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The possibility of the existence of a trineutron bound state has been investigated by using a separable N-
E interaction in the p wave. Two different sets of central and spin-orbit forces of the (L S) and (L S) types
have been used to obtain a detailed 6t to the 'I'; scattering phase shifts. The calculations have been per-
formed for the I+=$+ state, which was shown by Mitra and Bhasin to be the best possible candidate for
such a bound state. The solution of the coupled one-dimensional integral equations, as an eigenvalue prob-
lem in the "inverse strength parameter" of the n-n interaction, shows that the requisite eigenvalue for zero
binding energy for the n' system has a sufBciently wide margin over the corresponding quantity obtained
from the p-p phase shifts. This con6rms the earlier conclusion of Mitra and Bhasin based on effective central
p-wave forces, but is contradictory to the results of variational approaches with conventional potentials
given by Okamoto and Davies, and by Barbi. The possible signincance of the difference is discussed.

I. INTRODUCTION

'HE possibility of the existence of a trineutron
bound state has engaged the attention of many

physicists for quite some time. There have been con-
Qicting claims regarding the existence of e', both on
experimental and theoretical grounds. Ajdacic et ul. '
surmised the existence of e' with a binding energy of
about 1 MeV from the study of the reaction Hs(rt, p)3rt.
Kim et gl.s have studied the mirror reaction He'(p, st)3p
with similar conclusions. On the other hand, the experi-
ments of Thornton et al.' and Debertin and Rosse14 on
Hs(rt, P)3N, and of Anderson el al. ' and Cookson' on
He'(p, w)3p, do not indicate any evidence in favor of
the rts or P' bound state, respectively. However, because
of the paucity of data on such reactions, no positive
conclusion can at present be reached, thus keeping the
question of trineutron bound state still open from an
experimental point of view. 7

The situation on the theoretical side seems to be
equally Quid. Okamoto and Davies, using the Pease-
Feshbach potential, found the e' state to be unbound

by about 10 MeV in a standard variational calculation.
However, as pointed out by Barbi, ' an extrapolation
of the Pease-Feshbach potential to p states is not
justified. So, in the absence of a more detailed p-wave
variational wave function, an approach free from the

V. Ajdacic, M. Cerineo, B. Lalovic, G. Paic, I. claus, and
P. Tomas, Phys. Rev. Letters 14, ~ ~ (1965).

~ C. C. Kim, S. M. Bunch, D. W. Devins, and H. H. Forster,
Phys. Letters 22, 314 (1966}.

3 S. T. Thornton, J. K, Bair, C. M. Jones, and H. B. Willard,
Phys. Rev. Letters 17, 'tt01 (1966).' K. Debertin and E. Rossel, Nucl. Phys. A107, 693 (1968).' J. D. Anderson, G. Wong, J. W. McClure, and B. A. Pohl,
Phys. Rev. Letters 15, 66 (1965).

i J. A. Cookson, Phys. Letters 22, 612 (1966).
B. Antolkovic, M. Cerineo, G. Paic, P. Tomas, V. Ajdacic,

B. Lalovic, W. T. H. Van Oers, and I. Blaue, Phys. Letters 23,
477 (1966).

i K. Okamoto and B. Davies, Phys. Letters 24B, 18 (1967).
i M. Barbi, Nucl. Phys. A99, 522 (1967).

uncertainties of trial wave function is very much
called for. Barbi, ' on the other hand, attacked this
problem, using the techniques of direct numerical
solution of Euler-Lagrange variational equations, but
reached the same conclusions about the e' bound state
as Okamoto and Davies. More explicitly, he found that
in the 4P1~2 state the potential depth required for an n'
bound state is less than that for e', but is nevertheless
far greater than what is required for a fit to Bryan and
Scott's" 'Po phase-shift data. Further, he found that
the inclusion of the hard core improves the prospects
of an e' bound state, though only slightly.

Earlier, Mitra and Bhasin" had investigated this
problem with separable interactions and concluded
that an e' bound state was very much within the realm
of possibility. With only an s-wave potential of
Yamaguchi type, the kernel of the (single) integral
equation is repulsive, thus showing the importance of
p-wave forces for this system. Their analysis was carried
out with (i) a central p-wave interaction, in which case
there is only one integral equation and (ii) both s and-
p-wave interactions, which yield two-coupled equations.
The strength parameter of the p-wave potential for
the case of zero binding was computed and found to
give a rough agreement with the 'Po X-N phase shifts
of Bryan and Scott. '0 The eGect of the s-wave force in
the presence of the p-wave force was, however, found
to be almost negligible ( 0.3+o)."

