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Results of Hartree-Fock calculations on even-even nuclei in the 2p-1 f shell are presented. The method of
Kelson and Levinson is used, whereby Ca*® is taken as an inert core and the Hartree-Fock variation is done
only on the particles outside Ca*® moving in the 2p-1 f shell. Binding energies, 2*-pole moments, and single-
particle structure of a number of nuclei are calculated. The total pickup strengths for neutrons and protons
are calculated. It is found that, as in the 2s-1d shell, the SU; scheme is quite good and only weakly broken
by the spin-orbit force. However, the gap between occupied and unoccupied levels is smaller by a factor of
3 than in the s-d shell. Therefore, particle-hole excitations and correlation effects have a much stronger in-
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fluence on the low-energy structure of the p- f—shell nuclei.

INTRODUCTION

N recent years, a considerable number of Hartree-
Fock (HF) calculations have been carried out in the
2s-1d shell. In most of these, the method of Kelson and
Levinson® has been used, whereby an inert core is as-
sumed and the variation implied in the HF method is
only over the relatively few ‘“valence” nucleons. In the
case of s-d—shell nuclei, O'® is a suitable core and all the
valence particles are confined to the 2s-1d shell. Em-
pirically, the nuclei of the s-d shell show clearly de-
formed structures which can be found to arise from de-
formed self-consistent fields.?

The considerable success of the HF calculations in
the s-d shell has encouraged extending such calculations
to other regions, in particular the 2p-1f shell. The
nuclei in the beginning of the p-f shell do not show the
characteristic deformed structure of the s-d—shell
nuclei. It has been suggested® that this may be due to
the competition between the spin-orbit force with the
field-producing forces leading to a Qs-type deformation.
It was therefore decided to carry out HF calculations
of the Kelson-Levinson type for even-even nuclei of the
2p-1f shell. In this case, the inert core is taken as Ca®
and the HF variation is done over the extra particles
moving in the 2p-1f shell.

Also of interest was to see if parallels could be found
between nuclei of the s-d and f-p shells; for example,
does Ti# in any way resemble Ne®, both of which have
two protons and two neutrons outside the core. Another
question was whether multiple solutions, such as those
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found* in Ne? and Mg?, can also be found in the p-f
shell.

I. METHOD OF CALCULATION
A. HF Equations

In the HF method,! the intrinsic ground state of the
nucleus is considered to be a single determinant of
single-particle states |\) which are eigenstates of the HF
Hamiltonian

N
(Jima| k| joma)= ;8 +)Z (Fims, N | fama, N)a. (1)
=1

Here, e; are single-particle energies appropriate to the
nucleus chosen as the inert core and are taken from ex-
periment (see Table I). NV is the number of particles
outside the core, and A are the occupied HF orbitals.
The subscript 4 on the matrix element of the two-body
potential v denotes antisymmetrization. The HF orbi-
tals |\) are expanded in a basis | jm) of eigenstates, in
the 2p-1f shell, of the spherical harmonic oscillator

IN=32 Cin?| jm). ()

To obtain axially symmetric solutions, the summation
here is on j only. If the summation runs over m also,
triaxial solutions can be obtained.

The HF equations are Eq. (1) together with the
eigenvalue problem:

hIN)=ex|\). (3)

TasLE I. The single-particle energies, in MeV, used in Eq. (1).

7 Proton Neutron
Jare —1.09 —8.36
D3 0.70 —6.29
o2 4.41 —2.86
D12 3.04 —4.23

4J. C. Parikh, Phys. Letters 25B, 181 (1967).
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TasLe II. Calculated properties of the even-even nuclei with the Yale-Shakin interaction. Under “type,” 4 stands for axial, T for
triaxial solutions. Egr are the calculated HF energies [Eq. (4)], (BE)expt are the experimental binding energies (see Ref. 10), relative to
Ca®. All energies are given in MeV. The Qx moments are given in units of b, where 5=2.09 fm is the oscillator radius used. Gpand G,
are the proton and neutron gaps, respectively. The intrinsic quadrupole moment is e=2Qs.

Nucleus Type —Egr (BE)expt Q20 Q0 Qso Gy Gn
Ca® A 17.168 19.835 —3.00 4.50 —3.75 0.005
A 17.113 2.61 7.80 25.66 0.06
Ca# T 35.130 38.898 3.92 4.11 —4.70 0.20
A 35.104 4.48 5.92 —18.01 0.10
Caté A 53.581 56.719 3.94 —5.52 4.00 0.20
Cat® sph. 72.568 73.940 0 0 0 1.94
Ti¢ A 25.322 33.531 9.82 34.05 89.98 2.38 2.34
A 23.594 —6.00 9.00 -17.5 0.53 0.53
Ti‘e A 46.115 56.139 12.23 31.75 43.22 2.19 0.88
A 44.167 —7.21 4.57 4.38 0.88 0.36
Ti® A 65.926 76.642 11.52 21.67 73.81 1.86 0.49
A 64.470 —17.78 8.28 —25.13 0.94 0.02
A 85.597 14.86 18.35 17.97 1.53 0.30
Ti® T 85.366 95.733 3.77 436 —50.68 1.36 1.36
A 85.289 —7.77 17.11 —23.57 1.07 1.32
T 56.543 15.85 28.13 —17.35 2.24 224
Cr8 A 55.876 69.664 15.26 28.00 —12.41 1.15 1.17
A 52.687 —8.66 1.30 14.22 0.43 0.46
Cr A 79.009 92.986 18.81 24.23 75.72 2.00 0.43
A 75.329 —10.43 9.68 —18.82 0.36 0.20
Cr® A 102.198 114.291 18.65 13.83 —51.30 1.74 1.27
A 99.043 —14.56 35.03 —69.05 0.32 2.36
Crt4 A 123.846 131.953 14.93 21.62 —54.82 1.61 0.98
A 120.952 —11.63 9.34 —0.26 0.60 0.49
A 90.899 22.33 19.71 —129.75 0.70 0.67
Feb? A 87.004 105.643 —14.81 27.32 —53.90 0.27 0.22
A 86.704 —16.18 43.42 —178.01 0.44 0.37
Fest A 116.790 129.704 22.51 10.15 —104.01 0.41 1.92
A 114.488 —18.65 44.90 —78.27 0.14 2.95
T 139.975 18.35 18.89 —91.67 0.39 0.77
Fess A 138.385 150.206 —16.96 21.72 —53.44 0.49 0.35
A 137.152 7.54 —37.14 —86.32 1.73 0.67
Feb8 A 162.789 167.890 —16.80 16.14 —32.78 0.42 0.23
Nis A 131.440 141.954 22.60 0.23 —74.79 2.46 2.53
A 131.202 —21.35 48.27 —82.01 3.28 3.28
T 157.649 22.64 —13.47 37.02 1.55 0.78
Nis8 A4 157.025 164.406 —20.84 38.48 —05.47 2.83 0.26
A 156.972 22.55 —13.52 —30.87 1.58 0.38
Niso T(?) 183.897 184.792 19.62 —5.46 —42.59 0.97 1.15
Nie2 A 210.827 203.213 —19.72 20.16 23.02 1.89 2.51
A 210.407 19.37 —20.27 —5.75 1.16 2.12
Zns? A 201.115 196.431 —20.06 17.64 —24.70 0.34 0.50
Znb4 A 230.637 217.117 20.14 —29.65 32.24 0.60 2.31
Zn®8 A 286.543 253.194 —11.41 —17.92 —11.58 0.45 2.51
A 285.529 8.22 —0.68 —8.90 0.77 0.81
Ges4 A 219.166 —20.68 7.16 5.18 0.53 0.43
Ge™ A 311.35 268.502 —11.84 —21.46 1.21 0.02 2.64
Ge™ sph. 342.099 286.885 0 0 0 1.16

