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tron-loss cross sections (o „)decrease mono-
tonically with increasing energy and in general
increase with the atomic number, Z, of the tar-
get. This is consistent with the findings of Niko-
laev' for Z( 18. The two electron-loss cross sec-
tions (o») also increase with the atomic number,

Z, of the target but only vary slowly with energy.
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The semiclassical approximation is systematically applied to the study of electronic
transitions in near-adiabatic collisions of atoms and molecules. The use of the eikonal
approximation permits the coupled equations of scattering theory to be reduced to one-
dimensional equations defined along classical trajectories. The theory for rearrangement
collisions is developed into a form appropriate for use with the eikonal description of
heavy-particle motion.

I. INTRODUCTION

In this paper we study the theory of electronic
transitions in the collisions of slow atoms and mol-
ecules (for brevity, we shall refer to the particles
as "atoms"). The conditions assumed will be such
that the motion of the atomic centers of mass is
essentially classical. Our goal is to systemati-
cally extract the possible approximations arising
from this classical aspect of the problem.

Stationary-state scattering theory will be used.
The state function will be expanded in terms of
adiabatic states —often called "perturbed station-
ary states. " We shall use the eikonal approxima-
tion for the coefficients in this expansion, which
describe the motion of the atomic mass centers. '

Except when there are degeneracies, electronic
transitions occur only for finite collision velocities
{the adiabatic theorem). We shall use the term
"near-adiabatic" to refer to transitions that occur

at low velocities.
The formulation of the "perturbed stationary-

state" method for cases in which rearrangement
does not occur is well-known. We briefly review
this in Sec. II, expressing it in a form suitable for
our application. When rearrangement occurs, the
problem is much more subtle. Discussions have
been given in the context of time-dependent per-
turbation theory, for example, by Bates and
Mc Carroll and by Mittleman. Thorson4 has
observed that the adiabatic (or Born-Oppenheimer)
states of the perturbed stationary-state method
do not lead to correct asymptotic incoming or out-
going states. He proposes an approximation scheme
consistent with this formal requirement of scat-
tering theory (a point previously ignored). In Sec.
III and Appendix B we give a formulation for re-
arrangement collision that is consistent with for-
mal scattering theory and with the eikonal approx-
imation.
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The use of the eikonal approximation to describe
the mass-center motion is presented in Sec. IV.
Matrix elements representing transitions between
electronic states thus involve integrals of eikonal
wave functions. In Sec. V we show how these three-
dimensional integrals may be reduced to one-
dimensional integrals along classical trajectories.
Thus the coupled integral equations of stationary
state scattering theory are reduced to equations
in one dimension.

The first Born approximation to these equations
appears to have considerable validity for the cal-
culation of near-adiabatic transitions. For ex-
ample, the well-known Landau-Zener expression
for transitions between "crossing" levels has re-
cently been shown, ' by the methods described in
this payer, to follow from the first Born approxi-
mation.

To develop the approximations made in our an-
alysis we shall assume that several dimensionless
parameters are small. First, we shall make use
of the fact that

q, =—m/M« 1,

where nz is the electron mass and M the mass of
either colliding atom. To satisfy the conditions
for near-adiabatic scattering, we shall require
that

II =E:+0,+&2+ U,2,

where K=-(1/2M)v&'

and M =M, '++

(2. 3)

(2.4)

Eigenfunctions and eigenenergies for the inter-
nal states n=0, 1,2. ..of the isolated atoms are
g and S', where

(b, +h, )g~ = W~z. (2. 5)

The g~ depend on internal coordinates only and not
on the interatomic separation K The adiabatic
Hamiltonian is defined as

=h, +&2+ U». (2. 6)

Eigenfunctions and eigenvalues of hz arewrittenas
and wz(R), o = 0, 1, . .. , depending parametri-

c lyonR:

nag = u (K)y . (2. 7)

lim y =g
Q Q '

R

The state labels n and e above may be taken to be
a single set specified by the condition

g, =- v/(e'/1) ((1, (i.2) lim se = 5'
g~ Oo

Q'

(2. 8)

where e is the relative velocity of the colliding atoms
and e'/5 = 2 x10' cm/sec is a characteristic bound-
electron velocity.

For the validity of the semiclassical approxima-
tion, we shall further require that

Then we may write

(2. 9)

q s =5/pa, « 1,

and q4 = (1 Ry)/e (1.
(i.3)

(1.4)

defining the adiabatic interatomic potential g (K).
We suppose the scattering to proceed fromLn

initial state

Here a, is the Bohr radius, p the relative momen-
tum of the colliding atoms, e =p'/2M, and 1 Ry=
= e'/2a, .

-»2 iP ~ R
where & (K) —= (2m) e

p

II. EXCITATIONS IN THE ABSENCE
OP REARRANGEMENT

The total energy is then

E= 8~+ e

In this section we review briefly the theory of
near-adiabatic excitations of the type

(2. 1)

etc. , where one (or both) of the colliding atoms is
excited. The respective center-of-mass (c.m. )
coordinates of the atoms are y„y„while

(2.2)

is their relative coordinate. The respective atomic
masses are M, and +, and atomic Hamiltonians are
h, and h, . The interaction potential between the
atoms wil. l be written as V». In the c.m. system
of both atoms, the Hamiltonian is

where e =p'/2M.