As the question of the e' bound state still seems to
be open, we feel that a more realistic analysis of this
problem is in order. In this regard the analyses of
previous authors' 9 "all suffer from the defect that only

' Ronald A. Bryan and Bruce Scott, Phys. Rev. 135, B434
(1964).' A. N. Mitra and V. S. Bhasin, Phys. Rev. Letters 16, 523
(1966). Referred to as MB in what follows.

'~This is analogous to a similar situation in Heitler-London
Theory of hydrogen molecule. See e.g., John C. Slater, Quanjfum
Theory of Moleclles and Solids (McGraw-Hill Book Co., New
York, 1963), Chap. 3.
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central interactions have been considered. As is clear
from various analyses, ""there is considerable splitting
in the 'P phase shifts for various J states. Thus a proper
representation of these phase shifts will require an
appreciable contribution from the noncentral terms,
such as L S and/or tensor forces.

Ke have extended the earlier work of Mitra" and
of Mitra 'and Bhasin" on the three-neutron bound
state, using more realistic potentials, where the full
effect of L S and (L S)' forces has been incorporated
to obtain a reasonably good fit to the phenomenological
'I'~ phase shifts. An exhaustive p-wave formalism for
a three-body system, which is especially tuned to an
analysis of e', has been given in MP3N. It is found
there that of all the states, of positive as well as negative
parity, the best chance for binding e' is provided by
one of the states (1,—,',—,')+, (1,—'„-',)+, and (1,2,—', )+ Lin the
representation —(I.,S,J)~$, which are all degenerate in
the absence of noncentral forces. Also, if the sign of
the spin-orbit force be so adjusted as to yield a larger
phase shift in 'I'0 than in 'I'2, then the state (1,-'„-',)+
is somewhat more attractive than the other two, and
hence the most favorable candidate for observation.

In view of these earlier results we have restricted our
analysis to only the J =-,'+ case. In this case the
problem essentially reduces to a solution of 12 coupled
(one-dimensional) integral equations in terms of the
well-known "spectator functions. " A complete nu-
merical analysis of this problem is, of course, out of
the question at present. However, the problem can be
somewhat simplified by an examination of certain
features of the potential that emerge from a numerical
fit to the p-p 'I'g phase shifts. For example, the range
parameters for the central and (L S)' forces are found
to be nearly equal (within about 4%%uo). As a first approxi-
mation, one can assume them to be idem(ical, which
reduces the number of integral equations to eigh].
Further approximations based on the attractive and
repulsive character of the various kernels reduce the
problem to merely three coupled equations. This
approximation, which is indeed very rough, can be
partly justified, since it is known from the work of MB
that repulsive kernels depress the eigenvalue only by a
small amount. Further, since we are rot interested in
finding the exact binding energy of e', but only the
likelihood or otherwise of its existence, we expect that
such an approximation is not going to change the
qualitative nature of our results.

In Sec. II, we obtain an expression for the 'Pg phase
shifts with the complete potential, comprising the
central, (L S), and (L S)' parts. Two sets of param-
eters, both fitting 'Pz phase shifts reasonably well up
to about 250 MeV, are determined. Certain features of

these two sets are discussed. In Sec. III, the exact
coupled integral equations for the three-body system
are derived for the state J~= 2+. The reduced form of
these equations under certain approximations is also
given. Section IV contains the numerical results of the
present analysis as well as a comparison with the work
of other authors.