Since £ itself depends on its eigenvectors |\), the the p-f shell. In this work, we have used the effective

problem must be solved self-consistently by an iterative
method. One starts with a guess for [)), calculates %,
diagonalizes to get a new set of |A), and so on, until the
total energy

Eur=73 2 wleCinCin +exdan] 4)
converges to a constant value. It is possible that dif-
ferent starting wave functions |\) lead to quite different
structures of the final solution.*

B. Two-Body Potential

Most HF calculations in the s-d shell** have used the
Rosenfeld force.> However, this force is not suitable for

5 L. Rosenfeld, Nuclear Forces (North-Holland Publishing Co.,
Amsterdam, 1948), p. 233.

interaction derived by Shakin ef al.% from the Yale’
potential.® The Yale potential is a “realistic” one in the
sense that it fits the nucleon-nucleon scattering data,
and it has a hard core. Shakin ef al.% have calculated a
nonsingular reaction matrix from this potential, in-
cluding the dominant second-order term due to the
tensor force. They provide a list of matrix elements of

¢ C. M. Shakin, Y. R. Waghmare, and M. H. Hull, Jr., Phys.
Rev. 161, 1006 (1967) ; C. M. Shakin, Y. R. Waghmare, M. Toma-
selli, and M. H. Hull, Jr., ibid. 161, 1015 (1967).

" K. E. Lassila, M. H. Hull, Jr., H. M. Ruppel, F. A. McDonald,
and G. Breit, Phys. Rev. 126, 881 (1962).

81In the s-d shell, the structure of the solutions obtained with
this potential does not differ significantly from that due to the
Rosenfeld force (see Ref. 4); therefore comparisons between s-d
shell and p-f shell results can still be made.
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F16. 1. Proton single-particle HF levels for the prolate, axial solutions of N =Z nuclei. The “unperturbed” levels are the single-particle
energies e;; listed in Table I. The levels are labeled by the value of £ and on each level are given the dominant terms in their oscillator
expansion [Eq. (2)]. The thin lines connect levels of the same % and approximately same structure. Significant changes in structure

of the levels from one nucleus to the next are indicated.

this reaction matrix in relative coordinates, from which
the two-body matrix elements required in Eq. (1) may
be calculated. We have used the matrix elements for
oscillator radius b=[%/(Mw)]/?=2.09 fm, which is
appropriate for this region.

As a simplified model to help understand the nature
of the deformed HF solutions in the s-d shell, Bar-Touv
and Levinson® have considered an infinite-range force
with the same exchange mixture as the finite-range one.
This provides a ‘“zero-order scheme” for the HF solu-
tions as an aid in explaining the finite-range results.
Because the Yale-Shakin potential arises out of a rather
complicated calculation, its infinite-range limit is not
easily taken. We have therefore chosen a rather crude
model interaction for the infinite-range potential (see
the Appendix).

Ve=—VoW+MP,+BP,—HP,), (5)

with Ve=2.57 MeV, W=0.245, M =0.913, B= —0.365,
H=—0.206. Though this is a rough approximation of
the exchange mixture, we hope that it is good enough
to give the gross structure of the solutions.

II. RESULTS OF FINITE-RANGE CALCULATION

The results of the HF calculation with the Yale-
Shakin potential are given in Tables IT and III. Table II
gives the HF energies, relative to the Ca® binding
energy, compared with the experimental energies.!®

¢ J. Bar-Touv and C. A. Levinson, Phys. Rev. 153, 1099 (1967).
10 L. A. Konig, J. H. E. Mattauch, and A. H. Wapstra, Nucl.
Phys. 31, 18 (1962).

Also listed are expectation values of Qz0, Qs0, and Qgo,

where
41!' 1/2 7 A
=(—) (=) rv,@,
O <2>\+1> (b) (@

and the gaps® between occupied and unoccupied levels.
An examination of these results shows that the lowest-
energy solution for most of these nuclei is axial and
prolate. A few examples of triaxial lowest solutions were
found, namely Cr*, Fe, and Ni%. Cases of oblate
lowest solutions are seen only among the heaviest
nuclei studied here, namely Zn®, Ge®, and Ge™ (only
oblate solutions were found for the latter two). There
does not appear to be such a richness of solutions as
seen* in Ne® and Mg*. In only one case, Fe®, were
there two oblate solutions, and both are more than 3
MeV above the prolate ground state.

The agreement of the calculated binding energies
with the experimental ones is quite good. They are
generally too low, except for the heaviest nuclei. This is
good, because the HF method is based on a variational
principle. Therefore, any improvement of the wave
function, such as by increasing the basis space, would
tend to increase the binding. Another source of dis-
crepancy might be inadequacies in the effective two-
body interaction used. Finally, the overbinding of the
heaviest nuclei is likely due to the neglect of all effects
of the Coulomb force other than the shift between the
proton and neutron single-particle energies (see
Table I). If the Coulomb potential were included in the

(6)

11 The lowest-energy solution in Ca® is also oblate, but it is
nearly degenerate with the prolate one.
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TasLE III. The HF single-particle orbitals (Yale-Shakin interaction). ex(en) are the single-particle energies in MeV. In the columns
labeled fa/a, x, P32, k, €tc., are given the expansion coefficients Cjz* of the single-particle orbitals [Eq. (2)]. Orbitals above the solid line
are occupied, the ones below unoccupied. In parts (k), (1), and (m), the triaxial cases, the coefficients are listed in the order fu2,1/2,

Darz, 12, Tora 1z Py, frzi—si2, Dz —s/2, for2—s/2, fur, o020 Forzisi2y frm,—pe

(a) Ca®, axial, oblate.

