k2)$

Comparing this result with the first term in Eq. (11),
and using E—E' =y and E;(p—y) —E;(p) =0 (y),
demonstrates that the respective contributions to the
two sides of Eq. (8) do indeed differ by a term of order
p. The second term in Eq. (11)corresponds to Fig. 2(c),
which radiates from the only other internal charged
line in third order. It is clear that this correspondence
applies in any order of perturbation theory, and if the
perturbation series converges, the proof of Eq. (8) is
complete. If the perturbation series only converges for
the potential l&. V,

~
X~ (l&.p(1 then it is still very likely

These play the same role as the corresponding relativ-
istic invariants used in Ref. 2. v is the average of the
initial and final (kinetic) energies in the c.m. system,
t is the square of the momentum transfer, 6, represents
the amount that the initial state is off the energy shell,
and Af is the same thing for the final state. Expressing
the T matrix in terms of these variables, one has

(ki', kl'
~

T (e)
~
ki, k2) —= T(v, I,&;,&I) . (13)

(q P q Il"I
M& &=—p, —Ti —+ +, (p.'—p), 0, ~

I

mi 6 (2I2 2ml 4mi'

q' V q IV'
+pi—,T —+, (»' —»)' ~' o

I
(1~)

2I1 2ml, 4mi

Expanding the T functions in powers of y, for fixed
y~, y2, y~', y2', one obtains

ei pi' yi 1 (pi' pi BTM"'=——+—T+ -~ y q' ——y q
mi 6 6' 2m& 4 6 d, ' Bv

AT
+pl +pl

86;
+0(~). (16)

Returning to Eq. (6) and defining some quantities
for the bremsstrahlung process,

q—=I (pi/mi —p2/m2), q'—=I (pi'/mi —p2/m2)

q'= l (q'+q")—
~=El(pi)+E2(P2) —Ei(pl +7)—E2(P2 )

=y —y pi'/mi —y'/2ml, (14)
~ =El(pl )+E2(p2 ) El(pl f) E2(p2)

= —p+y. p,/m, —p'/2m„
gives
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In Eq. (16), the function T and its derivatives are
evaluated at u=g'/2p, t= (p~' —p2)', 6;=0, and Af ——0.

What is the physical meaning of T(g'/2p, (p2' —p&)',

0,0)? According to Eqs. (12) and (13), it represents a
T-matrix element for elastic scattering, since both the
initial and final states are on the energy shell. Further-
more, from Eq. (14) the energy of this scattering in the
c.m. system is equal to the a~erage of the initial energy
of the two particles taking part in the bremsstrahlung
process in their initial c.m. system, and their Anal

energy in their hnal c.m. system. Since the latter
quantity differs from their final energy in their initial
c.m. system by a term of order p', it is sufhcient to
refer both energies to the over-all c.m. system. The
momentum transfer squared must be described as
belonging to particle 2, the one that is not radiating,
since this differs from the corresponding quantity for
particle 1 by a term of order y. One could evaluate T
in Eq. (16) at some other energy, e.g., the initial energy
in the bremsstrahlung process, and compensate by
changing the coeKcient of BT/Bv. This is equivalent to
choosing a different energy variable v' in Eq. (12).

Now consider (p~+p2 —p~', p2'l T(e)
l pq, p2), the

T-matrix in Eq. (8), for which the parameters have
the values

~ (p~ p21' t'p~+p2 —p2' p '~'-
P=

4 km, m,) m, l

eg 1(
M &'&+M &'& =—

m, A&1—y p, '/ym, —y/2m,

pz

pi
IT(E..-.,~.)

1—y p,/ym~+y/2m)&

1 pi
+

2 1—y pg'/pm' 1—y p,/ym, 3

pz

BT
(~..-.,~ ) +o(7) (21)X

~E c.m.

where we have introduced E, =g'/2p, t~=—(p2' —p2)'—,
and T is now the elastic T matrix. Going to the static
limit where p/m«1 (p/m is always much less than
unity nonrelativistically),

in which the off-energy-shell derivatives of T have
disappeared precisely as in the original derivation. '
This completes the proof that the coeS.cients of y ' and
y' in the expansion of the bremsstrahlung matrix element
are completely determined by the elastic scattering T
matrix and its derivative with respect to energy.
Equation (20) is the analog of Eq. (2.16) in Ref. 2.

