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Resolution of the Runaway Problem for the Polaron
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Runaway modes are shown to result from the standard application of the dipole approximation to the
polaron Hamiltonian. These modes do not occur if the Hamiltonian is renormalized before making the

approximation.

I. INTRODUCTION

XACTLY solvable model-field theories whose

Hamiltonians are quadratic in the dynamical
variables have long been known to suffer from re-
normalization-induced runaway modes.* These run-
away modes—solutions of the equations of motion
which display exponential time development—arise
because the renormalization prescription employed
transforms the originally positive-definite Hamiltonian
into an indefinite operator which admits imaginary
eigenvalues.

The techniques®® which have been developed for
treating the runaway modes are essentially analogs of the
classical prescription, which removes them by imposing
boundary conditions.® In the quantum case these modes
are simply not included in the eigenfunction expansion
of the field operators. This truncation leads to a non-
causal theory, as is easily seen by examining the result-
ant field commutators. These take the characteristic

form
Lo (x),m(y)]=i[8(x—y)— f(x) f(y)], (1)

where f(x) is the wave function for the runaway mode.
This loss of causality has not been considered to be
drastic because the spatial extent of the runaway mode
is of the order of 10~ cm about the source. Also, there
is no radiation associated with it.

However, if Hamiltonian dynamics is to be considered
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a self-consistent system, there is no room for an ad hoc
prescription for the removal of runaway modes or for
the resulting noncausality of the remaining theory.
Thus, the following suggestions for the resolution of the
runaway problem have been made:

(i) This class of Hamiltonians is either non-Hermi-
tian or does not have eigenstates, and by insisting upon
their existence the runaways appear”; or

(ii) this class of Hamiltonians is not essentially self-
adjoint, and if the deficiency indices are equal, the self-
adjoint extensions should be taken as the correct
Hamiltonians.?

A simpler alternative solution to the runaway prob-
lem is suggested by the fact that the runaways are not
solutions to the equations of motion generated by the
full translationally invariant Hamiltonian. Thus, one
is led to conjecture that the runaway modes result from
an improper application of the dipole approximation
which alters the dynamics of the system in too drastic
a manner. In fact, it has long been recognized® that the
dipole approximation should only be performed after
renormalization, i.e., after the proper field attached to
the source has been separated from the external field.

This point of view is further reinforced by the non-
uniqueness of the dipole approximation as a result of its
noncommutation with canonical transformations. Thus,
the many canonically equivalent forms of a translation-
ally invariant Hamiltonian give rise to different dipole
approximate forms. Clearly, all of these will not give
reasonable approximations to the full dynamics. The
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establishment of general criteria is presently under
study.

In this paper the dipole approximation is applied to
the polaron model in order to illustrate the above
conjectures. In Sec. I a canonical transformation is
used to cast the polaron model into a form which is
similar to the Hamiltonian for nonrelativistic quantum
electrodynamics. When the dipole approximation is
made and the resulting quadratic Hamiltonian is
diagonalized and renormalized, the runaway modes
appear.

In Sec. IIT the canonical transformation which re-
normalizes the polaron model is made. With the Hamil-
tonian in this form the dipole approximation yields no
runaways upon diagonalization and renormalization.

In Sec. IV the implications of these results for other
field-theory models with similar structure are discussed.

II. POLARON HAMILTONIAN

The polaron Hamiltonian, which describes the
coupling between a nonrelativistic particle (spinless
electron) and a second-quantized scalar field (phonons),
is

P2
=—~-1 | @ [wk)k)o(—k)+rk)r(—k
2Mo+ /dk[ ()¢ (k)¢ (— k) += (k)w(—k)]

e / Pho(Bp)e0. (2)

The canonical commutation rules are the usual ones,
and the point-source limit is obtained by setting the
form factor p(k) to unity.

If the dipole approximation were to be made at this
stage, the resulting Hamiltonian would just be that of
a shifted harmonic oscillator. Clearly, this would be a
misuse of the dipole approximation since no electron-
phonon scattering would then be included.