Protons Neutrons
€ k iy Py, k Sor2x Pk € k b Py, 1 o2,k Pk
—2.989 -7 1.0 —8.808 -1 1.0
2204 3 0991 .- 0.136
—2.002 -3 —0.975 —0.224 0.013 ce —8.803 E 0.996 oo 0.087
—1.889 3 0.982 0.179 0.014 0.058 —8.674 —3 —0.997 —0.065 0.030 e
—0.395 -3 —0.222 0.971 0.084 .- —8.637 : 0.997 0.069 0.008 0.021
0.064 3 —0.186 0.967 0.019 0.172 —6.756 —3 —0.065 0.998 0.021 cee
1.825 $ 0.136 oo —0.991 e —6.595 3 0.071 —0.994 0.007 —0.086
1.976 3 0.027 0.178 —0.297 —0.938 —4.778 % 0.015 0.087 —0.033 —0.996
2.891 —3 0.032 —0.079 0.996 oo —4.135 3 0.087 v —0.996 oo
3.217 3 —0.002 0.033 0.955 —0.296 —3.702 —3 0.031 —0.019 0.999 cee
—3.534 1 0.008 —0.009 —0.999 0.032
(b) Ca®, axial, prolate.
Protons Neutrons
€ k i w Psso,r Jorox Pk € k T2, x Py o2,k Pk
—2.994 1 0.971 —0.191 —0.125 0.071 —8.785 3 0.995 —0.076 —0.055 0.031
—2.390 —3 0.997 —0.058 0.059 v
—1.993 2 —1.000 ce 0.022 —8.841 —3 0.998 —0.030 0.049
—1.770 -7 1.0 . —8.685 2 —1.000 0.023
—0.394 3 —0.211 ~-0.966 —0.095 0.116 —8.605 —3 1.0 s cee e
0.026 —3 0.060 0.997 —0.044 . —6.760 1 —0.079 —0.995 —0.021 0.065
1.724 3 —0.107 0.174 —0.722 0.661 —6.597 —3 0.031 0.999 —0.019 cee
2.342 1 0.036 0.015 0.673 0.738 —4.789 3 —0.031 0.069 —0.099 0.992
2.710 -3 0.056 —0.047 —0.997 . —4.062 3 0.050 —0.018 0.993 0.102
3.152 3 0.022 cee 1.000 —3.784 —3 0.044 —0.021 —0.999 e
—3.511 2 0.023 ce 1.000
(c) Ti%, axial, prolate.
Protons Neutrons
€ k T2,k P,k o2k Pk €k k Sk Psja, Sssak 278
—5.316 1 0.830 —0.425 —0.295 0.210 —12.546 1 0.838 —0.407 —0.295 0.211
—2.932 —3 0.986 —0.127 0.109 —10.201 -3 0.987 —0.117 0.109
—2.113 s —0.999 cee 0.035 —9.377 2 —0.999 e 0.035
—1.749 -1 1.0 —9.011 —1I 1.0
—1.204 1 —0.540 —0.771 —0.241 0.236 —8.318 3 —0.533 —0.749 —0.285 0.272
—0.198 —3 0.137 0.986 —0.094 e —7.195 -3 0.128 0.986 —0.107 e
0.734 1 —0137 0473  —0.704 0512 —6.471 1 —0.113 0521  —0.686  0.495
2.133 31 0030 0036 0600 0.799 5136 % 0030 0040 0601 0.798
2.526 —32 0.096 —0.107 —0.990 . —4.735 —3 0.095 —0.120 —0.988 cee
3.302 s 0.035 0.999 —3.958 2 0.035 . 0.999
(d) Ca®, spherical.
Protons Neutrons
€ k iy Paje, k Jor2n Pk € k fua e Papw o2,k Pk
—5.673 1 1.0 0.0 0.0 0.0 —9.782 3 1.0 0.0 0.0 0.0
—5.673 -3 1.0 0.0 0.0 cee —9.782 —3 1.0 0.0 0.0 ce.
—5.673 5 1.0 . 0.0 —9.782 5 1.0 . 0.0
—5.673 -3 1.0 cee oo o —9.782 -7 1.0 cee
—2.934 3 0.0 0.0 1.0 0.0
—2.934 —3 0.0 0.0 1.0 —7.839 3 0.0 1.0 0.0 0.0
—2.934 3 0.0 ce 1.0 ce —7.839 -3 0.0 1.0 0.0 e
—2.878 3 0.0 1.0 0.0 0.0 —6.639 3 0.0 0.0 1.0 0.0
—2.878 -3 0.0 1.0 0.0 e —6.639 -3 0.0 0.0 1.0 .-
—1.060 3 0.0 0.0 0.0 1.0 —6.639 b3 - 0.0 s 1.0 cee
—6.479 1 0.0 0.0 0.0 1.0
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TasLe III (continued)
(e) Ti%, axial, prolate.
Protons Neutrons
€ k S x Pyo,k Jor2,k Pk € k Srree Py i Sorzn P,k
—9.178 3 0.777 —0.544 —0.206 0.242 —14.122 3 0.780 —0.510 —0.260 0.255
—11.865 —3 0.963 —0.205 0.174 cee
—7.647 -3 0.941 —0.248 0.230 —10.632 5 —0.992 ce 0.123 ce
—5.827 k3 —0.988 cee 0.156 . —10.137 1 —0.612 —0.501 —0.457 0.406
—5.646 3 —0.559 —0.378 —0.592 0.442
—4.065 1 1.0 —9.835 -z 1.0
—3.963 1 0.283 0.670 —0.686 0.012 —8.587 1 0.126 0.653 —0.724 0.182
—3.227 -3 —0.336 —0.614 0.715 e —8.378 —3 0.243 0.939 —0.243 ces
—2.162 -3 0.036 0.750 0.661 cee —7.145 —3 0.114 —0.276 —0.954 cee
—0.852 1 0.065 0.336 0.370 0.864 —6.747 3 0.032 0.250 0.446 0.859
—0.341 s 0.156 0.988 . —5.749 3 0.123 ce 0.992
(f) Cr, axial, prolate.
Protons Neutrons
€ k T2k Pspox o2,k Pk € k T2k Py ook P
—10.703 3 0.841 —0.477 —0.163 0.198 —15.887 3 0.821 —0.485 —0.202 0.222
—9.455 —3 0.931 —0.213 0.296 .. —14.250 —% 0.941 —0.219 0.257 ce
—12.959 1 0.446 0.257 0.762 —0.392
—7.842 3 0.379 0.239 0.819 —0.357 —12.133 E3 —0.997 S 0.075 v
—17.300 H —0.995 0.099 cee —11.135 -7 1.0 ces
—6.348 —Z 1.0 . oo
—5.086 -3 0.355 0.344 —0.869 cee —10.151 3 —0.356 —0.798 0.485 0.014
—5.033 1 —0.386 —0.796 0.455 0.101 —9.988 -3 0.337 0.552 —0.763 s
—3.814 -3 —0.083 —0.915 —0.396 cee —8.960 —3 —0.026 —0.804 —0.594
—3.435 s 0.099 0.995 cee —8.069 - 0.075 cee 0.997 cee
—2.473 3 0.009 0.286 0.308 0.907 —8.042 i —0.003 0.247 0.378 0.892
(g) Fets, axial, oblate.
Protons Neutrons
€ k fik Pao,k Sor2, 1 P,k € k Jue Pajo, i o,k Pk
—11.542 -7 1.0 —17.083 —-Z 1.0
—9.558 3 0.783 e 0.622 —15.114 i 0.796 0.605
—9.347 -3 0.738 0.661 0.139 —14.829 —3 0.762 0.633 0.137 cee
—14.410 3 0.753 0.466 0.257 0.387
—8.857 3 0.736 0.485 0.259 0.396 —12.309 £ 0.605 —0.796 cee
—6645 & 062 - —~0.783 .-
—6.166 —3 0.618 —0.577 —0.534 [ —11.963 —3 0.612 —0.636 —0.470 o
—5.643 1 0.605 —0.159 —0.482 —0.614 —11.587 3 0.614 —0.244 —0.415 —0.626
—3.728 1 —0.292 0.787 —0.540 —0.0068 —9.609 3 —0.221 0.798 —0.533 —0.175
—3.415 -3 0.272 —0.480 0.834 cee —9.198 -3 0.210 —0.442 0.872 ce
—1.674 3 0.089 —0.348 —0.640 0.679 —7.881 3 0.083 —0.296 —0.691 0.654
(h) Ni®, axial, oblate.
Protons Neutrons
e k Sk Pyo,k Sorax Pk €k k Sk Py, Sora Pk
—12412 -1 1.0 —18.734 —% 1.0
—10.628 -3 0.649 0.740 0.175 —17.131 —3 0.656 0.730 0.192
—10.231 E3 0.760 cee 0.650 cee —16.555 3 0.733 0.680 e
—9.772 1 0.647 0.521 0.279 0.482 —16.401 1 0.639 0.503 0.299 0.499
—13.193 s 0.680 —0.733 cee
—6.945 3 0.650 ce —0.760
—6.577 -3 0.716 —0.518 —0.468 e —12934 -3 0.727 —0.542 —0.422 e
—6.071 3 0690 —0.093 —0417 —0.584 —12702 3 0717 —0120 —038 —0.566
3877 & —0315 0787 —0513 —0.132 ~10405 3 —0271 0815 —0476 —0.189
—3.449 —3 0.256 —0.429 0.867 e —9.757 —3 0.204 —0.416 0.886 e
—1.555 3 0.078 —0.316 —0.696 0.640 —8.302 3 0.057 —0.262 —0.730 0.628
(1) Ni®, axial, prolate.
Protons Neutrons
€ k Sk Pyja Jor2,k Pk €k k Jae,k Pao, i o2, Pk
—11.774 3 0.794 —0.571 —0.086 0.190 —18.946 3 0.806 —0.556 —0.082 0.188
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TaBLE III (continued)
(i) Ni%s, axial, prolate.
Protons Neutrons
€ k Sk Py, So2.k Pk € k fuek Pyp, i Soiok Pip,k
—10.504 —% 0909 —0.313 0.276 e —17.748 —% 0912 —0.303 0.276 .-
—8.283 i 0.385 0.265 0.742 —0.481 —15.535 i —-0369 —0.260 —0.748 0.487
—7.561 $ —0.980 ‘.- 0.199 .. —14.828 2 —0.980 e 0.199 oo
—5.095 i —0462 —0.698 0.541 0.080 —12.298 -3 —0.370 —0.317 0.873
—-5.060 —2% —0381 —0.349 0.856 .- —12.238 -3 1.0 eee e e
—4974 -1 1.0 e ‘e —12.232 3 0.455 0.702 —0.537 —0.106
-3.013 -3 0.172 0.883 0.437 e —10.059 —32 0.177 0.899 0.401 cee
—1.572 3 0.083 0.342 0.387 0.852 —8.814 3 0.090 0.361 0.381 0.847
—1.159 5 0.199 e 0.980 .. —8.422 5 0.199 e 0.980 v
(§) Ni®, axial, oblate.
Protons Neutrons
€ k Sk Pya, Jorzk P,k € k Jarzsk Pyo Sore,k Py n
—11.230 -1 1.0 .- —18.500 -1 1.0 .
—9.851 -3 0.589 0.781 0.210 —16.956 -3 0.606 0.767 0.211 e
—8.878 i 0.591 0.527 0.299  0.533 —16.076 3 0.596 0.511 0.302  0.541
—8.651 5 0.710 . 0.704 .- —15.920 s 0.710 N 0.704 oo
—5.369 5 0.704 cee —0.710 —12.638 $ 0.704 .- —0.710
—4.930 -3 0.800 —0.526 —0.289 . —12.118 —3 0.786 —0.536 —0.309 .-
—4.839 i —0.765 0.130 0.357  0.519 —12.110 3 —0.760 0.115 0.362  0.527
—2.758 1 0.255 —0.819 0.425  0.288 —9.836 i 0.258 —0.827 0.427  0.259
—1.712 -3 0.115 —0.338 0.934 e —8.941 -3 0.124 —0.353 0.928 e
—0.301 1 0.015 —0.187 —0.776  0.602 —7.547 1 0.019 —0.204 —0.772  0.602
(k) Cr#, triaxial.
e HF orbitals for protons
—7.85317 0.794 —0.499—0.187 0.212 0.151—0.058 0.105—0.058 0.010—0.005
—6.01081 0.070 0.186 0.373—0.226 0.825—0.209 0.205 0.054—0.016—0.023
—3.77188 0.353 0.243 0.158—0.169—0.230 0.056 —0.058 0.834—0.085 0.014
—3.14733 —0.440 —0.355—0.441 0.292 0.333—0.064 0.047 0.530—0.026—0.034
—2.62610 0.008 0.002 0.016—0.016—0.063—0.070 0.018—0.005—0.000—0.995
—1.72604 —0.199 —0.577 0.513—0.160—0.299—0.428 0.235 0.083—0.014 0.061
—1.09286 0.080 0.370—0.360 0.064—0.143—0.827 0.113—0.037 0.007 0.064
0.36275 0.018 —0.224—0.114—0.444 0.128—0.218 —0.820—0.023—0.053—0.002
0.94731 —0.011 —0.100—0.444—0.736—0.048 0.161 0.448—0.039—0.143 0.004
2.00692 —0.008 0.018 0.051 0.146 0.003—0.012 —0.022—0.082—0.984—0.000
e HF orbitals for neutrons
—15.05805 0.804 —0.482—0.184 0.211 0.159—0.058 0.107—0.057 0.010—0.005
—13.26486 0.056 0.184 0.377—0.230 0.826—0.199 0.204 0.055—0.016—0.023
—11.02573 0.329 0.221  0.156—0.169—0.222 0.049 —0.055 0.853—0.086 0.013
—10.38331 —0.435 —0.335—0.473 0.313 0.349—0.055 0.045 0.499—0.022—0.034
—9.88556 0.007 0.002 0.015—0.015—0.058—0.060 0.017—0.004—0.000—0.996
—8.85349 —0.219 —0.615 0.508—0.131—0.276—0.381 0.258 0.090—0.012 0.050
—8.13119 0.072 0.351—0.331 0.040—0.159—0.840 0.159—0.034 0.005 0.059
—6.87595 0.011 —0.243—0.119—0.455 0.119—0.249 —0.800—0.021—0.055—0.001
—6.31018 —0.014 —0.108—0.438—0.727—0.046 0.187 0.457—0.038—0.142 0.003
—5.25186 —0.008 0.020 0.051 0.146 0.002—0.013 —0.022—-0.082—0.984—0.000
(1) Fe®s, triaxial.
e HF orbitals for protons
—11.74419 —0.829 0.509 0.096—0.192 0.078—0.022 0.023 0.025 —0.008—0.001
—10.58906 —0.070 0.051—0.026—0.011—0.918 0.242 —0.299 0.007 —0.002 0.002
—8.36229 —0.311—0.257—0.726 0.365 0.019—0.006 0.026 0.415 —0.055—0.002
—17.97018 0.165 0.098 0.333—0.168—0.007 0.000 —0.003 0.901 —0.112  0.002
—6.74003 0.002 0.003 0.001 0.001 0.022 0.020 —0.060 0.001 —0.000—0.998
—5.43373 0.378 0.662—0.428—0.088—0.161—0.192 0.404 0.002 0.014—0.029
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TaBLE III (continued)