—3I(p i Vc i
p') =3XP.+8,+Ni(p)N, (p') (p p') (2.1)

where P,+ and P,+ are the triplet projection operators
in spin- and isospin-space, respectively, and X is the
strength parameter. The operator P,+ may be dropped
since it leads to a symmetric isospin function, which
can therefore be absorbed in the total wave function
without affecting the internal dynamics. For any two
neutrons i and j, the spin projection operator I',+(ij )
is related to the corresponding permutation operator"
(ij ). through

~'(V) =ll 1+( j).j (2.2)

The p-wave spin-orbit force between two neutrons
i and j can be represented in a factorable form as

—~(pll'»lp')=»(2L S)N2(p)»(p')(P p'), (23a)

or equivalently as"

—~(p
~
VI.S

~

P') =»~ (P &&P')

( '+ ') (P) (P') (23b)

Also, the p-wave quadratic spin-orbit force has the
structure

—~(pl l'(I s)'lP')=3~(2L'S)'+3(p)N3(p')(P'P') (2.4a)

or

—~(pi I'&~m lp')=»{4(p P')+i(p&&p')
(~'+~')+2(~' ~') (p p') —(~' p)(~' p')

-( ' P')( ' P)) (p) (P'), (24b)
where

S= -'(e'+ e')

J=L+S.
(2 5)

(2 6)

The 'P& phase shifts are then easily worked out through

II. TWO-NEUTRON P-WAVE INTERACTION

In this section, we shall derive the 'Pg phase shifts
using a separable p-wave interaction, central as well as
noncentral, following closely the formalism of MP3N.
The purely central factorable p-wave interaction
between two neutrons is of the form

"R. A. Amdt and M. H. MacGregor, Phys. Rev. 141, 873
(1966); Ryozo Tamagaki and Kataro Watari, Progr. Theoret,
Phys. (Kyoto) Suppl. 39, 23 (1967).

"A. N. Mitra, Phys. Rev. 150, 839 (1966), Referred to as
MP3N in what follows.

"M. Verde, in Hundblch der Physik, edited by S. Fliigge
(Springer-Verlag, Berlin, 1957), Vol. 39, p. 170.

"A. N. Mitra and V. L. Narasinham, Nucl. Phys. 14, 407
(1959—1960).
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the two-body Schrodinger equation TAsx.E I. Two sets of potential parameters as found from a
comparison with 'Pg phase shifts in the S=1, T=1 state. pI, p2,
P3, and ) are all expressed in units of the pion mass m .

(P' k'—)0(P) = ~ dp'(pl VI p')0(P'), (2 7)

V= Vc+ Vzs+ Vtzs&', (2 g)

and the boundary condition

Set

I
II

0.06
0.025

4.71
7.87

0.71
1.22

44
5.5

1.7
1.3

4.5
5.6

f(k) = fs(p) l.=' (2.12)

X)g and X~ are de6ned in terms of certain integrals I
and I s (n, P=1, 2, 3) and are given in Appendix A
along with their evaluation for the following forms"
of N~'.

ut(k) =cks(ksyP ')-'

u, (k) = (k'+Pss) —',
us(k) = —bk'(ks+Pss) '

(2.13)

(2.14)

(2.15)

where p are the inverse range parameters and (c,b)

4(P) = (2 )s~'"(P—~)+4 fs(p)3(P &)

&((p' —k' —ie) ' (2.9)

where Vz, Vz, s, and V&&.s&~ are given by Eqs. (2.1),
(2.3a), and (2.4a), respectively, and k is the momentum
in the c.m. frame. The general structure for the oG-
diagonal scattering amplitude fs(p) can be read oG
from Eqs. (2.7) and (2.9), and is

f (P) =4(k)u (P)+(2L S)&(k)u (P)
+ (2L.S)'C(k)u (p) . (2.10)

Now, in a two-body analysis we can replace the oper-
ators (2L.S) and (2L S)' by their appropriate eigen-
values, F and F2, respectively. The 'I'& phase shifts
can then be expressed in the form

Ref '(k) = Ss/Ks= k' cotb~, (2.11)
where

give the relative strengths of central and quadratic
spin-orbit forces, respectively.

Table I gives the two sets of parameters which have
been found to yield a reasonably good fit to the 'I'z
scattering phase shifts for the T=1 and 5=1 state
with the above potential forms. The phase shifts, as
found with these sets, are given in Table II, along with
those of Bryan and Scott,"and Tamagaki and YVatari"
for comparison.