In the over-all c.m. system p&+p2= p&'+p2'+y=0,
Eq. (20) becomes

pl p2
(p2 p2) 6' 8

2m g 2512

&i (pi —pi
T(Z.

m, E

Af=e—
(pi+ p2

—p2')' p2")
(»)

2m~)

BT
+l(p~'+p ) (E.-.,& ) I+oh) (22)

az,
Taking the gradient gives

(p&+p2 p~', p2'I T(~) I p~, p~)

1 ( y iBT p, BT p, '+yBT
-I q+q'+ —v I

—— — — . (»)
2myk my J Bv my 85; my Bdr

Now setting e=E as described after Eq. (8), and
expanding all terms in powers of y, gives

8y ( BT BT BT)M"'=—
I
k(q+q') —p~ —pi' I+oh) (»)

m E av aa; ear&

where again the derivatives of T are evaluated at
v=P/2p, t= (p2' —p~)' 8„=0,and Ar ——0. Observe that
M(') does approach a constant as y —+0, independent
of its direction. Combining Eqs. (16) and (19) gives

M& &+M& ~=—
l

|'pi pi)

mg

It' p& Y'q p& Y'q
+I —:(.+')+ — +0(», (2o)

2m' 6' 2m' Bv

Except for an incorrect relative sign in Eq. (1.7NR)
of Ref. 2, there is agreement with Eq. (22) if it is
remembered that in the leading (y ') term, the mo-
menturn transfer must be taken equal to that of the
nonradiating particle.

If particle 2 is also charged, one adds to Eqs. (20)—
(22) additional terms obtained by interchanging all
subscripts 1~2 in these equations

l
also in q and q',

according to Eq. (14)j. If the ratio e/m is the same for
the two particles, then the p ' term is reduced by a
factor p/m. At the same time, a term of order y' is
introduced that involves the derivative of T with respect
to the momentum-transfer variable. If, in addition, the
two particles are identical, then the entire amplitude
must be symmetrized.

III. TWO SPIN-2 PARTICLES

i,ow' stated that the cancellation of the derivatives
of the T matrix with respect to the off-shell variables
is a very general result, not restricted to spinless
particles. He gave an explicit proof also for one spin-0



LEON H ELLE R

and one spin-~ particle. Nyman' has done the same
thing for two spin--,' particles, and has compared the
cross section computed from the model-independent
terms with existing proton-proton bremsstrahlung data.
We now show how this derivation proceeds in a potential
model. The essential point is that Eq. (8) is still correct
with spin included.

The states of the particles are written lkr, ks', sm),
using the total spin and its z-component representation.
The general T-matrix element is a sum of terms

(kr', ks', s'm'
I T(e) I kr, ks, sm)

=P T„(v,t,h;,~r)(s'm'IA (Lt Ls,Ls) lsm), (23)

where the variables occurring in the functions T„are
the same ones used in Eqs. (12) and (13); the three
orthogonal vectors are taken to be

Li=—qf —q;, Ls—= q;X qf, Ls=—LrX Ls, (24)

and the operators A are of three types according to

the number of spin operators that are present:

1; e. L;; (er L;)(es.L;). (2&)

If the invariances of space inversion and time reversal
are assumed for the nucleon-nucleon interaction, then
only six terms A„are permitted for proton-proton
scattering, and one of them vanishes for elastic scatter-
ing. For the proof of the theorem it is not necessary to
impose these syxrUnetries.

The electromagnetic interaction is also generalized
to include a possible magnetic moment p, ~ for particle 1

(not to be confused with the reduced mass p):

(ki—y, ks, s'm'IH, Iki, ks', sm)
= —(2s/y)'I's L(er/mr)krb„8

+ipr(s'm'IyXotlsm)j. (26)

As in the spinless case, radiation from particle 2 can
be written at the end by interchanging all subscripts.