(1) Fess, triaxial

€ HF orbitals for protons

—5.39342 0.200 0.358—0.239—0.023 0.333 0.278 —0.763 0.009 0.007 0.060
—4.16047 0.015 0.022—0.019—-0.028 0.110 0.909 0.400—0.003 —0.010—0.004
—3.48354 0.014 0.040 0.025 0.082—0.001—0.009 —0.003—0.124 —0.988 0.000
—2.65216 0.021 0.307 0.331 0.887—0.008 0.018 0.024 0.017 0.093 0.001

€ HF orbitals for neutrons
—18.13106 0.811-0.526—0.123 0.219—0.031 0.010 —0.008—0.028 0.006 0.000
—16.62618 —0.041 0.019—0.055 0.013—0.919 0.251 —0.295 0.003 —0.002—0.005
—14.52492 —0.397—0.257—0.765 0.432 0.046—0.019 0.041 0.029 —0.008—0.001
—13.53878 0.042 0.002 0.010—0.014—0.001—0.001 0.006 0.992 —0.115 0.000
—11.96279 0.004 0.005—0.003 0.001 0.019—0.017 —0.056 0.001 —0.000—0.998
—11.19365 0.421 0.743—0.502—0.053 0.063 0.019 —0.102—0.013 0.013 0.013
—10.97950 0.058 0.087—0.047—0.034—0.377—0.442 0.804—0.009 0.002—0.044
—9.78624 0.014 0.024—0.012—0.012 0.075 0.861 0.501—0.003 —0.004—0.042
—8.65870 0.021 0.194 0.228 0.528—0.006—0.004 0.009—0.087 —0.789 0.000
—8.64767 0.012 0.241 0.302 0.694—0.009 0.002 0.016 0.075 0.603—0.000

(m) Ni%8, triaxial.