The Schrodinger equation for the state function
pa+ is then'

(E + ig —H)f + = iq ya g'

+=Zq 4' (5) . (2. 14)

Here g is the usual small positive parameter that
is allowed to approach zero at a proper olace in the
calculation.

To simplify Eg. (2. 13) we introduce the expan-
sion
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On substituting this into Eq. (2. 13) we obtain the
coupled equations

[E+iri —&-u ] @
n P o!p p

&P P (2. 15)

The "interaction" ~ here is
Q

=(q, [K, y ])

For applications it is probably useful to consider
the diagonal matrix elements ~ ~ ~ as absorbed in
the ~. Then the U~ describes elastic scattering
and the ~~g t ansitions between states. We have
seen that, ' ~« t(& I'U~ t, so the diagonal elements

can probably be simply negelected, in gen-
eral.

The differential cross section for scattering to a
final state gn with relative momentum k is thene

do/dg =(2g)&(P/P)M2[(ok (T[0$) [2 (2. 2P)

= —(1/2M)[(cp, v 'p )

+2(y V y ) &E], (2. 16)

where, in the scalar products, integrals are per-
formed over all internal atomic coordinates. We
see that b, has the general form

=q (K)+p (K) g

It is therefore nonlocal, although Q~p and 0
~are just functions of R which vanish at if = ~.

For near-adiabatic scattering, we expect to be
able to treat & as a small perturbation. To see
this we note that

III. NEAR-ADIABATIC REARRANGEMENT
COLLISIONS

H= T+h~+A2+ V, + V2+ V,2, (3. Ia)

In this section we consider a typical rearrange-
ment collision in which an electron is exchanged
between two colliding atoms. We now suppose A,
and Am to represent the respective Hamiltonians
of the two "core" atoms —with the electron in
question missing from both. The interactions of
this electron with cores "1"and "2"will be called
V, and V„respectively, and the interaction be-
tween the cores called U». If the respective
masses and coordinates of the cores and extra
electron are M„M2, m, and y„y~, z, the Ham-
iltonian for the system is

n, = 0(v5/a ) .

Since we expect U =O(1 Ry), we have

1 2 1
2M, y, 2M y 2m z (3. Ib)

O,/&
=O(q,)(( 1

l& l

lg I e

by condition (l. 2).
To put Eq. (2. 15) into the conventional Lippmann-

Schwinger form, we introduce the coherent states
+

(R), defined by
cuba

For simplicity we shall suppose that wave func-
tions in only two of the possible channels' need
be considered in our analysis. The first is the
"incoming" channel "i" in which the (extra) elec-
tron is bound on core "1." The second is the "fi-
nal" channel "f" in which the electron is bound
on core "2."

Convenient independent variables in channel i are
r, and R„defined by the equations

[E+iq —K —zo ] 4' = igX-caq q
(2. 17) X,= (M, y, +mz )/(M, +m-),

With these we rewrite (2. 15) as the set of coupled
integral equations

+
OC

+[ 1/ (E+ E g —E —B'f')]P Q @ (2 13)
P oP P

R, —= 37, —y, ,

0—= (M,y, +M,y, +mz )/M

where M =M, +M, +m.

(3.2)

(3. 3)

The scattering matrix for a final state

X5
= P &k (~)

is seen to be

We shall analyze the scattering in the c.m. coor-
dinate system, so the c.m. coordinate 6 will not
appear in our equations. Expressed in terms of
the variables (3.2), the kinetic energy (3. 1b) be-
comes

(n, k 1TIPp ) =5 p(&k, 'Up@' )
T = —(1/2M)& ' —(1/2p)&

B~
(3.4)

+ 4 k, & P@P . 2 19
where we have ignored the c.m. energy —(l./2M )
x++2 and
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1/M = 1/(M, +m) + 1/M

I/p =1/m+ 1/M, . (3.6)

T= —(I/2M') V '- (I/2p, ')V
A2 y2

'

where 1/M' = 1/M, + 1/I'M, +m),

(s. 12)

(s. is)
When we use r, and K, as independent variables, the
Hamiltonian (3. 1) takes the form I/y. '=1/m+ i/M, .

II=Z+h a '

Z = —(1/2M}V

(S.6a.)