This Hamiltonian is cast into the same form as those
discussed in the Introduction by the canonical trans-
formation generated by

e‘“"Q:I . 3)

U=expl:—ig/d3k

The transformed operators are

w(k)o* (k)
w(k)

*(k
Us (U= (K)—¢ (( )Z e, @

UPU-1=P—ig / &k k—————-/r(i)) (Kexe,  (3)
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and the transformed Hamiltonian is

UHU-=} / &k [ (£ (106 (—R)+-7 (R (— )]
1 o (®) :
- — 3 k'——ﬂ' k —1K .

D ha ] Ll O

[p(k)|?
—1g | @ .
g / (b’ (6)

This new Hamiltonian is now reduced to a quadratic
form by performing the dipole approximation which
removes all particle recoil. Mass renormalization then
results by decoupling the field and particle degrees of
freedom with the canonical transformation generated by

U=exp[M / &k k- Pj(—()—)¢(k)} (7)

r

where the renormalized mass M, is given by

g2
M,=M0[1—l———— /d%
M

0

- (k)4lp(k)l2] ®

In the point-source limit the bare mass must be taken
to be negatively divergent if the renormalized mass is
to be finite. This causes the Hamiltonian to take an
indefinite form when expressed in terms of the re-
normalized mass and, thus, leads to runaway modes.

The remaining pair Hamiltonian is

UH &% [ (k)¢ (k)¢ (— k)47 (k)7 (= k)]

/d% lp(k)|2, ©

1

o, <k>}

Coamll w (k) w(k)
where the operator transformations are
%k
U1r(k)U—1=7r(k)——gp ®rp, (10)
M, (k)

k)
UQU—1=Q‘§~/‘ o (11)

M, w(k)?

In order to find the runaway modes it is first necessary
to diagonalize!! the quadratic in the field operators. The
resulting scattering states in momentum space are

1
d(kp)= [2—(]3)]1/2
g p(p)o*(k) k-P
5(k—p)+ (12
X[ C=rtor w(p)o(k) K— pFie Di(kﬂ)] a2)

1 J, M. Blatt, Phys. Rev. 72, 461 (1947).
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where \ o()]? \
Do (k) =14 /d3; TP )
3M, w(p)? pPP—k*Fie

As is well known, there are bound states at the roots
of the equation

g le(®)|? #°
D(k?) =1+ P | d =0.
© 3M, / ? w(p)? p—k?

In terms of the renormalized mass this condition
becomes

2 2 2
LA fdsp[”@)l ?
3, w(p) Pk

and in the point-source limit (with u set to zero for
convenience) adds the imaginary solutions

w(k)=1i3M,/2n%g?

which are just the runaway modes.

These results have also been obtained by explicitly
expanding the exponential recoil factor in the original
form of the Hamiltonian and retaining only quadratic
terms after performing a static shift in the field
operators.’3

(14)

=0, (15)

(16)

III. RENORMALIZED FORM

The renormalized form of the Hamiltonian is obtained
by performing the canonical transformation which
explicitly separates the external and proper fields. In the
Hamiltonian this transformation has two effects: The
divergent self-energy of the source is explicitly separated
out, and the form factor for the charge distribution
is modified so as to suppress high-momentum con-
tributions.

In terms of Bose operators the generator of the
renormalization transformation is'

U=exp{/d3k Le(®)B(k) e —H.c.]p, (17)

where

p* (k)
B(k)=— Q (k) 18
O AT A (18)
and
Qk)=w(k)+k2/2M,. (19)
The transformed operators are
Ua(k)U=a(k)+B(k)e*-°, (20)

UPU-1=P— [ @ [a(k)*B(k)ke~™°+H.c.J, (21)

12E. M. Henley and W. Thirring, Elementary Quantum Field
{lheoryl 0(McGraw-Hill Book Co., Inc., New York, 1962), Chap.

, p. 106.
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and the transformed Hamiltonian is

P2
UHU-'=—+ / Pk w(E)ak) k)
2M,

1

— 3 3 . * *,—i(p+q)-Q
+2M0/d1>qup qB(p)*B(g)*e
X[a(p)te(q)t—a(p)ta(—q)+H.c.]