€ HF orbitals for protons
—12.85313 —0.798 0.522 0.045—0.119—-0.243 0.106 —0.033—0.039 0.029 0.008
—11.76985 —0.133 0.227 0.107—0.176 0.858—0.326 0.213 0.005 0.004—0.033
—9.93553 —0.252 —0.359 0.014 0.242 0.065—0.046 0.099—0.832 0.203—0.008
—9.03210 0.333 0.228 0.680—0.477—0.156 0.039 —0.072—0.337 0.051 0.011
—7.47891 —0.256 —0.417 0.467 0.018—0.214—0.211 0.580 0.317—0.075—0.095
—6.19258 —0.099 —0.149 0.156 0.022 0.134 0.204 —0.049 0.083—0.020 0.935
—5.49805 0.268 0.382—0.352—0.025—0.255—0.219 0.655—0.184 0.034 0.285
—4.11174 —0.087 —0.129—-0.103—0.201—0.217—0.829 —0.395—0.005—0.028 0.184
—2.71705 0.121 0.321 0.341 0.683—0.026—0.220 —0.111 0.140 0.466 0.035
—1.78351 0.037 0.181 0.177 0.400 0.000—0.094 —0.053—0.179—0.855 0.009

e HF orbitals for neutrons
—19.36665 —0.802 0.545 0.062—0.155—0.157 0.066 —0.025—0.031  0.023 0.007
—18.24885 —0.081 0.146 0.064—0.124 0.890—0.322 0.237 0.016—0.005—0.028
—16.03286 0.304 0.358 0.169—0.330—0.059 0.040 —0.117 0.768—0.183 0.005
—15.62769 0.275 0.148 0.678—0.423—0.098—0.004 —0.006—0.497 0.085-—0.005
—13.59221 0.284 0.444—-0.447—0.046 0.214 0.210 —0.566—0.307 0.063 0.108
—12.80609 0.070 0.114—0.124—0.015—0.086—0.156 —0.020—0.054 0.009—0.965
—11.96537 0.276 0.410—0.358—0.026—0.284—0.276 0.647—0.137 0.025 0.179
—10.62497 —0.079 —0.126—0.076—0.160—0.191—0.841 —0.421—0.009—0.047 0.153
—9.35223 —0.112 —0.332—0.359—0.715 0.009 0.191 0.113—0.120—0.416—0.022
—8.47939 0.029 0.161 0.162 0.366 0.006—0.045 —0.032—0.178—0.882 0.004

two-body term in Eq. (1), it would make % less attrac-
tive, hence give less binding in the total HF energy.

Levinson'? gives a rough extrapolation of the gap
between occupied and unoccupied levels as G=280/4
MeV. For the range of nuclei studied here, 4=40 to
60, G ranges from 2 MeV down to 1.3 MeV. The gaps
given in the last two columns in Table II show in most
cases approximate agreement with this rule for the
lowest-energy solution.

In Table IIT and Figs. 1 and 2 are given the HF
single-particle orbitals for some representative cases.

2 C, A. Levinson, in Proceedings of the Twelfth International
Summer Meeting in Physics, Herzeg Novi, Yugoslavia, edited by
M. V. Mihailovic, M. Rosina, and J. Strand (The Federal Nuclear
Energy Commission of Yugoslavia, Beograd, 1967), p. 43.

These wave functions can be tested by stripping and
pickup reactions. The total pickup strengths for neu-
trons and protons are given in Table IV. These were
obtained by taking the sum Y_,»|C;n’|? [see Eq. (2)]
over all occupied orbitals ». The tables therefore show
the fractional occupation of each spherical single-
particle orbital. These numbers are in over-all agree-
ment with the experiments except in the following few
cases. In nuclei where we have eight neutrons outside
of Ca® (Ti%, Cr%2, Fe™, Ni56), the largest component in
the neutron wave function is not (f72)® as one might
expect on a shell-model basis. The reason is that for
eight neutrons the occupied orbitals®® are k=3, =3,

13k denotes the projection of the single-particle angular mo-
mentum on the symmetry axis.
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(b)

+1’, and =35, with £=2-7 being the lowest unoccupied
orbital. Therefore, in these cases one cannot get an
(fa/2)® component in the wave function. However, when
there are more than eight neutrons this would be pos-
sible because k= %% would be occupied.

(a) Calcium isotopes. Ca>*+48 have essentially no gap
between the occupied and unoccupied neutron orbitals.
The proton gap is just the shell gap between the 2s-1d
and 2p-1f shells. They are all deformed, but only
slightly ; the admixture of orbitals of different j are very
small. The occupied neutron orbitals are quite pure
f12, the purity increasing with increasing number of

neutrons. Neutron and proton orbitals are very similar.
Ca*® is spherical, the f7/2 neutron shell being fully occu-
pied. The neutron gap is just the spacing between the
f172 and py,, single-particle levels.

(b) Titanium isotopes. Addition of two protons and
two neutrons outside an inert Ca® core gives a large
intrinsic quadrupole moment (hence large deforma-
tion). This is in contrast to the situation in Ca* where
the valence particles are four neutrons and the intrinsic
quadrupole moment is smaller by a factor of 2. The
occupied orbitals in Ca isotopes are pure f7» type,
whereas in Ti isotopes there is a considerable admixture
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of other spherical orbitals, (ps/s,fs2,p1/2). This can be
seen from the total pickup strengths (Table IV). In
Ti*® and in Ca% the occupied neutron orbitals are
k=%, —%, and 5. However, the eight neutrons in Ti%
do not fill the f7/2 shell as they did in Ca®, but a second
k=1 orbital comes below the k= —%. This difference in
the structure of orbitals between the Ca and the Ti
isotopes must be due to the neutron-proton force.

(¢) Chromium isolopes. With four protons outside
Ca%, we again get a deformed k=% orbit. For prolate
solutions, the proton occupation is k=%, —3, and 3.
The oblate solutions lie higher in energy than the prolate
ones and are more deformed than the oblate solutions
in the Ti isotopes. In the prolate solution in Cr®, the
eight neutrons again do not fully occupy the f7/s shell,
but the k= ()’ state comes below the #= —% one. This
is an indication that the SU; scheme is good. Both the
k=% and k= (})’ levels are made up of mostly the ¢,
and ¢.1 SU; orbitals [see Eq. (8)]. These are the
lowest levels in the SU; scheme. The k= —$ orbit can
also be made up of the ¢, state, but the k= —Z orbit
involves ¢, 3, which is the highest SU; state. Hence the
k=% —32, (%) levels are lower than the k= —7% one.

(d) Iron isotopes. The structure and occupation of
the orbits are quite similar to what is observed in the Cr
isotopes. The f-p mixing is less in the prolate solutions,
but about the same in the oblate ones, as that seen in
the prolate Cr isotopes.

(e) Nickel isotopes. With eight protons and eight
neutrons outside Ca%, a large gap (2.5 MeV) between
occupied and unoccupied states is seen. In some sense,
therefore, there appears to be a shell closure at Ni%,
but it is not a closed fq/» shell, and it is not spherical.
In Ni® the prolate solution is slightly lower, in Ni®® the
oblate, but in Ni%® a still lower triaxial solution was
found. The structure and occupation of the single-
particle levels is similar to previous cases.

(f) Spherical nuclei. HF calculation were also carried
out for the nuclei Ca%, Ca*, and Ni® under the assump-
tion that they are spherical.’* In this case, no inert core
was assumed, but all the 4 particles of the nucleus are
included in the sums on occupied states in Egs. (1) and
(4). Then, the single-particle energies, ¢; in Egs. (1)
and (4), are replaced by the single-particle kinetic
energy {(jumi| (p2/2M)| jyms), and the sum in Eq. (2) is
over the radial quantum number %. The basis consisted
of the 1s, 1p, 2s-1d, and 2p-1 f harmonic-oscillator func-
tions. These results are shown in Table V. It is clear that
the binding energies are too low. The Ca’ binding
energy is about 5 MeV per particle against the experi-
mental value of 8.5 MeV, and the binding energies of
Ca*® and Ni% relative to Ca® are much smaller than in
the pure p-f-shell calculation. This seems surprising
since one would expect to get more binding when using
a larger basis. Even going to a still larger basis, in-

14 A K. Kerman, J. P. Svenne, and F. M. H. Villars, Phys. Rev.
147, 710 (1966).
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TaBLE IV. Neutron (a) and proton (b) plckup strengths. The
various solutions for each nucleus are listed in the same order as
in Table IT. Under “type,” P denotes prolate axial, O oblate axial,
and-T triaxial solutions.