(3.Gb)

For f, the channel Hamiltonian is now

Iif =K'+hf', (3. 14a)

h = -(1/2 P )& ' + h, + h, + V, + V, + V» .
Q f 'ii

(3.6c) where K'= —(1/2M') V
2

The asymptotic states in channel i are eigenfunc-
tions of the channel Hamiltonian

k' =-(i/2p. ') V '+h, +h, +V, . (3. 14b)

H. =E+h. .

where

(3. va)
Internal-state eigenfuncti~ns for the isolated atoms
in this channel areg&, I,

. ', . .. , defined byl'

h. = -(I/2P, )V '+h, + h, + V, . (s. vb)

I J g P

hf gi —Wt gt, etc. (s. is)

h.g = 8' g, etc. (s. 6)

The internal-state eigenfunctions for the isolated
atoms in channel i areg, g, . .., defined by

These are functions of the variables ( and r2 —and
we write g =p (r, ), again not indicating explicitly
the & dependence

As in Eq. (2. 7), we can define a set of adiabatic
eigenfunctions P by the equations

Q

h Q =co (R~)Q (3. 16)

=gk(r, h (R,), etc.(i)
bp b '

p
(s. 9)

The gg . . .are functions of r, and other internal
coordinates $(space coordinates of other electrons
and spin coordinates). For brevity, we shall write
g& =gk(r, ), not explicitly indicating the other coor-
dinates $. The channel eigenfunctions in i are then
of the form

where, of course, we now use Eq. (3.6c) to define
k~. We shall again suppress the explicit depen-
dence on variables $ to write g =Q (r;R,), in-
dicating the parametric dependence on 8,.

We may evidently choose the n labels so that
for certain of the states, namely, a =b, d, ... ,

For channel f, the appropriate set of coordinates
is

x, = (M,y, +mz )/(M-, +m),

lim y&(r„R,) =g (r,),

lim so&(K,) = W&, etc.
oo

(s. iva)

(s. ivb)

r~—= z —y, ,

%2 —=yg —x2 (s. io)

with C, of course, unchanged. Some useful rela-
tions between the two sets of coordinates are

We now proceed to develop the Schrodinger equa-
tion for the state function g +, as was done in
Sec. II. Using the notation of Eqs. (2. 10)-(2.13),
we introduce

r, = R, +[M,/(M, +m)] r, ,

)t =y, X-(R,),a ' p
(s. 16)

M,
AMR + r, ,M, +m 2 (M~+m) (M2+m)

r = R, + [M,/(M, + m)] r, ,

mM&

M, +m ~ (M, +m)(M, +m)" ' (3. 11)

where gpAp is the initial state in channel i. The
Schrodinger equation is then

(E+iq-e)4, '=iqx, . (3. 19)

q +=Zy (r"„Ã,)& (0,). (s. 2o)

Following the discussion which led to Eq. (2. 15),
we introduce the expansion

In terms of these coordinates, treating r2 and R2
as indePendent variables, the kinetic energy (3. ib)
becomes

This permits us to write Eq. (3. 19) as the set of
coupled equations
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[E+iq —K-zv ] T -Z za a oP P

(s. 21)'no p'

nient to suppose that

lim (R,'U )-0.
R

where [compare Eq. (2. 16)]
at least as fast as some negative power of R,. The
"interaction" h&p depends on R, and vR and does
not in general vanish as R, ~. This is to be ex-
pected, since the asymptotic states gl, . . .
in channel f are not the correct states g&, . . . .

For matrix elements betweenstates such as b, d, . ..
in channel i we do have

+2(p, v p ) ~ v ] (3 22) 0 0lim
R -~ (3.27a)

We emphasize that the scalar products here are of
the form

J d&d'~, y *(r, ; 0,) vR 'p (r, ; R,), (3.23)

etc. , where the subscript R, is placed under the
integral sign to indicate that R, is held constant when
the integration is performed.

As 8, -~ it is evident that some of the 4o will
correspond to states in channel f with the (extra)
electron bound on core "2." We choose the n la-
bel so that for e =l, n, . . . , these correspond to
states defined by (3. 15). That is, reference to
Eqs. (3.11) shows that

llm cp (r~, R~)

however. This can be seen from Eqs. (3.22) and
(3. 17a) . In the limit that 8, - ~ the states P&, . . .
are independent of R,. Also, for matrix ele-
ments between states in channels i and f, we have

0lim ~bl = ~bl = 0,
~ oo

(3.27b)

lim 4lAz ln~ oo

etc. This is evident from Eqs. (3.17a) and (3.24),
since for large interatomic separations there is no
overlap of the bound-wave functions. On the other
hand, for states in channel f we have

=gf (f,+ [M /(M, + ni)] r,) =g (r, ) . (3.24}

From Eq. (3.6c) we see thatg&, g„, ~ ~ ~, are eigen-
functions of the Hamiltonian

+2(gf~ v g ) vR &0. (3.27c)

The above discussion suggests that we write

h = —(1/ap, )v '+h, +h, + V, ;

that i,s,
k gl —Wl gl, etc. ,

where now 8 =0 in the limit R, -~ . We can thus
define

CR

where Wl = ~lm ml .
CTl l

Reference to Eq. (3. 14b) shows that gf or
gf' differ only to order q, [see Eq. (1.1)];
or,

llm gl =g "
Ml, M2

l,

(s. 26)

(3.29)

Then, for a given state n in channel f, we can write
Eq. (3.21) in the form

To calculate the scattering to states in channel f
we must identify in g t the correct channel func-
tions g&

'. The fact that g&' —=gl will simplify this
problem.

