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Runaway modes are shown to result from the standard application of the dipole approximation to the
polaron Hamiltonian. These modes do not occur if the Hamiltonian is renormalized before making the
approximation.

I. INTRODUCTION

~ XACTLY solvable model-field theories whose
~ Hamiltonians are quadratic in the dynamical

variables have long been known to suffer from re-
normalization-induced runaway modes. ' These run-

away modes —solutions of the equations of motion
which display exponential time development —arise
because the renormalization prescription employed
transforms the originally positive-definite Hamiltonian
into an indefinite operator which admits imaginary
eigenvalues.

The techniques'' which have been developed for
treating the runaway modes are essentially analogs of the
classical prescription, which removes them by imposing
boundary conditions. ' In the quantum case these modes
are simply not included in the eigenfunction expansion
of the field operators. This truncation leads to a non-
causal theory, as is easily seen by examining the result-
ant field colnmutators. These tak. e the characteristic
form

9 (x),~(y) j=tLb(x —y) —f(x)f(y) j, (1)

where f(x) is the wave function for the runaway mode.
This loss of causality has not been considered to be
drastic because the spatial extent of the runaway mode
is of the order of 10 "cm about the source. Also, there
is no radiation associated with it.

However, if Hamiltonian dynamics is to be considered

' G. Wentzel, Helv. Phys. Acta 15, 111 (1942).
'N. G. Van Kampen, Kgl. Danske Videnskab. Selskab, Mat.

Fys. Medd. 26, No. 15 (1951).' H. Steinwedel, Ann. Physik 15, 207 (1955).
4 K. Wildemuth and K. Baumman, Nucl. Phys. 3, 612 (1957).' R. Norton and W. K. R. Watson, Phys. Rev. 116, 1597 (1959).' P. A. M. Dirac, Proc. Roy. Soc. (London) 167, 148 (1938).
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a self-consistent system, there is no room for an ad hoc

prescription for the removal of runaway modes or for
the resulting noncausality of the remaining theory.
Thus, the following suggestions for the resolution of the
runaway problem have been made:

(i) This class of Hamiltonians is either non-Hermi-
tian or does not have eigenstates, and by insisting upon
their existence the runaways appear~; or

(ii) this class of Hamiltonians is not essentially self-

adjoint, and if the deficiency indices are equal, the self-

adjoint extensions should be taken as the correct
Hamiltonians. '

A simpler alternative solution to the runaway prob-
lem is suggested by the fact that the runaways are not
solutions to the equations of motion generated by the
full translationally invariant Hamiltonian. Thus, one
is led to conjecture that the runaway modes result from
an improper application of the dipole approximation
which alters the dynamics of the system in too drastic
a manner. In fact, it has long been recognized' that the
dipole approximation should only be performed after
renormalization, i.e., after the proper field attached to
the source has been separated from the external field.

This point of view is further reinforced by the non-
uniqueness of the dipole approximation as a result of its
noncommutation with canonical transformations. Thus,
the many canonically equivalent forms of a translation-
ally invariant Hamiltonian give rise to different dipole
approximate forms. Clearly, all of these will not give
reasonable approximations to the full dynamics. The

7 W. C. Hennenberger, Nucl. Phys. 49, 321 (1963).
J. M. Jauch, Math. Rev. 28, No. 5716, 1098 (1964).

9 M. Schwartz, Phys. Rev. 123, 1903 (1961).

i555
Copyright 196S by The American Physical Society.



(556 A YCHS. L

Ham»«»an "h transformed Haer ands resently undr eral criteria is pment o generaestablishm

rox
'

a lied to
ud

roximation is app ie
stu y.

I thi pap
ron model in or er

h olaron mode
1r to the am'

'
ole a prox'

ma e
diagonalized an ren

tion which re-
a pear.

'
al transformation

' e-III the canonicaIn Sec.
el" is made. i

ion ields noin this form the d po e a

ns of these results or o. IV the implications oIn Sec.
'th imilar structure adels wit sim'6

n k n( —k)jd'k o)(k)'y(k)y( —k)+n ( n—2

n(k)e "9*k
+ P—zg d'k n e

2Mp

(6)—
2g dk

(v(k)'

ami
' '

w reduced to a quadratic

resuults by decoup in
freedom wit t e c

(7)
g (k)

d'k k. P y(k)
o) (k)'

U= exp
M„

tized scalar fiel pld hon )

ust be takenurce limit the are mass must e
d mass isto e

'
iver enti t eg

ite. This causes t e

ass and, thus, lea s o
d'k pg

The remaining pair a

Ip(k) I

o) (k)'
M„=Ms 1+

'k o)(k)'y(k)y( —k)+n. ( )n-n. k n -k)js

(k)4 (k)e'"'

the usual ones,
b h

'
n rules are s

—1—band the point-source
' - rce limi i

to unity.
ade at this

2

a s i e
roximation s'

ldth b 1 d
e dipoe ap

'
s

te gln wou e
as those

p 0

1 trans-the Introduction yd scussed in t e
tion generate yi dborma i

d'k Lo)(k)'y(k)P( —k)+zr( n-zr k n(-k)j2
2M„

p(k) I

o) (k)'2Mp

r transformations arewhere the operator

zg p*(k)
Un (k) U-'= n. (k)— (10)

eld-theory mo

a' ' '
b

ILTONIAN

e alized mass M,
' g'is iven y

II. P

cribes the w e a

2

which escri
11 t t 1p

'
between a nonre ativis

'

ons,
coupling e
electron) an ae d a second-quan
is

~(k)p*(k)
d'k e '" ~U= exp —zg d

p*(k)
d'k k p(k).UQU '= Q—

r

o erators areThe transformed op

p*(k)
Ue(k) U-'=S( )-g

a d it is first necessaryno dertofindthe una yawa mo esi is
Thego

states in mresulting scattering

c'(+)(k,p) =

p*(k)
d'kk n(k)e 'UPU '=P—zg

s. (N. Y.) 19, 219 (1962).'0 E P. Gross, Ann. Phys. (N. Y.

g' p(P)p'(k)
's D k')

X b(k P)+ () (k) k. p
Rev. 72, 461 (194"/)."J.M. Blatt, Phys. Rev.