Nucleus Type S P32 Sor P

(a) Ca® o 1.980 0.012 0.006 0.002
P 2.000 0 0 0

Ca# P 3.948 0.034 0.018 0.002

Cats P 5.960 0.024 0.018 0.000
Ca*® sph. 8.000 0 0 0

Ti# P 1.404 0.331 0.174 0.089
0 2.000 0 0 0

Ti P 3.247 0.422 0.229 0.102
0 3.824 0 0.176 0

Tis P 5.278 0.383 0.253 0.087

0 5.527 0.251 0.224 0.000

Ti%0 P 5.789 1.106 0.644 0.460

T 7.360 0.256 0.344 0.040

0 7.154 0.463 0.332 0.053

Cr T 2.692 0.660 0.454 0.192

P 3.094 0.539 0.256 0.110
0 3.775 0 0.224 0

Crb0 P 3.506 0.908 1.091 0.494
(@] 5.546 0.190 0.263 0

Crb? P 5.436 0.838 1.239 0.485

Crd P 7.505 0.698 1.386 0.406

(0] 7.358 0.592 2.014 0.041

Feb? P 3.282 1.041 1.108 0.567
01 4.345 0.842 0.814 0

02 3.484 1.711 0.240 0.566

Fest P 5.194 0.998 1.251 0.559

0 4.617 1.724 1.077 0.583

Fesé T 7.586 0.774 1.292 0.340

0 6.295 1.236 2.169 0.300

P 7.402 0.370 2.154 0.075

Niss P 5.156 0.937 1.364 0.545

0 4.453 1.699 1.263 0.585

Nis8 T 5.386 1.742 2.204 0.668

0 5.677 1.572 2.252 0.498

P 5.528 1.881 1.929 0.665

Nie2 P 7.876 2.172 3.276 0.682

0 7.465 2.212 3.145 1.177

(b) Ti¢ P 1.379 0.361 0.174 0.088
0 2.000 0 0 0

Ti P 1.322 0.425 0.152 0.098
(0] 2.000 0 0 0

Tis P 1.408 0.343 0.181 0.067
0 2.000 0 0 0

Tis0 P 1.207 0.592 0.085 0.117

T 1.835 0.002 0.163 0.000
0 2.000 0 0 0

Cr T 2.691 0.661 0.455 0.192

P 3.054 0.582 0.256 0.109
0 3.775 0 0.224 0

Crd P 2.871 0.768 0.236 0.123
0 3.538 0 0.463 0

Crb? P 2.955 0.743 0.210 0.091

Cr P 3.148 0.546 0.228 0.078
0 3.542 0 0.457 0

Fe®? P 3.268 1.094 1.087 0.552
01 4.275 0911 0.811 0

02 3.415 1.806 0.236 0.545

Fes P 3.219 1.038 1.190 0.549

(0] 3.369 1.797 0.264 0.568

Febd6 T 3.622 0.774 1.260 0.340
(0] 4.315 0.874 0.812 0

P 5.331 0.185 0.411 0.074

Nisé P 5.131 0.988 1.347 0.535

0 4.401 1.775 1.258 0.568

Niss T 4.922 1.260 1.160 0.664

o 4.835 1.638 1.062 0.463

P 5.209 1.175 0.943 0.671

Nis? P 5.376 1.204 0.758 0.666

(0] 5.230 1.849 0.594 0.376
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TaBLE V. The spherical HF solutions in Ca®, Ca®, and Ni% with the Yale-Shakin potential. In the case of Ca®, results of a calculation
including the Coulomb force are also shown. All energies are in MeV, the rms radius in fermi. The column labeled Ni®* is the solution,
described in the text, with five protons and five neutrons in the fy/ level, and one each in the 2py/2, f5/2, and 2py2 states, respectively.

Cado
No Coulomb With Coulomb
force force Cat® Njse Nise*

Ey —201.43 —124.98 —221.01 —277.57 —270.02
| Eo— E(Ca®) | 0 0 19.58 76.14 68.59
rms radius 3.527 3.54 3.55 3.83 3.84

Single-particle energies Neutron Proton Neutron Proton
1512 —56.25 —355.75 —47.25 —58.05 —60.26 —62.33 —63.69
1p3/2 —36.12 —35.87 —27.80 —38.15 —41.34 —43.49 —44.09
1py2 —33.20 —32.99 —24.96 —37.54 —40.51 —44.93 —42.69
1ds/2 —16.81 —16.80 —9.56 —18.73 —22.28 —24.20 —24.53
2512 —14.60 —14.62 —7.54 —17.04 —20.21 —22.52 —22.711
1d32 —12.75 —12.78 —5.56 —17.45 —21.25 —25.93 —2291
112 —1.69 —1.75 4.93 —3.22 —6.32 —7.83 —8.43
2p3/2 —1.15 —1.12 5.32 —2.67 —5.04 —6.52 —17.66
1fs/2 2.85 —1.09 —4.62 —8.52 —6.07
2p172 0.35 0.39 6.83 —1.78 —4.09 —6.20 —6.21

cluding also the 3s-2d and 3p-2f shells, did not give
significant improvement. However, it is consistent
with the finding of Shakin et ¢/.° They observe that it is
necessary to include the second-order terms of the
strong pseudopotentials which are needed in order to
use the separation method in the P states. These
second-order terms are not included in our calculation.
They are probably relatively unimportant for the
matrix elements within the 2p-1f shell, but important
for the deeper shells, particularly the 1p shell. The
reason for the discrepancy in binding of Ca* and Ni®
between these and the p-f-shell calculations can also
be seen from the single-particle energies of the 2p-1f
shell obtained for Ca%. They are about 4 to 6 MeV
higher than the experimental ones (Table I), used in
the p-f-shell work. Hence, when these are filled, the
HF energy is too small. In Ni% an additional reason for
underbinding is that it is in fact not spherical but has
a deformed solution at a lower energy [see (e), above].

In the Ni% solution, an inversion of the spin-orbit
partners is seen. In particular, the f;, state is lower
than the occupied f7/» one. This is a general feature of
spherical HF solutions where one of the spin-orbit
partners is completely occupied.’® In those cases, the
other, unoccupied level lies lower in energy than the
occupied one. We have also performed a spherical HF
calculation on Ni’® where, instead of the f7/, level being
completely occupied and the other levels of the p-f-

’ ’

¢, _ & ¢, b ..,
bo & _be
P
_%

Fic. 3. Single-particle states in a quadrupole potential,
€=2(Q20) in units of 5%

15 C. W. Wong, Nucl. Phys. A108, 481 (1968).

shell empty, we distribute the eight neutrons and eight
protons over the p-f shell roughly in the proportion
seen in the deformed solution [Table III(i)]; i.e., five
in the f7/s level and one each in pys, fs/2, and py/2 levels.
This should not be a spherical solution, but we can con-
strain it to be spherical. Then we obtain the results
shown in the column labeled Ni%** in Table V. The
levels are now in more normal order. In particular, the
level ordering in the p-f shell is frs, p3/2, p1s2, f5/2. This
“solution” is, however, 7 MeV higher than the one in
which the f7; shell is completely filled. This decreased

- binding is at least in part due to the spherical constraint.