In preparation for doing this, let us look at the
asymptotic form of Eq. (3.21) as B,- ~. The
"potentials"

(E+ig —K- W )~
'n n

where the sum on P extends over both channels.
Use of Eq. (3. 26) lets us write this as

vanish at R, = ~ by construction, and it is conve- (3.so)
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We now introduce the "wave function" & defined
as

Y(r„R,)=Z g (r,)r (R,), ('S. 31)

~ =&gg*.f nnn (3.32)

It follows that

(s.33)

where the sum runs over the states corresponding
to channel f only. A projection operator A is de-
fined by the same sum:

where we now consider r, and R, as the indepen-
dent variables. To the same order of accuracy,
we, of course, have

n n' (s. ss)

but shall keep the prime superscript to indicate the
change to the variable set (r2, R2) in &.

On substituting the expansion (3.38) into Eq.
(3.35), we obtain a set of coupled equations to de-
termine the & '. The quantities Q~ are seen to
vanish, since 4e condition (3.33) is automatically
satisfied (to the order of the calculation by the
expansion (3.38). The resulting equations are

Also, as R, -~, we have

&=A g+
a

(3-. s4)

(z+iq K'- w-') r '(R,)l l

-Z u (R,)T '(R, )

which means that we can use T to obtain the scat-
tered waves in channel f.

If we multiply Eq. (3.30) by g and sum over
n, we obtain

8

[(Z+iq K' —h—')T —g g u 7 j=o,f
p

nnP P

—~h'Ufh(R, ) &5(R2) =0 . (3.40)

In deriving this result we have replaced R, by
R, in theUI and Th, and made use of Eq. (3.39).
The corres onding components of Eq. (3.21) for
channel i are

since K'+hf =K+
to the equation

[Z+iri —K' —h '] ~

The above is equivalent (Z+irl -K - W ) T (R,)

-Z„~ (R,)T (R,)-Z u (R,)T '(R, )

—Z g g r =ZghQh(R, ), (3.35)
p

8 8

where the sum on b runs over the states in chan-
nel i and the Q& are chosen to ensure that the con-
dition (3.33) is satisfied.

We have not so far made approximations in our
analysis. Equation (3.35) may be considerably
simplified if we make use of the assumed small-
ness of rl, and g, [conditions (1. 1) and (1.2)],'
keeping only the lowest-order nonvanishing terms
in these quantities. Thus, we may take

=ig5i X (R ) . (3 41)
bo p

Equations (3.40) and (3.41) may be written in
more compact form if we simply write R for R
in the first, R for R, in the second, and introduce

(R) —= 7' {R) in channel f,

4&(R) =— &&(R) in channel i,
K ~K' inf, W&=-WI' inf,

C Cl
(s. s8)

=—K ini Wb ~bb b
(s.42)

valid to lowest order in q, . Since J+8 is of O(ri, ), .

we may consider r to be of O(q, ) . 'this means
that we may set

Then, using Eq. (3.2S), we may write both sets
of equations in the form

.„(R,)= 7„(R,), (3.37) [Z+iq —K —W —U (R)]4' (R)
C CQ Q Q

the relative error being of O(q2). To see this, we
note that the Tz contains oscillating exponentials
which describe the relative motion of the two
atoms. ' The error in (3.37) is thus of the order
of P lR, —R, I =- g, Px, . Now for the bound electron
state x, =a„so q pr, = O(q, ).

Equations (3.38) and (3.37) permit us to write

(R, V&)+ (pR)=ig 5 X (R), (3.43)

where for convenience we may again include the
diagonal element Jzz into the

Coherent states 4'
k may be defined as in Eq.

(2. 17)

7'(7„R,)=Z g '(r, ) 7' '(r,), (s. s8)

(z+iq-K - w -~ )ec cn a cek
(3.44)

k



158 J. C. Y. CHEN AND K. M. WATSON 174

P P P
(3.45)

With these we may write (3.43) as coupled integral
equations

= 5 4 -++ (E+irl-IC —W -g )+0 c0p c cQ

Pc(R) =- VS(R)

and it follows that

D(R, T&)=0,

or [using Eq. (4. 2)]

(4 4)

(4. 5a)

These are generalizations, to include rearrange-
ment, of Eqs. (2. 18). The scattering matrix is
seen to be, in the notation of Eq. (2. 19),

(nk (T(0p )=5 (X,'U 4' +)a0 k' 0 c0p

+Z (e -, Z e) . (346)

The differential scattering cross section is again
given by Eq. (2.20).

If we had not assumed g, to be small, equations
of the form of (3.43) would still be obtained, but
with modified interactions Jz~. These more gen-
eral equations are developed zn Appendix B.