First of all, we notice that the three potentials—
central, L S, and (L S)'—are of different forms.
Whereas us l (L S)j does not vanish at k'=0, ut and
us Lcentral and (L S)', respectivelyj do. These forms
for the potentials were found to be quite unique, i.e.,
no good Qt to the phase shifts could be obtained by
either taking all the potentials of the form (2.13) or
by any interchange in the forms of various potentials. "
Also, the (L.S)' term has been found to be repulsive.
As can be seen from the figures given in Table I, the
(L S)s force is small compared to the central part of
the interaction. Though the relative strength of the
(L S) force is also small, its contribution is appreciable
since its corresponding potential form factor N2 is
dominant at low energies as it does not vanish at
k'= 0. Also, the ranges of the central and (L.S)' forces
are nearly equal, which is a very important feature,
since it helps to bring down the number of integral
equations from 12 to eight, as we shall see in Sec.
III. In both sets, the (L S) force is found to have a

TA&LE II. The Pz nucleon-nucleon phase shifts as found with the two sets of potential parameters listed in Table I. The experi-
mental values based on phenomenological analyses of Bryan and Scott (BS) and of Tamagaki and Watari (TW) are also given for
comparison.

BS
Bp

TW Set I Set II SS TW Set I Set II
5p

BS TW Set I Set II
10
20
30
40
60
80

100
120
160
200
240

3.16
6.30
8.47
9.78

10.73
10.29
9.11
7.51
3.73—0.31—4.35

4.56
8.47

~ ~ ~

12.19
12.79
11.96
10.43
8.57
4.42
0.16—4.02

2.57
5.90
8.68

10.65
12.48
12.39
11.19
9.38
4.79—0.37—5.79

2.85
6.06
8.45

10.01
11.36
11.27
10.41
9.09
5.64
1.51—3.15

—1.79—3.62—5.14—6.44—8.65—10.56—12.29—13.92—16.95—19.78—22.44

—2.37—4.49
~ ~ ~

—7.52—9.79—11.70—13.41—15.0—17.96—20.72—23.35

—2.17—5.03—7.76—10.22—14,30—17.34—19.49—20.90—21.85—20.85—18.46

—2.00—4.30—6.25—7.84—10.15—11.62—12.50—12.97—13.08—12.48—11.47

0.54 0.74 1.78 2.29
1.55 1.98 4.22 4.96
2.72 ~ 6.46 7.06
3.95 4.73 8.29 8.57
6.35 7.32 10.68 10.27
8.49 9.57 11.78 10.92

10.31 11.45 12.05 11.00
11.81 12.97 11.82 10.78
14.02 15.08 10.61 9.93
15.44 16.23 9.00 8.89
16.31 16.66 7.34 7.83

"We shall use, in this paper, the natural units k=c=m =1.
's At least one of the potential form factors g has to be of the form (k'+p') ' to yield the correct threshold behavior of the

scattering amplitude.
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much /urger range than the purely central part of the
potential, contrary to the usual idea of short-range
nature of the spin-orbit force." But this result is in
agreement with that of Tamagaki and Katari, 13 who
also conclude that the spin-orbit force should have a
larger range than those proposed by phenomenological
analyses.

The general features of the two sets of potentials
are quite similar. However, for set I, both the central
and the (L S)' forces have somewhat smaller strength
but larger range than for set II, whereas the behavior
of the (L S) term is just the opposite.

becomes
Pi+Ps+Ps= o, (3 1)

Dg(p Ps)e= —cV
i(j(k=1

III. THREE-BODY FORMALISM

In this section we shall erst derive the exact integral
equations for the e' system with a binding energy nz.
Once again we follow closely the formalism of MP3N.
The Schrodinger equation for a three-body system, in
the over-all c.m. frame

of mixed symmetry for the cases L=O and j., respec-
tively; f„'and iP„„~are the spatial antisymmetric wave
functions for 1.=1 and 2, respectively. The various
scalar, vector, and tensor spin functions of different
symmetries have been defined in Eqs. (3.1)—(3.6) of
MP3N.

The three possible even™parity states of I.=O, 1,
and 2, corresponding to scalar, vector, and tensor
products of the pair of available vectors (pv, Ps) for a
P-wave pairwise interaction, are

p;,"Pa,

Q, =(p;;XPs)„,
(3.8)

(3.9)

and the traceless tensorial product'9

Q"(I,~i') = s{P'.~'+P* I' s, s(pv P—.)t'..) (3 10)

As usual, in a separable interaction model one can
express scalar, vector, and tensor functions in terms of
the above quantities, viz. , Eqs. (3.8)—(3.10), and the
well-known "spectator functions. "" Denoting the
spectator functions by E, Ii, and G for the cases of
1.=0, 1, and 2, respectively, the wave functions have
the following structure (with correct symmetry proper-
ties incorporated):

X+(p„',Ps), (3.2)
where

P&= —(P;+P;) 2p;;=P;—P, ; i,, j, k cyclic,

ill y I P
Ii iSI g I T fi

yll P II P II D —i S/I g fl T ll (3 11)
(3 3) .iP iP„ iP„„. ,S' A„T„„,
(3 4) where, for example, the scalar form factors are

and for a bound state

—EM =ng'.