With the diagrams in Figs. 1 and 2 now carrying
the additional labels sm for the initial state of the
particles and s'm' for their final state, Eq. (6) in the
spinless case becomes

M&'~= P L(er/mr)yr'8;, .6 ~ +iIri(s'm'IyXerls"m")jh '(pi'+y, y, '; s"m"
I T(E) I yi, ys, sm)

+ P (pr', ps', s'm'IT(&')Ipi —y, ps, s" m)(1/6')I (e /rm) ryder, ,8 " +illr(s"m"IyXe lsim)j. (27)
s"m"

Introducing the three vectors that characterize the bremsstrahlung process

Q—= q' —q, N—= qX q', P—=QX N,

the two T matrices in Eq. (27) can be written, according to Eq. (23), as

(pi'+y, ys'., s"m"
I
T (E) I yr, ps., sm)

l(Ã v q' ) t'=p T„l —+,(ys' —ps)' 0, 6 I(s"m" IA
I Q+—y, N+—qXy, P+—LyXN+QX(qXy)j Il&m)

(21r 2mi I 4 mi mr ml r
and

(pi', ps', s'm'
I
T (E')

I pi —y, ys, s"m")

(28)

(29)

(g' yq ) t' u
—,(ps ys)', ~', o l(e'm'IA-I Q+—v N+—q'Xq, P+—LqXN+QX(q'Xy) j II"'m"&,

E2p 2mr ~ 5 mi mi mr ~

dropping terms of order y . Expanding the functions T„and the operators A„ in powers of y gives

y q BT„BT
(yr'+y, ys', s"m"

I T(g) I yr, ps, sm)=P (s"m"IA„Ism)T.+(s"m" IA„lsm) +6
n 2m' Bv 8Ay

+(u/mr)(s"m" Iy V'qA + (qXy). V'arA~+I yXN+QX (qXy) 1 Vr A„I sm)T~ +O(y')

and

y Q BT„BT„
(yi' ys'; e'm'I T(z') I pi p, ps, s"m") =p (~'m'IA

I
s" )mT„+(s' ImA„I s"m") ——+~'—

% 2m' Bv 86;

(30)

+(p/m&)(e'm'Iy &qA.+(q'Xy) &&A +LyXN+QX(q'Xy)j V'zA Is"m")T +O(y'),

s E. M. Nyman, Phys. Letters 25$, 135 (1967};Phys. Rev. 170, 1628 (1968}.
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where the functions T„and their derivatives are again evaluated at v=g'/2t&, t= (p2 —pm')', 6;=0, and Ay=0, and
the operators A and their derivatives are evaluated at L& = Q, L~ ——N, and Lg= P.

Proceeding to the double-scattering term, when Eq. (7) is rewritten to include spin and magnetic moment, the
radiation due to the magnetic moment can be dropped since it is of order y; and since the radiation due to the
charge does not change the spin state, the method of proof of Eq. (8) applies just as before, with the result that

M &'& = egv„(yg+ p2 —P2', p2', s'rp&'
l T(e) l p&, pm, sm) l,=g+O(y) . (31)

Now the gradient operates on the functions T„and the operators A„, giving in place of Eq, (19)

&]. ~Tn BTn BTn
(s'~'

I
A ~ I srN) 2 (q+ q') —

p&
—

p&

S$$ 8v 86;

+p(s'rr&'lQXV&rA„+PVpA. Q(Q —VpA. )lsrN)T +O(y), (32)

with T„and A„evaluated as described after Eq. (30).
Combining Eqs. (27), (30), and (32) gives the spin generalization of Eq. (20)

M&'&+M&'&=(s'm'l Bl sm),

el (pl pl&t (g /, p& Y'q p&Y'q)
+—,K T-l —(P2 —p,),o, o A„(Q,N, P)+l 2(q+q')+

~1 E d d '~ ~ (2&a k 6 2m& d ' 2'&rtl/

BT t'&i ) g
XP

l
—,(P2' —yp)', 0, 0 lA. (Q,N, P) +P T. —,(P2' —pg)', 0, 0 l{(eg/mg)tt(QXV~+Q'Vp

—Q(Q Vp)+(y~'/mi&)(y Vo+(qXy) V~+l yXN+QX(qXy)] Vp)+(p&/mid')(y Vo+(q'Xy) V~

+LYNX N+QX (q'Xy)] Vp) j}A (Q, N, P)+it&&LyX&r&A (Q,N, P)/6+A (Q,N, P)yXoq/6'])+O(y). t33)