IV. THE EIKONAL APPROXIMATION

D(R, -iV) 4=0. (4. 1)

Here V = 8/BR, D is a differential operator, and
4 a wave function. For later applications 0 will
be one of the solutions @ -+ of Eq. (3.44)—cnk
but to simplify notation in this section, we shall
not carry all relevant sub- and superscripts. The
form of D corresponding to Eqs. (3. 44) is

It is our purpose to explore the use of the eikonal
approximation to the coherent states (3.44) for
obtaining solutions to Eqs. (3. 45). In this section
we shall review those aspects of this approxima-
tion which will be needed. For a general presen-
tation of the theory in a form applicable to non-
local potentials, Weinberg's presentation is rec-
ommended "~"

Following Weinberg, "we consider an equation
of the form

~'=k' —2M' (R) . (4. 5b)

[For a nonlocal u, V (R) would be replaced by
V (R, v) in Eq. (4. 5b). j

To complete the solution, trajectories are de-
fined as functions of a parameter 7 by the equa-
tions

dR dD

BK

dK BD

aR
(4. 6)

[Hereafter, when we refer to "trajectories", we
shall mean certain solutions of Eqs. (4. 6). ] Final-
ly, the eikonal S(R) is defined by the path integral
along a trajectory through R as

S(R) =- 1 ~ (x) dx (4. 7)

To construct the solution 4p+ we refer to Fig. 1a,
where the trajectory of the scattered particle is
illustrated. In the "prior region, " ahead of the
scattering region, the particle has the initial mo-
mentum p. To define 4&+=exp(iS+), we choose the
constant of integration in (4. 7) so that

S (R) =p ~ R

in the "post region" —that is, the asymptotic re-

in the "prior region. " To define 4~ ——exp(iS ),
we refer to Fig. 1b and choose the constant of inte-
gration, so that

S (R) =k R

D = V'+ k'- 2M'U (R) (4. 2)
(al (b)

with k' = 2M(E —Wc~). In the approximation in which

q, is small u (R) is local —that is, does not depend
upon V. To avoid a superficial complication in no-
tation, we shall assume in this section that'0 (R) is
local. The extension to nonlocalU' s is essentially
trivial zo

In the first eikonal approximation, 4 is written in
the form

Post Region

S(R)/(
Prior Region

where S is real, and

D(R, —i V) O' = D(R, 7) 4 = 0.
FIG. 1. Construction of 4p+ and 4~
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corresponding to a scattering angle 8 is

lf (
=- lim BA(R),

R

for R in the "post region" on a given trajectory. In
this asymptotic region dZ= dgR'sin8 d8, so

If] = (Mb/sin8d8)"' .
The scattering cross section is given by the usual
classical formula

drJ/dQ = bdb/sin8 d8 . (4. 11)

In anticipation of our intended applications, it is
instructive to repeat the calculation of the scatter-
ing amplitude (4. 10) from the expression

FIG. 2. GeometricaI construction of the amplitude
A of Eq. (4. 9).

gion following the scattering. "
In the second eikonal approximation, we replace

Erl. (4.3) by the expression

e(R) = (2rr) "2A(R) e (4. S)

where I V'lnA. l is considered to be small compared
with ~. We give now a geometrical definition of A,

(and later a more mathematical definition). Refer-
ring to Fig. 2, we choose a point R„ in the "prior
region. " The trajectory for a particle with mo-
mentum p passes through R, with an impact param-
eter b, and later passes through a second point R.
[This refers to 4'+ —to construct 4' we consider
p to be the final momentum and R, to lie in the
post region. '] I et us imagine rotating R, about

the axis IO, par'allel to p and passing through the
force center, through the angle dQ and then in-
creasing the impact parameter by an amount db.
In this way a tube of trajectories is generated,
having cross sectional area dZ, =dQ b db and dZ(R)
at points R, and R, respectively. The particle
flux passing through this tube is

A'(rr(R)/M)dZ =

(P/M)drab

db.

= (27r) 'J rPR u(R)A(R)e'[ ], (4. 12)

for the scattering matrix Tkp = —
l (2rr)'M] 'f. The

expression (4. 12) represents, of course, just the
first term in Erl. (3.46).

We evaluate the integral above in an approxima-
tion consistent with the eikonal approximation. As
a first step we suppose that the family of trajec-
tories [solutions to Eqs. (4. 6)] have been constructed
which correspond to an incident momentum p. A
given trajectory is picked and a point RD at which k
is tangent to this trajectory is located. [If there is
no such point, another trajectory is chosen. If there
are no such trajectories then Tkp vanishes in the
classical approximation. ] A plane P with normal
k is passed through R,. The surface 8 of constant
eikonal, defined by 8( R)=S(R,) is tangent to P at
Ro. This is illustrated in Fig. 3.

Let l be a vector from R, to R, a neighboring
point in I'. The distance 0 from Rto the surface S is
then

From this it is seen that

—Z/2

A(R) =

,
rr(R) drtrbdb

(4. 9)

The magnitude of the scattering amplitude f (8)
FIG. 3. Diagram of coordinates pertinent to the

evaluation of Rq. {4.16}.
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Here I, and (R, are the principal radii of curvature
of S at R„and l, and t, are the components of T
referred to the principal axes of curvature. We
have indicated the order of magnitude of the error
in (4. 13) by letting z represent an effective radius
of curvature.