Writing Eq. (3.2) in full, we obtain

Dir(p;;, Ps)e

S=Si+Ss+Ss,
S'= —Si+-', (Ss+Ss),
S"=-,'v3 (Ss—Ss),

S =(p "P) 2 & (~) (P*).

(3.12)

(3.13)

(3.14)

(3.15)

s(j(&=1
dyv'I (yv yv')~'(ij)ui(Pv)»(Pv')

+r'(p;;Xp; ) (e'+e&)us(P;;)us(p, ,')

+{4(yv pv')+s(p;, Xy;, ') (e'+e')

+2(p'" pv')(e* e') —(e' yv)(e' pv')

—(e' y' ') (o' y' ))us(P* )»(P*')1+(p;,P.) (3.6)

As discussed in the Introduction, we shall restrict
our analysis to the state J = —,'+, as it a6ords the best
chance of binding e'. The wave functions for various
(LSJ)~ states for this system have been listed in
Table I of MP3N. The properly normalized, totally
antisymmetric wave function for the state J = —,'+
may be written as

+= (2~2) '{(0'x"—0"x')+ 9'~'x~" —6"x~'))
+-', (p„x„'+p„„x„„'). (3.7)

Here Q',f") and (iP„',iP„")are spatial wave functions

As,.„——Q„QF.' (Pi)u (P;;),
a I

(3.16)

(3.17)

"Throughout the paper the Latin indices i, j, and k will be
used to label the particles and the Greek indices y, v, and g for the
(three-dimensional) tensorial character. a and P will always refer
to the three different potentials and their corresponding spectator
functions, etc.

"A. N. Mitra, Kucl. Phys. 32, 529 (1962).

In Eq. (3.15), we have for a scalar function three form
factors corresponding to the three different interaction
terms. The superscripts u and m in Eqs. (3.11)—(3.15)
denote antisymmetric and mixed symmetric com-
binations, respectively.

Similar definitions hold for the corresponding "form
factors" A„and T„„in terms of the quantities AI, , „

and TJ, „„respectively,where
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This gives in all 12 diGerent spectator functions, EF, and G '. Substitution of Eqs. (3.11)-(3.17) in
Eq. (3.6) leads in a standard manner"" to the desired
(one-dimensional) 12 coupled, integral equations, the
coupling to various I. states coming from the non-
central interactions. These equations are given in
Appendix B.Some of the more important spin relations
employed in the derivation are listed in Appendix C.

A numerical solution of these 12 coupled integral
equations at this stage is certainly not possible. There-
fore, certain approximations have to be used to make
the problem tractable. In this context, it can be seen
from the numerical results presented in Sec. II, that
the range of the central and (L S)' forces is nearly the
same, so that from Eqs. (2.13) and (2.15)

Na(h) = (h/c)ug(h) =egg(h). (3.18)

With this substitution in the integral equations, the
number of independent spectator functions reduces to

only eight, the relevant transformation being

Xg+yX3 ~Xg, (3.19)

where X represents any one of the spectator functions
8, Ii, and G . These eight equations can be read
oG easily from the 12 equations given in Appendix 8
by simply dropping the kernels and spectator functions
referring to index 3 and 0, running over 1, 2, only.