III. INFINITE-RANGE FORCE

The results with the infinite-range force [Eq. (5)]
show the gross structure of these nuclei. Bar-Touv and
Levinson® perform these calculations with the single-
particle energies e;; all zero (no spin-orbit force). Since,
in the p-f shell, the spin-orbit force is expected? to play
an important role, we have also done the infinite-range
calculation with nonzero spin-orbit force, the e;; being
taken as in Table I. In order that there be a proper
balance between the one- and two-body parts of the
HF Hamiltonian [Eq. (1)], the strength V, of the in-
finite-range force was taken as 2.57 MeV so that the
Ti* binding energy is nearly the same as with the finite-
range force. We discuss the zero and finite spin-orbit
results separately.

(a) Zero spin-orbit force. The calculation with the
infinite-range force, and all e; equal to zero, should
yield the zero-order scheme for these nuclei. There
should be a constant gap? between occupied and un-
occupied levels for N=2Z:

=— (W+2B—4M—2H)=455MeV.  (7)

All the orbitals of the same type—occupied or un-
occupied—should be degenerate. This is in fact ob-
served in the calculations. In Ti%, we find the occupied
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TasLE VI. Results of the HF calculation with the infinite-range force and nonzero spin-orbit interaction. The HF energy (Egr), mass
quadrupole moment (Qs, in units of 42), proton and neutron gaps (G»,G»), and structure of the occupied orbits are shown. All energies
are in MeV. The values of % for the occupied orbits and their dominant coefficients are shown. In the cases of neutron excess, the states
having only neutrons are indicated by (ng)after their & value (except for Ca*®). In the neutron and proton orbitals essentially different in
structure, this is indicated by the lables (#) or (p).
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TaBiLE VIL Energy (in MeV) of the 8 and the v vibrational
state in Ti%, for different values of the strength parameter a.

a freo (u=10) oo (u=2)
1 4.008 2.283
2 3.838 2.200
3 3.661 2.112

levels at —3.474 MeV and the unoccupied ones at
+1.075 MeV, 4.55 MeV above the occupied ones.

As in the s-d shell,?? axial and triaxial solutions
alternate: Ti%, Fe® and Ni% are axial, Cr® is triaxial.
This is easiest explained by observing the SU; scheme
of levels in a quadrupole well,;® as shown in Fig. 3. The
2p-1f-shell oscillator functions are shown below in a
convenient representation.

b= (\/jfo“‘/gpo)/\/sr

b11= 2 21— P20/V'3,

b10=f1s, (8)
¢o’= (V3f0+V—2_j)0)/\/3,

b15= 13,

¢;t1’= (fﬂ:1+2Pil)/\/§-

Here the subscripts label the projection of the orbital
angular momentum on the symmetry axis; f and p are,
respectively, the spherical oscillator functions for the
1f and 2p states. If the field-producing forces tend to
lead to an average quadrupole field, then these zero-
order levels would fill in order of decreasing e=2{(Qs)
to maximize the prolate deformation. Therefore, in Ti%,
the first particles outside the Ca® core fill the ¢, state,
which is axial. The next four particles in Cr® can go in
either ¢, or ¢_3, so in fact they occupy a linear combi-
nation of the two, leading to a triaxial solution. In Fe?®,
both ¢, and ¢_; are occupied and an axial solution is
again possible. The next four particles can occupy the
level ¢, so Ni® is axial. The calculated HF single-
particle orbitals confirm this structure and fit the ex-
pected behavior exactly.

(b) Finite spin-orbit force. Table VI lists the results
obtained with the infinite-range force and single-particle
energies as given in Table I. The situation here is com-
pletely different than with zero spin orbit. The SU;
scheme is very badly broken by the spin-orbit force, in
contrast with the situation in the s-d shell. The spin-
orbit force gives a large f7/2-f5/2 mixing up to four pro-
tons and four neutrons outside Ca%®. The f7/; level is
only about 509, occupied. Beyond Cr#, a considerable
$3/2 component is also present. But there is rather little
f-p mixing, each orbit is either predominately f7/o+ f5/2
or pse+pie. This indicates that it is not a very good
approximation to consider f7,, as a separate shell,
beyond Cré.

Beyond Fe®, the infinite-range force is not very good
because it does not bind the last occupied proton orbi-
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tals. It is probably just an indication that we have not
really obtained the proper balance between the strength
of the force and the spin-orbit splitting.

The finite-range results show rather less breaking of
the SU; scheme. This may be another indication that
the spin-orbit force is too strong in comparison to the
strength of the infinite-range force. Calculations were
also done for Ti* using a variable spin-orbit strength.
From the experimental energies (see Table I) the
‘““center of mass” of the f and p levels were evaluated.
Keeping the difference between the centroids e,—e;
(=0.4 MeV) constant, the strength «;, was varied from
the value 0 to —3.5. For a;;=0 there was a considerable
mlxmg f7/2 and f5/2 (56% f7/2 and 42% f5/2) in the k=%
orbital, but it had very small (£29%) p3/2 and p1/5 com-
ponents, i.e., as before there was no f-p mixing. As the
strength was increased the fy/, component started in-
creasing and for a;,;=—3.5 the single-particle (s.p.)
orbital k=% had 929 f12 and 79 fs5/s. It seems that
independently of the strength ai, the infinite-range
force breaks the SU; symmetry strongly.

IV. STABILITY OF THE HF SOLUTION IN Ti*

The HF theory gives a purely independent-particle
description of the nucleus.!® In order to test the good-
ness of HF it is necessary to calculate the corrections to
it due to correlation effects which have been neglected.
These, for example, could be due to quadrupole vibra-
tions or pairing effects. For the random-phase approxi-
mation'” (RPA) they are described as particle-hole ex-
citations on the HF state. We have tried to estimate
these effects by doing RPA calculations on Ti* ground
state using schematic interactions.'”

A. Quadrupole Vibrations

We assume that the residual interaction between par-
ticles moving in the self-consistent field is of the quad-
rupole-quadrupole type, viz.,

Vij=—=X2 1V ou(0i, 007V 2" (0,0), )
u

where the coupling constant is approximately'®

~a[2.9474B3(hv)], (10)
and « is a number which should be roughly equal to 2.18
We will vary it (within reasonable limits) to see how
our solutions are affected. A» is the oscillator frequency.
If we neglect the exchange terms in the interaction
matrix elements, the RPA equations lead to the dis-

16 One of us (J.C.P.) would like to thank Dr. D. J. Rowe for a
number of useful discussions on the subject matter of this whole
section.

17 G, E. Brown, Unified Theory of Nuclear Models and Forces
(North-Holland Publishing Co., Amsterdam, 1967).

18D, J. Rowe, Phys. Rev. 162, 866 (1967).
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persion equation'”
l Dmi I Z(an—" fi)
" (en— €;)— (hw)?

Doi= (V2 om | "LV b (= 1)V -, 114).

(2x), (1)

(12)

Here m refers to a particle state (unoccupied HF
orbital) and 7 to a hole state (occupied HF orbital).
en and ¢; are the HF s.p. energies of the states m and ¢,
respectively, and 7w is the energy of the collective vi-
brational state which we want to calculate. Using the
HF results for Ti* [see Table ITII(c)] and taking u=0
for B vibrations and u=2 for v vibrations we get from
Eq. (11) the following energies (in MeV) for different
values of the parameter o (Table VII).

The energies for p=0 and u=2 lie at the top or above
the HF gap, and so vibrations (quadrupole) should not be
very important. Next, in order to get the ground-state
[g.s.] correlated wave function we follow Sanderson'?
and Da Providéncia.? We get

|RPA)=Noexp(X Copl'a'T") | HF)
af
:N0E1+Z Caﬁpatrﬂ’r"}— o :HHF>7 (13)
af

where T,/ (T's") create a particle-hole pair when acting
on the HF state, and boson commutation relations are
assumed for these operators. V¢ is the normalization
constant, and the coefficients C,g give the correction to
the HF wave function. They can be evaluated using an
expression derived by Da Providéncia.® It turns out
that the backward-going graphs make a negligible con-
tribution, with the result that the correction to the HF
wave function amounts to approximately 19,. Thus the
nucleus seems to be very stable to quadrupole vibration
effects since the wave function is so stiff.