Now,

S(R) =S(Ã,) (R,)a O(—,—'t'),
where s denotes path length along the trajectory.
When

The "oscillating terms" do not contribute to a
cross section averaged over an appropriate
"small" solid angle. The phase factors neglected
in deriving (4. 21) can, of course, be expressed
in terms of the asymptotic value of the eikona1, if
desired. The derivation of Eq. (4. 21) required
the validity of conditions (4. 15) and (4. 19). To
investigate these we make the following character-
istic and order-of-magnitude estimates:

8 = a,/(8 =u/e = 1 Ry/e,

h =1/p, t' =@'/p.

q (t ) -=t'/6t «21,

~ (S)-=I 8«/as I a2 «1, (4. 15)

Here 8 is the scattering angle. Vfith these we
obtain [using the notation of expressions (1.1)—
(1.4)]

the integral over 1 is elementary

1.(FX,)=- jd i e""= ' (I41, @., I)
«(R, )

q(t ) =q, q, «1,
q(S) =q~ q4((1,

q(t) =q, /q, «1. (4. 22)

(R» S~'4 Ie, I le., 1

=(2v)-' jds 1.(R,)~(5,)
p

& A(R, )

where C(s) =S(R,) —k' R, , (4. 18)

The validity of the first two conditions follows
directly from (1.3) and (1.4). The third condi-
tion here requires also (1.2). Since the angle of
diffraction scattering is Hd =Pi/P a„ the third
condition above is equivalent to the familiar one that
ed ((8 if classical scattering theory is applicable.

ln addition to the wave functions (3.44), we re-
quire also the eikonal approximation to the Qreen's
functions

and the integral is along a path parallel to k and
tangent to a sequence of tra'ectories. In obtaining
(4. 17), we have replaced 'C( ) A(R) by 'V(R, ) A(R, ).
This is valid when

(4. 23)

On dropping the cy index and using the notation of
Eq. (4. 2), we see that the Green's function (4. 23)
satisfies the equation"

q (f ) -=(t/a, )' «1. (4. 19) [V'+0' -2M'U(R)](R I G I R') = 2M5(K —R') . (4. 24)

The principal contribution to the integral (4. 17)
comes from points where the scattering is almost
completed (entrance to the "post region") and
&JR,) is small, since otherwise C(s) oscillates
rapidly. Then, since 0 =p,

Since this is the same as the equation satisfied by
4', except at R=%', it is evident that G will have
the form (4. 8):

(RIG IR') =A

C (s) = jds (« —p) = jds («' —p')/(«+ p)

=-(M/p) jdsV(R, ) .
In this near-asymptotic domain we have

(4. 20)

=(R' I G I R)

S(R, R') =JI, «(x).dx

(4. 25)

(4. 28)

r. (R,) = 2&iR,/«(5, )

and RQ(R, ) =f[Eq. (4. 10)], both to within ne-
glected phase factors. Thus, using (4. 20) we
can write (4. 17) as

and the path of integration runs over that trajectory
which passes through R' and R. To determine A
we first observe that for R=R'G has the familiar
forro.

G =—(M/2w )/IR-R' I . (4. 27)

7'g =- [if (/w2)' M]jdC e'
p
=- [1/(2m)2M] f + oscillating terms (4.21). Now let us consider a bundle of trajectories passing

through R' lying within the solid angle 5Q and enclos-
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(b,'+km —v)G=e ([k' —2M'U(%)

+(1/(R, +1/8, ) ix —"+is'/sx, ]A

+2zwu. /ex +v'X3 =O, (4. 21)

except at R= k . The first-order equation is, of
course,

"="—2M'U(%) (4. 82)

The second-order equation is obtained by ne-
glecting v'A in (4. 31), which is smaller than the
other terms by a factor of order q, [Eq. (1.8)].
The resulting equation is

I IG. 4. Construction of the Green's function [Eqs.
(4. 25) and (4. 28) ]. e ln~»'

Bx~ &x,
(4. 88)

ing the point K This is illustrated in Fig. (4). The
cross sectional area of this bundle at 5 is 5Z. We
can think of a flux of particles passing through the
tube formed by this bundle; it is

or

A= — exp ——f @+~ dx, «84)
l(2 — 1 2

» z(%) ~~ M 'z(R ) «A M 5Z
2

50,

where we have used (4. 2V) near O'. From this we
obtain A as

where C is a constant. With an appropriate choice
of constants this expression applies to either (4. 9)
or (4. 28).

For the wave function (4. 8), the above expres-
sion is evidently

M ~(5')

2v, (%) Sn
(4. 28)

[The reader who desires practice in handling
eikonal phases may wish to show that Eqs. (4. 8)
and (4. 25) are consistent with the equation

(5)=a&(%)+ fd'R' (RIG 15')X~(%') .]