Next we make some assumptions based upon the
results of numerical calculations performed in MB,
viz. , that the coupling to repulsive kernels depresses
the eigenvalue only by a very small amount. Now, as
can be seen from Appendix 8, the equation for E2
(1=0) has a Purely negative kernel and is coupled
only to states of I=1, 2. Also, equations for Ii&,
I"2, G&', and G2~ have purely negative kernels. Thus
if we neglect the effect of these 6ve spectator functions,
we are left with only the following three coupled
equations:

X 'F&'(P)—L1+ (16/3)p'jh&p(P)Fs'(P)+ 2p'h&1(P)E& (P) =3 q'dqll+ (16/3)p') (1—cos 8)E&p(P q)Fp'(q)

——,'/{1+4 cos'8+ (2 cos8/pq) (q'+P')}Ku(p, q)E1"(q)j i (3.2o)

&
—~F,&(P)—(5/3)h, s(P)Fs'(P)+3hqq(P)Eq (P)=5 q'dqL(1 —cos'8)K&p(p, q)Fp'(q)

——,'0{1+4cos'8+ (2 cos8/Pq) (q'+P'))E2&(pq)E& (q)j, (3.21)

g-jEq~(P) —(1+(16/3)y jhow(P)E, ~(P)+ (8/3)p'h, p(P)Fp'(P)

3
q'dqL(1+ (16/3)y') {]+4 cos'8+ (2 cos8/Pq) (q'+ P') )

&&K&&(P,Z)Ei (q) —(32/3)y'(1 —cos'8)X&s(P, &)Fp'(q) j. (3.22)

IV. NUMERICAL RESULTS AND DISCUSSION

From a numerical point of view, the problem has
been reduced to eigenvalue equations in terms of the
strength parameter P '. The usual procedure is to
calculate the binding energy of the system, taking the,

value of all the six parameters in the theory, viz. , X,
b, c, Pz, P2, and P3 as found from the two-body phase-
shift analysis. Since we are interested only in the,
likelihood of existence or otherwise of e', we calculate
the minimum value of X (X;„)for sero binding energy
keeping all other parameters Axed, which is a much
simpler problem than the calculation of binding energy
itself.

As has been shown in MP3N, the most attractive
state is the one with quantum numbers (1,$,—',)+ which
corresponds to the spectator functions F~,2 in our
formalism. Therefore, as a lrst approximation, we can
even neglect E& in our equations, which reduces the
problem to only two coupled equations. The effect of

TABLE III. The strength parameter X3, for zero binding, as
found from a solution of two- and three-coupled integral equations
for both the sets of Table I. The corresponding two-body value
X2 is also given for comparison.

Strength
parameter

Set I
Three- Two-
coupled coupled

equations equations

Set II
Three- Two-
coupled coupled

equations equations

(Three-body)

(Two-body)

0.025

0.06

0.0247 0.0128

0.025

the coupling through Ej can then be taken by solving
all the three coupled equations exactly. If the change in
X;„produced by this additional coupling is small,
then the a priori assumption of neglecting the other
equations with negative kernels will at least be partially
justified.

In Table III, we present the values of X;„found
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from the solutions of both two-coupled as well as three-
coupled equations, for either of the two sets of potential
parameters given in Table I. The corresponding two-
body values of A. are also listed for comparison. First
we note that indeed, the solution of three-coupled
equations changes the value of X; by about 1.0%
over its two-coupled-equations value, which puts our
approximation on quite a Qrm footing.

The value of X;, as found from the three-body
analysis, is smaller than its two-body value by as much
as a factor of 2.5 and 2.0 for sets I and II of Table I,
respectively, which is strongly in favor of the existence
of e'. Even though certain rough approximations have
been made for numerical convenience, we do not feel
that a more accurate numerical analysis will destroy a
factor as large as 2.5. Mitra and Bhasin had predicted
the possibility of an m' bound state with a very simple

potential. Making a much more elaborate analysis of
the problem, we have thus confirmed their qualitative
result.

Our results are in definite contradiction with those
of Okamoto and Davies' and of Barbi, ' which are
based on some variational techniques employing con-

ventional potentials. The accuracy of the variational

approach, which makes use of a trial wave function,
depends upon the complexity of the wave function
employed. For p-wave structures, in particular, a,

variational calculation requires much more elaborate
trial functions. Okamoto and navies and Barbi have
used wave functions with only one or two parameters
which seem to be inadequate for the present calculation.
Our approach is, of course, free from these uncertainties
as we have employed exact wave functions. Also,
(along with MB) these authors had considered only a
central force, which is certainly not a good approxi-
mation as it cannot produce the splitting in various
'Pz phase shifts, a splitting which experimentally is
rather large. In our analysis we have removed this
serious defect by the introduction of noncentral terms
in the potential. A similar calculation with the inclusion
of noncentral e8ects in local potentials is also in progress
at Sussex, the results of which are yet being awaited. "

APPENDIX A

In this Appendix we give the expressions for Sg and

Xg, occurring in Eq. (2.11) in the text, in terms of
certain integrals, which shall also be defined here.