L / @ [a(k)B(k)*k-Pex -0+ H.c.]
M,

lo(k)|?
il Bp—— T (22
28 / dkw(k)ﬂ(k) @)

The operator part of this new Hamiltonian has been
shown to be the correct generator of time translations
in the point-source limit" and to have convergent self-
energy contributions to any order in perturbation
theory.10

Now that the Hamiltonian is in renormalized form,
the dipole approximation

H=} f &k [o(RY o (0)¢(— k) (B)r (k)]
) o (D)r )T
Pt | BBp— 2
+2Mo|: 1gf pw([))ﬂ(p):l
¢ /dskk”f’(W
W) 20®k)

should no longer give rise to runaway modes. To see
that this is indeed the case, the usual procedure is
followed.

Mass renormalization is accomplished by decoupling
the field and particle operators with the canonical
transformation generated by

(23)

¢ [ e

M,=Mo|:1+

where

lo(p)] ] 25)

g P’
fe
3M, w(p)? Q(p)?

In the point-source limit [w(k)= % for convenience] the
renormalized mass is
M,=M 14 (8/3)rg¥]=\"M, (26)

and the bare mass is now finite.

1 E, Nelson, J. Math. Phys. 5, 1190 (1964).
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The transformed Hamiltonian is

P
UHU'=—1 | & [w(k)2 - r(k)r(—k
Wf/'[@W®akH(><n

g [ [, p(;b)vr(p)]2
Tl P nw
— g /dakilp(k)P , (27)
2M, 20(k)Q(E)
where the transformed operators are
ig p*(k)
Ur (k) U '=7(k)—— k-P 28
(k) (k) doamei (28)
; *(k)g (k
UQU-—-I___Q_E 3kp ( )& (29)

M, w(B)Q (k)

The equation for bound states can now be written
down by inspection and is

2 2
D) =14 g P/ Plp(ﬁ)| P ~0, (0)
3M, Q> Pk
or, in terms of the renormalized mass, is
2 2 2 1
+—g——w(k)2P/ lo(p)* » ~0. (1)
3M, 9(?)2 w(p) pP—F*

Finally, the runaway modes w(k)=-4B satisfy the
equation

Lle@)* 1
Q(p)? w(p)?w(p)+B

In the Appendix it is shown that this equation has no
solutions. Thus, there are no runaway modes when the
dipole approximation is applied to the renormalized
Hamiltonian.

= 32)
M,

IV. CONCLUSION

It has been conjectured that the runaway modes
usually associated with the diagonalization and re-
normalization of quadratic Hamiltonians, which are the
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dipole approximate forms of fully translationally
invariant theories, are a result of the misuse of the
dipole approximation. An illustration was provided by
the polaron Hamiltonian, which was canonically trans-
formed so as to yield a quadratic form in the dipole
approximation, and which contained runaway modes
upon diagonalization and renormalization. However,
it was found that no runaways appeared if the canonical
transformation which renormalized the Hamiltonian
was applied before the dipole approximation. Thus, the
runaway modes which plague nonrelativistic quantum
electrodynamics would seem to be avoidable by first
finding the canonical transformation which performs the
renormalization, i.e., which attaches the self-field to
the electron.
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APPENDIX
In order to show that the runaway-mode equation
g lo()|* ¢ 1
1=——g——BZ/d3p | (33)
3M, Qp) w(p)w(p)+B

has no solutions, compare it with the mass renormali-
zation equation

lo(p)|2 p?
Q(p) w(p)?

Upon equating the expressions for M., the resulting
equation is

(34)

M, Mo-l-“g/ -

lo®)* 7
Mo= ——%g2/d3p _. (35)
Q(p)* w(p)+B
In the point-source limit this becomes
167rg p?
1=— (36)

(17+ M) pP+ B

Since A is positive this equation is inconsistent. Thus,
there is no solution to the runaway-mode equation for B.