Just as in the spinless case, the derivatives with respect
to off-energy-shell-variables are not present, the cancel-
lation occurring in precisely the same way. We plan to
evaluate Eq. (33) from the elastic phase shifts, and
compare it with an exact calculation using Eq. (27)
and the spin-magnetic-moment generalization of Eq.
(7), for various potentials that fit the elastic data.
Since these fits are approximate, one should compute
the elastic T matrices directly from the potential under
consideration. This will serve as a check on the exact
calculation and will also demonstrate just how the

O(y) term enters.
With the proton-proton elastic T matrix written in

the most general form consistent with parity conserva-
tion and time-reversal invariance,

T=Ti+T2(~x+~2) N+Ts(~i Q)(~2 Q)
+T4(o).N)(o2. N)+Tn(og P)(&r, P), (34)

IV. DISCUSSION

If the particle momenta are very small, then the
T matrix is predominantly s wave. If it were purely
s wave, the double-scattering term would contribute
nothing in the c.m. system to bremsstrahlung because
the only direction in the (spinless) problem is the:
photon's momentum, and e.y=0. This is the well-
known statement that J=O —+0 is forbidden. Under
these conditions M&'& would be of order y (and in the
direction y). How, then, could the cancellation of off-
shell derivatives occur in the term of order y' if M&'&

does not have such a terms From Eq. (19) it would
appear that perhaps 8T/8d;, dT/Bhr, and BT/Bv are
not separately zero, but that instead

18T BT 1 BT BT
and

2 Bv 86; 2 Bv My

vanish, thereby making the term of order y vanish.
there areonlyfournonvanishing gradients in Eq. (33): (Recall that in the c.m. system, q=p& and q'=p&'

+py/mq. ) While these relations among the derivatives
V&rA 2 a 1++2 y of T are certainly not exact, there is some approximate
VoAS= (&ri Q)&rm+(a2 Q)&rx, validity to them, as will now be shown.

Although the p-wave contribution to the T-matrix
for a local potential is only of order g' (and the s-wave

VpA, = (e, P)&r,+(a2 P)&rg. of order unity) at low energies, they make comparable
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contributions to M@&!This can be seen from an examina- Using the symmetry from Eq. (36),
tion of the half-off-shell T matrices

Tii(44, v,x) = Tz, (v,n, x),
Ti4(q;, qg, cos8)—=T( vt, 06') =4v. P(2t+1)F4(s)

"F&(qtr) Ui(q, ,r)
X V(r) dr,

qf qi

Tr, (q, ,qt, cos8)—=T( vt, h;, 0)=4v. Q(2l+1)F4(s)
(36)

one finds that

BT (v, t,0,0)/8 5;=BT (v, t,0,0)/Bhr . (40)

Observe that the p-wave contribution to BT/Bv is

only one power of q weaker than the s-wave at low
energies. Now form the combination that occurs in M(2)

(in the c.m. system)

"Ui(qt, r) Fi(q,r)
X V (r) dr, ,'BT/Bv —BT/Bt4—.= t4(P'+X)+0 (g); (41)

Uo(k, r)/k= vo"'(r)+kvo"'(r)+k'vo"'(r)+0(k'),

Ui(k, r)/k= kvi"'(r) +0(k'),
U2 (k,r)/k = 0(k'),
Fp(kr)/k =r —-'k'r' +0(k4),
Fi(kr)/k = -',kr' +0(k'),
F2(kr)/k = 0(k')

which gives

(37)

TI4=~+&q4+2Pq4'+2P qr'+~q4$ cos8+0(q )~

BTo/Bq; =r4+Pg+ hg cos8+0 (g'),

BTi4/Bqs P'q+Xq cos8——+0(q'),
BT~/B cos8= l~g'+0(g4),

(38)

where

s= cos8—=q; qr, F&(x)—=xj&(x), H&&+&(x)—= ixh&&'& (x),

and U~ is the regular solution of the partial-wave
Schrodinger equation with the asymptotic behavior

Ui ~F4(kr)+e"&i"' sinhi(k)Hit+'(kr).