Thus, we have

S = (I, 1)(1'I,—1—) (1'I,—1)—I'I„'(I'I,—1)
—rsI, ,s(rI, —1)—r I,s'(I,—1)

+2I'Ii IrsI„, (Ai)

X,=urs{rsI» —(rI,—1)(I'Is —1))
+Zu, s{1"sI,,s—(I,—1)(r'I, —1))
+I'su s{1'I,'—(Ii—1)(FIs 1))-
+2t'u, u, {I„(F'Is—1)—I'IrsIss)
+2t"u,u, {Iss(Ii—1)—IrsIrs)
+21' u,u, {Ir (FI,—1)—FIrsIss), (A2)

where the integrals I and J p are given by

"q'dqu. '(q)I.= (4~&)P
p (q' —k')

"q4dqu (q)up(q)I s= (4rrX)P
(q' —&')

(A3)

For the explicit forms (2.13) to (2.15) for u, all these

integrals can be easily evaluated by using the general

result
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APPENDIX B

Here we derive the 12 couPled integral equations for the Ns system in Js'= sr+ state. On substituting Eqs. (3.11)—

(3.17) in Eq. (3.6) and equating the coeKcients of u (p») on both sides of Eq. (3.6), we find

—P(Pr pss)Er"(Pr)&"+ (pssX P&)„&r"(P&)X„"—(pssX Pr)„&r (Pr)&„'—Q,.(1,23)Gr (Pr)&,.'3

=3& dp»'(p» pss')ui(pss')P. +(23)%'r(pss'|P&), (31)

"L. M. Delves, in Fe7o Body Problems, edited b-y G. Paic and I. Slaus (Gordon and Breach Science Publishers, Inc. , New York
1968).
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(pl'pzz)E2 (pl)~ (P23X pi)pF2 (Pl)~y + (p»X pl) pF2 (P1)&„'+Q„,(1,23)Gz'(pi)&„,'

dpzz'z(pzzXpzz')&, (e'+a')izzz(p»')Oi(pzz', P,), (B2)

(pl P23)E3 (pl)~ (p»X pl)yF8 (Pl)xy + (P2$X P1)pF3 (Pl)xp +Quip(1)23)Gz (pi)Xp„

=3~ dpzz'{4(p» p»')+2(p» p»') (e'0')+ (p~zX pzz')iz(e'+e')i —(0,'0„'+0,'a„z)p»,p»„'}

XNz(Pzz')Pi(Pzz'&Pi), (B3)

where 4i is the same expression as + of Kq. (3.7), but expressed entirely in terms of the momentum pair (p, ,p»).
In Eqs. (B1)—(B3) we further equa, te different spin functions on both sides to obtain as many coupled integral
equations as there are spectator functions (E,F, F ',G„).As outlined in Ref. 20, we next perform the
azimuthal integration on the right-hand side of Eqs. (B1)—(B3), after making a suitable transformation in order
to make spectator functions (under integration) independent of angular coordinates. The final equations for
spectator functions are then expressible as

X 'Ei (p) —Izi.(p)E "(p)=3 dry q'Ki. (p, zi)(-,'+p cos8/g)(-', +qcos8/p)E. (q), (B4)

X 'Ez (P)—shz~(p)(2F (P)—V2F '(P))= —4 dg q'Ez (P,q) sin'8{F ~(q)+~2F ~(q)}, (Bs)

~ 'E "(P)—-'& (P)(4E-'"(P)+2F-"(P) ~~F- (P) (3/~3)G- —(P))

dry q'E& (P,q)$16(-', +q cos8/P)(-', +P cos8/q)E ~(q) —csin'8{F "(q)+v&F ~(q)}

(g/~~) {(3/4) (1+c» 8)+ (c»8/pq) (q'+ p') }G '(g)j, (B6)

3
p,
—iF,"(P)—h, (P)F (P)= —— dqq'Zi (P,q) sin'8F "(q)