Another form of Eq. (4. 28) may be derived
directly from the differential equation (4. 24) ~ Re-
ferring to Fig. (5), let us choose a point R on a
surface S=constant. The trajectory through 0 has
a tangent 0, which is, of course, normal to S at K
Let 0, and 0, be two unit vectors lying in S and
directed along the principal axes of curvature, so

C=- (~2.) [~(R')] ~/5 . (4.88)

Since 8,, =8,=" in the "prior region" of Fig. 1a,,
this expression gives A =1 for the incoming wave.
For the Green's function we take the origin of x3
to be at%' and note that when%=5, dt, =S =

~ 5- O'I. A convenient lower limit for the integral
is then some very small distance 5 from %' and
the choice

803
ex (R, ' ~x R (4. 29)

where x„x„and x, are distances along the three
axe s.

Since V'S =03K, we obtain
A

v'e' = v (y, e/ax, ) e'

= e' [(1/8,, + 1/8, ) iK —K + 2 BK/sx, ], (4. 8O)

stant

using (4. 29)~ Thus, insertion of the expression
(4. 25) into (4. 24) gives

FIG. 5. I11ustration of the unit vectors used in Eqs.
(4. 29) and (4.30).
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V. EVALUATION OF MATRIX ELEMENTS

The process of obtaining solutions to Eq. (3.45)
and also of evaluating the second term of Eq.
(3.46) leads us to calculate matrix elements of
the form

where ds is an element of gath along the two tra-
jectories passing through H,. This is illustrated
in Fig. 6. The two constant eikonal surfaces,
Sp+=Sp+ (R,) and Sf~ =Sy (R, ), pass through R,
and are tangent to the plane P at this point.

For small l we can then write

M= fe &
(R)Z (5, -iV)

(R)d'ft, (5. la)
cPp

M'= f (%]G t] R) J' (5, -iV) where

(&)- S, (&) =C(s)

+ & ~. .(5,)f, f. , (5. 5)i(j =1

x q
+

(Q)d'ft, (5. 1b) 4(s) -=S (R,) —Si (R,) (5. 5)

(R, -iV)4 (R)

=z N, Pc (%))e (5.2)

if we neglect terms of relative order q, . Here

Zap
(5) is the momentum obtained from the eikonal

S+ of% +,c p

etc. In this section we shall show that the as-
sumed smallness of the ri parameters [Eqs. (1.1)
-(1.5)] lets us simplify these matrix elements.
The argument is essentially that used in evaluating
the integral (4. 12).

First, we have

and l, and l, are Cartesian components of I. When
the parameters (4. 15) and (4. 19) are small, we
may neglect higher-order terms in (5. 5), and re-
place R by R, in AP, Ak, and J in the integrand
of (5.4). The integral over 1 is clemente. ry and
we are left with just the one-dimensional path
integral over s.

We may illustrate this in detail for the special
case that the potentials &~(%) are spherically
symmetric. Then (except for possible singular
interactions) the two trajectories at R, both lie in
the scattering plane of the vectors k and p. The
principal axes for both eikonal surfaces then lie
in and perpendicular to the scattering plane, Qn
choosing these to be the coordinate axes in Eq.
(5. 5), we have n» = 0 and

~ (5.) = VS '(R) .

Then, using Eq. (4. 8) etc. , we have to consider
integrals of the form

n„, = ,' p& /61, (P)-- ~ /g, (u) ],

n„= .'(~ /e, Q) -~„—/e,(a)] . (5. 7)

M=(2m) fd ZA (5)X (%)J(R)
p k

x expi[ S +
(R) —S (%)j (5.4)

Here v~
——VSp+, etc. , and 8& Q) j(=1,2) is a prin-

cipal radius of curvature of Sp+ at B„etc.
The approximate expression (5. 5) then lets us

write

etc. , where

Z(R) =-Z(%, t (I)
p

and we have dropped the +, P indices. We shall
discuss only (5.4) explicitly, since the evaluation
of (5. lb), etc. , is similar.

For each point 0 in the integrand of (5.4) we
must consider two trajectories which yass through
this point. One has the incident momentum p and
the other the final momentum k (and now we do not,
in general, have k=p, because of the change of
atomic states). As was done in the evaluation of
(4. 12), let us suppose R is in the neighborhood of
a point R, at which the two trajectories of the R„
pair are tangent. Next, we construct a plane P
passing through R, and normal to the trajectories
at this point. We then let %=1+0, where f is a
vector in P, and write

GPR cPl ds ~

FIG. 6. Illustration of the eikonal surfaces and
trajectories for the integral f Eq. (5. 8) ].