B. Pairing Effects

Assuming that the nucleus does not make a super-
conducting transition we estimate the effect of the
pairing interaction by calculating the energy and the
correlated wave function for Ti* including pairing vi-
bration?' effects. The residual interaction between par-
ticles moving in the HF field is taken to be

H,=—G Y. alaatag ag.
af>0

(14)

« and S label the HF s.p. states (a_ is the time-reversed
state of @). The coupling constant?!

G=22/4.
B E. A. Sanderson, Phys. Letters 19, 141 (1965).

20 J. Da Providéncia, Phys. Letters 21, 668 (1966).
2. R. Bes and R. A. Broglia, Nucl. Phys. 80, 289 (1966).

(15)
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TasLE VIII. The 2p-2/ amplitudes in the correlated
ground state of Ti%.

Ca 0.331
Ca 0.188
Cu 0.150
Cs 0.113
Ca 0.083
Cn 0.060
Ca 0.053
Ca 0.053
Ciot 0.045

The dispersion equation and the expression for the RPA
wave function are very similar to those for the quad-
rupole vibration. [For details we refer to the paper of
Bés and Broglia (Ref. 21).]

Then the position of the lowest pairing vibration state
in Ti* is calculated to be at 1.4 MeV above the energy
of the correlated g.s.—well within the HF energy gap.
Further the g.s. wave function (normalized) is

IRPA)=[0.75243 Cup{ (T,'T,) o+ (T,'T,)u}

+ Z Cwl”cwyz(I‘wlfl—‘”)p(I‘w;Pyz)n] ! HF) N

[2313¢
wave

(16)

Here I',f=a,%a5" and creates a pair of particles in an
unoccupied HF state, while I',=a,-a, annihilates a pair
of particles in an occupied HF orbital.?? Labeling the HF
orbitals from one to ten in order of increasing energy,
we have in Ti*, y=1 and w=2, - - -, 10. The coefficients
Co(w=2, -+, 10, y=1) have the values shown in
Table VIII.

Thus we see that the correlated g.s. is significantly
modified from the HF state. Moreover, the intrinsic
quadrupole moment of the RPA g.s. is reduced to 15.52
units from the HF value of 19.64 units. Therefore, the
HF solutions are relatively unstable to pairing vibra-
tions and their inclusion leads to an intrinsic state

‘which is not as deformed as without them. In contrast

to this, the pairing effects were very small in the 2s-1d
shell.?® In fact the corrections to the HF wave function
would have been even larger if there was a possibility
of having 4p-4h and higher terms in Eq. (16) for
neutrons and protons.

Thus the reason why nuclei in 2s-1d shell show rota-
tional features and those in 2p-1 f shell do not seems to
be the importance of pairing effects in the latter, in
spite of the fact that in both the shells the HF wave
functions have a reasonably pure SUj structure.

V. CONCLUSIONS

A remarkable similarity is seen in the nature of the
HF solutions of even-even nuclei of the s-d shell and

2In Eq. (16) the subscripts p and % stand for protons and
neutrons, respectively.
2 M. K. Pal and A. P. Stamp, Nucl. Phys. A99, 228 (1967).
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those in the p-f shell. These nuclei are found to be de-
formed, the deformation being prolate and increasing
with the number of particles outside the core. There is
a change in sign of the deformation for the heaviest
nuclei studied here, the oblate solution becoming ener-
getically more favorable than the prolate. Like in the
s-d shell, the structure of the single-particle orbitals
follows very closely the simple SU;, or asymptotic
Nilsson scheme. The spin-orbit force is not very effective
in breaking the SU; symmetry. One significant dif-
ference from the s-d shell is due to the strong depression
of the f7, level by the spin-orbit force, leading to the
closed-shell, spherical solution in Ca®. Also the other
calcium isotopes are, as a result, very nearly spherical,
as seen by their small quadrupole moments and little
mixing of single-particle orbitals of different j. How-
ever, in Ni%, the eight neutrons and eight protons out-
side Ca® do not completely fill the f7/» shell and the
solution is not spherical.

On the other hand, the p-f-shell nuclei empirically
do not show the characteristic deformed structure that
is seen in the s-d shell. This we have seen is due to the
most significant difference between the HF solutions in
the p- f shell and those in the s-d shell. Namely, the gap
between the occupied and unoccupied levels is smaller
by about a factor of 3 in the p-f shell. Because of this,
excitations across the gap occur much easier and effects
of such particle-hole excitations become very important.
In particular, the pairing correlations can change the
structure of the excited states significantly from the
simple rotational bands observed in the s-d shell.

This indicates that, although HF calculations in the
p-f shell and heavier nuclei can be done and can yield
interesting information about the structure of these
nuclei, they are not in themselves adequate. Some sort
of correlation must be allowed in the g.s. in order to
account for the detailed structure of these heavier
nuclei. It is therefore surprising that the structure of
low-lying states of some nuclei in 2p-1{ shell, and even
heavier ones like Mo and Nb isotopes,® can be repro-
duced by projecting states of good angular momentum
from a single intrinsic determinant which is deformed,
because this indicates an underlying single-particle
picture of the nucleus.
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APPENDIX: INFINITE-RANGE-MODEL
INTERACTION

The Yale-Shakin potential was replaced by a Gaus-
sian, central potential with an arbitrary exchange
mixture:

V(r)=Vo(W~+MP,+BP,—HP,) exp(—r%/a?). (A1)

Here P, P,, P, are space, spin, and isospin exchange
operators, respectively. Ideally, the parameters Vo, W,
M, B, H, and @ should be determined from a least-
squares fit to the relative matrix elements (nl|G|#’l')
provided by Shakin et al.® However, this fitting should
be weighted in some way since the relative matrix ele-
ments are not all equally important in any particular
calculation; in particular, the smaller » values should
have larger weights in the fitting than the large =.
Since such a choice of weights is rather difficult and
arbitrary, and since we only wanted the gross structure
of the interaction, we decided to do a much simpler
thing, namely to fit the diagonal, #=0 relative matrix
elements of the 1Sy, 35y, 1Py, and 3P, parts of the force
exactly. Since there are no noncentral forces in (A1),the
average P state was fitted:

0,°P|G|0,*P)
=2 @7+1)(0,°Ps[G[0,*P,)/3 2T +1). (A2)

The value @ was arbitrarily chosen as a=1.68 fm. Then
we have four equations for the four parameters: W,
M, B, H:

W+M+B+H=1.0,

W—M+B—H=—1.239,
W+M—B—H=1.317,
W—M—B+H=—0.0977.

The first of these is simply a normalization condition,
and fixes V in terms of the 1S, relative matrix element.
The next three equations are the fits to the P, 35, and
3P matrix elements, respectively. Solving these, we
obtain W=0.245, M=0.913, =—0.365, and
H=—0.206. Also, a=1.68 fm and Vo= —35.06 MeV.
To check these parameters, we calculated some of the
higher-» matrix elements and found that they generally
deviated by less than 109, from those given in Ref. 6.
In addition, this exchange mixture was found to be
quite insensitive to small changes in a.

When ¢—w, the exponential factor in Eq. (Al)
becomes 1 and we have the infinite-range model force
we seek. Vo should also change as ¢ —. Its value is
determined, therefore, to give a reasonable binding
energy in Ti%, as explained in the text. Vo is unimpor-
tant for the zero spin-orbit work since then it is just an
over-all factor, but it does matter for the finite spin-
orbit results.

(A3)