2 J

y
—iF m(P) h (P){4Em(P)+4F m(P)+1~2F a(P)+L(5y3)G &(P)}

de q'Ez (P,zl)L4(~+q cos8/P)(~+p cos8/q)E (q)—2 sin'8{F (q) —i~y&F (q)}

—4%3{s sin'8+3(-', +q cos8/P)(-', +P cos8/q)}G ~(q)g, (Bg)

g—1F m(P) &h (P){Em(P)+3F m(P) ~F a(p)+ (5/~3)G N(P)}

dzlq'Ez (Pzl)L4(-', +qcos8/P)(2+P cos8/q)E (q) —sin'8{10F ~(q)+4~2F ~(q)}

—(1/u3) {10+4cos'8+Sq cos8/P+5P cos8/g}G ~(q)), (B9)

X 'Fi'(P) —hi (P)F ~(p) =3 drl q'Ki (P,q)F ~(q) sin'8, (B10)

~-F, (P)+I (P){-'(2~2)E."(P)-V&F-"(P)-P/3)F (P)+(3/3V'6)G- (P)}

q qzlt, (p il)L —2vg(-', +q cos8/p)(-,'+ p cos8/q)E~"(q) —(1/~2) sin'8{F m(q) 5v2F (q—)}
+(2+6){ssin'8+3(-', +qcos8/P)(~+pcos8/q)}G ~(q)j, (B11)
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~-~F, (P)+-'(2~2)&3.(P){&."(P)+2F-"(P)—4~2F-'(P)+ (5/~3)G '(P))

dq q2E3 (P,q)L—2&2(~+q cos8/P)(~+P cos8/q)E "(q)+2v2 sin28{F ~(q)+4v2F»(q))

+ (v2/243){10+4 cos'8+Sq cos8/P+5P cos8/q)G»(q)), (812)

),—~G,»(P) —h, (P)G '(P) = —3 dq q'E& (P,q) sin'8(1+q cos8/P)G '(q), (813)

~- G,.(P)- (1/~3) ~,.(P){2F.-(P)—~2F. (P)+~3G-.(P))

dq q'&, (Pq)L —K3 sin'8{F»" (q)+&2F»»(q)) —6{~(1+9cos'8)+ (cos8/Pq) (q'+P')) G» (P)j, (814)

( ){ -( )+ -( )—(/) -.( )+(/ ) -.( ))

dq q'K3 (P,q) [4%3P+q cos8/P) (', +P cos8/q-)E„"(q)—4&3 sin'8{F (q)+ ~~742F»(q))

—2{11—cos'8+ (10—6 cos'8) (q cos8/P)+4P cos8/q}G '(q) j. (815)

Equations (84)—(815) are the desired 12 coupled one-dimensional integral equations for J~=-',+. In all these
equations, summation over the index n is implied. Further, the various kernels appearing in these equations are
defined as follows:

where

q'dq u-(q)u~(q)

(q+-:P+-") '

u- (P+ l q)u~(2 P+ q)E p(Pq)=
(P'+q'+ P q+~r')

cos8= (P q).

(816)

(»7)

(818)

APPENDIX C

Here we give a list of some of the more important results of spinology used in Appendix I
g 3g 3g 3~ gr3

/l V

( ' 0u' 0+0~~'~.' ')0= 2(~»~—,'+~„0,' &„.0,')—,

(c1)

(c2)
j(0'+0') ~X„"= ',v2[ 2v—2eg„„—X„"+eg„„X„'—2v28„yX"—+6Xg„'g, (c3)
i(0'+(0)gX„'=-,'%2e),„„X„"—(5/3) eg„„X„','v2b„),X—"-Q;X,„—', - (c4)
'( '+a)) X„„'=e„,X„„'+„,X„,'+ (1/43) {8 „(X„"+(1/V2) X„']+8„„LX„"+(1/i/g) X„J

—-'&„,Lx "+(1/42)x 'j}, (c5)

(0 2g)3+0'y ~ )X"=3(bpyX +243X y'), (c6)

(&p&x+&x&n)» 3 n&» s( ) n& s + vn(» )+'4&(~2 p Xp)+(V3)(&» X y'+e&y, X ) (( 7)

(0 '0 '+0 "0 ')X .'= (2/~~) (8~.4.+~~.b"—38».b.~)X"—(1/~~) (»"„,+4.~, ,+&„~„+8.,, )
)&Lx,"+(1/K2) x,'$+ (-,'b„,x,),'+28,gx„„'—bg„x„,'—b),„x„,—b,„x„„—b,„x„„)(C8)