Expanding in powers of the momentum, 7

the p- and s wave contr-ibntions are of the same order in g.
The resolution of the apparent paradox stated at the
beginning of this section resides in the fact that there is
a relation between the on- and off-shell derivatives of
T to the leading order in q. The only consistent way to
make the approximation of only s-wave scattering is
to neglect al/ the terms in T that are quadratic in q,
and then M(') would indeed be zero. The more accurate
calculation given above shows that BT/Bv and BT/Bh
are both of order q ', but the combination that occurs
in M(') is order q'.

The coefficient n in Eq. (39) can be obtained from the
s-wave scattering length a, since the elastic T matrix
can be written

2x e'" sinbo
T= —— +0(g')

p q

2' 1

. +0(g')
p —8 —zq

(42)

BT/BE. = —24ria'/g+0 (1),

with E, =g'/2t4. Returning to Eq. (22), the ratio of
the second term to the first term is

with all derivatives evaluated at q;=q~ ——q. The coeK-
cient X comes from the p state.

To obtain the derivatives of T with respect to v and
6, invert Eq. (12),

Iy ~T

TOE,

gpss
(qa.

q
(43)

q" =t (2v+~r) qs'=t (2v ~t)
cos8= (2v —t/2t4)/(4v —44it')'t'

and use Eq. (38); the result is

and

BT(v,t,0,0)
=t -+(P+P'+2l) +O(g)

(39)
BT(v,t,0,0) n

-=-', t4
—+(p—p') +0(g).
q

7 These properties of the functions Ug can be obtained from an
exact expression for the Jost function such as Eq. (5-12) in
R. G. Newton, The Complex j-I'lane (W. A. Benjamin, Inc. ,
New York, 1964). They follow directly from the expansions of
Eg(x) and Bg&+&(x) in powers of x.

At sufficiently low particle energies, the second term is
negligible compared with the first term, no matter
what the photon energy is.

If a portion of the potential V is not simply a function
of r, as is true in the nucleon-nucleon system where there
is momentum dependence, charge exchange, and
possibly explicit nonlocality, then the derivation used
in this paper does not work. First of all, additional
electromagnetic interaction must be introduced to
make the Schrodinger equation gauge-invariant. This
has the effect of destroying the identity of single scatters
ing with external emission where single scattering mean-
(as it did before) to pick out of the bremsstrahlung
matrix element

' '(1 i', 12'IB-ll, P )"'
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the free-wave part of one of the states and the scattered-
wave part of the other state. In addition, there is now
a zero scattering contribution M&'& where one takes the
free-wave part of both states. External emission still
has the form of the right-hand side of Eqs. (6) or (27),
and all the new bits of radiation are of the internal-
emission type. According to the general result of Ref. 2,
we expect that our Eqs. (20) and (21) or (33) will still
be valid for the total bremsstrahlung matrix element.

The main result of this work —that bremsstrahlung
calculated from the Schrodinger equation satisfies the
Low theorem —is contained in a paper by Feshbach and
Yennie, although it is not obvious from their Eq. (21).
That equation contains gradients of half-oR-shell
T matrices with respect to the relative momentum of
the oR-shell state, and individually these gradients
depend upon the oR-shell behavior of the T matrices.
A direct way to demonstrate that these oR-shell prop-
erties cancel out of the equation is to use the para-
metrization of the present paper.

While the gradient of Tg with respect to qf is ex-
pected to be smaller than the gradient with respect to
q;, the latter being proportional to F ', where F is the
width of a nearby resonance, V,fT& may still be large

in absolute value. The rough qualitative argument
which says that it should be simply the range of the
force times Tg can be incorrect. For example, near a nar-
row resonance of a 5-function potential, V,fTg~ r- ".

The point about which Feshbach and Yennie' expand
the T matrix is probably the best one insofar as the
evaluation of the y

—' term in the bremsstrahlung
matrix element is concerned; but, as their discussion
indicates, the contribution of the internal emission to
the y term, as obtained from a general formula that
neglects terms O(y), can be unreliable near a narrow
resonance. ' The Low theorem is probably not useful
under these circumstances.
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