PpLARpN)-pR THEpRP g LEMRUNA WA 1557

where rmed Hamiltonian 1sand the transforme

D~(k') = 1+ , l~(p) I'

(0 (p)' p' —k'His

p'
(13)

c[ustlon

D(k') = 1+ I' d'

n e nd states at the rootsn "there are boun s aAs is well known, e
of thee

UBU '= d'k (o(k)a(k)+a(k)
2Mp

d'v n aP(p)*P(~ *e '""
2Ms

+ — H.c.]xL (y)+ e-+ ( )+—a(1)'a(—e)

g', , l~(p) I' P'

3M„
=0,

mass this conditionthe renormalized mass iIn terms of t e r
becomes

(15
Hap

*k Pe'" o+H.c.]d'k La(k)P (k

l~(k)l'

(k)Q(k)
(22)

ource im set to zero for— ource limit (with p, se

(16)co(k) =&i
Inodes.

~ ~

are just eth y
n obtaine l

o 1onian and retainingof the Hami to
'

form o
erforming a s aterms after per

13operators.

U= exp d'k a(k)P (k)*e*'~'o—H.c.] (17)

III. RENORMALIZED FORM

amiltonian is obtained

ernal and p pitl separates t e ep

is modified so as o

f theenerator o
tributions.

erators the gs of Bose opIn terms
f rmation isrenormaliza

'
tion tI'ans orIIl

has beenHamiltonian
t l t'

op "o p
the correc g

ve convergence limi't'4 d to h
bation

the oint-sour
n order in pb -. ~-r contri u ienergy

is
'

alized form,
o 10

~ ~

theory.
that the am'

the dipole approxim

k s.(—k)]II= 'd'k k '-(k)y( —k)+ ( )()
, ~(p)~(1) '

+ P—'g

2~p

g2

2Mp

k l&(k)l

2(o (k)Q (k)

runaway mode .s. To seeive rise to runa
rocedure is

s ou 'uh.'--l pthat this is in ee

lished by decoupling
followed.

to t cd article ope
transformation generate

where

and

s*(k)'"'=
'L-2.(k)]"

Q (k) = (o (k)+k'/2Ms.

(18)
where

~*(k)4 (k)
d'k k. P

c0(k)Q(k)

g', P' l~(p)l'

(24)

(25)

o erators areThe transformed op

U '=a(k)+P( )e '"',a(k) U

a + (k)ke '" o+H.c.], (21UPU '=P— d'k La + e (26)M, =Mal 1+(8/3)7rg']—=X-'Ms

-so '
cv k) =k for convenieience the

'
t-sourcelimitl a&(k =In the poin -so(2o)

alized mass isrenorma iz

W. irr', entary Quantum Field
k. 1962) Ch

d H St.=.d.l N"1 Ph'3 K. McVoy and

ass is now 6nite.and the bare mass is n

. Math. Phys. 5, 1190 (1964).'4 E, ¹Ison„J.Math. ys.



L. TRUBATCH

The transformed Ham'amiltonian is

P
UHU '= +-,'

2M„

g2

2' p

2Mp

where the transformed opo erators are

ig p*(k)
U(&)U'= ()—

ACKNOWLEDGMENT

translati»a ye form y
the

appIoximat
lt f the misuse oinvariant t o

'}lustration was p o
are a ie

rovided byjpole approx&
hich was canpnica y

imation An i us
1 trans-

d ti fo i th di ol

d'k
I (u(k)'y(k)y( — m.

P 7lip)~(u) '

d if the canonical

d3p p

g' alp
d'k )

2(v(k)Q(k)
lect o y

ie which attac es erenormalization, i.e., w ic

8) the electron.28

, p*(&)4 (k)
UQU '=Q — d'k (29)

f the renorrnalized mass, isor, in terms o e

(31)1+ — (k)'P d p
3Mp

modes co(k)=aiB satisfy theFinally, the runaway modes co

equation

e writtenound states can now eThe equation for boun s a e
down b inspection and is

g'
, I (P I'

D(k') = 1+ I' d' ——

APPENDIX

-mode equationthat the runaway-mo qIn order to show t a

lp(P)I' P'

~(p)' ~(p)' (P)'+&'
(33)

3iV„

rmali-are it wit
'

h the mass renorma i-has no sosolutions, comp
zation equation

lp(P)l' P'
M„=Mo+-', g' (34)

ralene P. Gross for severauldli et thank Dr. Eugene
tion ofersations abous It mulating conv

el.the polaron mode .

, lp(P '

~(P)' ~(p)' ~(p)'+&'3M„

the resultingt e exp ressions for M„Upon equating
(32) equation i

(35)
hown that this equation has no

h }1
n e

re no runaway mo
1 dt h 1 ddipole approximation is ap

Hamiltonian.

IV. CONCLUSION

'ectured that the runawaya modes
d 1' tio d re-y ated with the iagon

normalization o qf uadratic ami

rce limit this becomesIn the point-source irni

p'dp16xg2

( +23.3II,)' P'+8'
(36)

3

e u
' ' '

nsistent. Thus,e uation is incon
d fto the runaway-mo ethere is no solution o