SLQ% COLLISIONS OF ATOMS. I.

fd fexp [S '(R)-S„-(R)]

=—e'~ ' (+ 2')/ ( I a„I I o.„I)",' (5. 8)

(5q, 5q)=(iq)(-iq)(5q, G G5q)

=—15',iaaf 1 1
2 (

' E-H iq-E-H+ij). 5xl

=„.(5,, 5(Z H)5,). (A. 5)

where (a)=(sign of o»)x(sign of a»). If we
can neglect quantities of the order of the small
parameter g(gg), q(8), and q(l) [conditions (4. 15)
and (4. 19)], we then have

t X (%,)W„(R.)&(&,)l

l I 011022 I

It was pointed out in Ref. 1 that under some cir-
cumstances a saddle point or stationary phase ap-
proximation may provide an explicit expression for
(5. 9). An example discussed was the curve-
crossing model which gives the Landau-Zener ex-
pression for near-adiabatic transitions.

Having shown how to reduce the evaluation of
matrix elements such as (5. 1) to path integrals
along trajectories, we have completed our task of
formally exploiting the classical limit for heavy-
particle motion in calculating electronic transi-
tions. To carry the analysis further, one must
in general obtain the particle trajectories in order
to actually evaluate the path integrals. Also, of
course, the residual real quantum-mechanical
aspects of the phenomena are to be found in the
evaluation of (3.45) and the interactions 8 ~p

and
In paper II of this series we shall illustrate

the methods developed here with some specific
applications.

APPENDIX A: ADIABATIC INCOMING STATES

and dp~ is the density of states per unit energy
interval.
If Ey =E, we have

(5(, 5g) =qw fdp I (5y, g ) I'.
0 0

(A. 6)

However,

fdE fdp l(5y, g ) I'=(5y, 5g)(~,

by hypothesis. The integral

0 0

must therefore be finite, except for possible
isolated singular values of E. (In any energy
interval we can avoid such possible singularities. )
It follows then from Eq. (A. 6) that

lim (5g, 5() = 0,
q -0(+)

or 5g converges strongly to zero.

If we let tlirt and E~ represent a complete set of
eigenfunctions and eigenvalues of II, we may write
(A5) in the form

(5q, 5q)=@~ Z 5(z-z ) l(5q, q )I',

where Z = fdz fdp

(E + iq —H) V = iqy, (A. 1)

where y =-g, X (R)a 0 p

If we subtract (A. 1) from (2. 13), there results the
equation

(A. 2)

We now demonstrate the equivalence of Eq. (2. 13)
and the conventional scattering equation

APPENDIX B. SCATTERING WHEN q2
IS NOT SMALL

Since we are considering only bound electron
states in channels i and f and since g, is a small
quantity in any case, we again have Eqs. (3.36) and
(3.38) as valid approximations. This means that the
Q5 in Eq. (3.35) againvanish.

Now, according to Eqs. (3.11), we have in the
eikonal approximation'4

-i(m/M)~„(R, ) r,
(E+iq -H)5tli =iq5y,

where 5g =g

(A. 3)

x y '([(M, +m)/M, ]K,], (B.1)

5x -=y - 1 = X (q' -g ).a a p
Since y0-g0 when R- ~, it is reasonable to sup-

pose that (5&, 5&) is finite. The "solution" of
Eq. (A. 3) is

T (5,) =Z, o. && &'([(M, +m)/M, ] Rg, (B.2)

where tn(R2) is the local momentum at R,. From
Eqs. (3.31) and (3.38) we have

5g =igG5y,

where G = 1/(Z + iq —H).

Now,

(A. 4)
where n I=-fRdhd'&, g„(r,)g&(r2)

-i(m/M)Tq ~ r, ( 3)
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and the notation of Eq. (3.23) has been used.
On inserting the expansion (3.33) into Eq. (3.35),

we obtain

(Z+iq -K' W'-) T '(R, )l l

—Z JR dS d'~, gf +(r,)g (r, )
n, p

(R,) T (R,) = 0, (B.4)

-Z &lb(R, )& {[M,/(m, +m)]K, ) =0,

where 8& (R,) -=Z o.
&

(t)g t(R, )o.tlv 2
t lq qt 2 tn '

Q',

&lb(K, ) =-Z nf (b)g b(K, )

(B. 5')

(B.s )

where we have set 'V„p(R,) ='U„p(R, ), valid to low-
est order in q, . Using a, relation analogous to (B.1),
we obtain

(E + ig —K' —
Wf ') Tf '(R, )

and the sums run over the states in channel f. The
corresponding form of Eqs. (3.41) are

(E+iq —K- Wb) rb(R, ) —Zd ~bd(~, ) Td(

-Z &b (R,)7' '{[(M,+m)/M, ]R,]

&& T {[~i(~,+ )]R.] =0, (B.5)
~ (R,), (B.7)bo

where o& (P)—=f dSd'r, g&(r, )g (r, )

i(m/M)YPp (R2) r, (B 5)

where 8b (R,) =Z&'Ob (R,)o.

bd M' (B.3)

Because of (B.2), we have

[E+iq —K' —Wf'] Tf'(R, )

On introducing a scatterirg Potential 'U z(= 8~+
for o. in f and = ebb for o. in i), we see that Eqs.
(B.5) and (B.7) have the same structure as Eq.
(3.43).
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