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Relativistic Hartree-Fock-Slater atomic wave functions have been calculated for the
superheavy elements Z= 114 and 126. The calculations have been made both for the atom
and for singly ionized states with holes in the X or L shells. A Wigner-Seitz boundary
condition is used, and results for both point and finite nuclei are presented. From these
solutions, binding energies and x-ray energies have been evaluated. Similar calculations
have been made on Au and U, and have been compared with experiment so as to ascertain
what degree of confidence one may have in these computations. A discussion is made of the
importance of finite nuclear size in determining the X-shell binding energy, and a so-
lution for element 140 was obtained to demonstrate the atomic stability in the present
approximation of elements above Z= 137. Finally, the probability for finding an electron
within the nuclear radius is given for each of the elements studied, and a brief discussion
is given concerning the stability of the superheavy elements against electron capture.

I. INTRODUCTION

There has recently been much speculation' about
the formation of the superheavy elements (Z= 114,
A = 298) and (2 = 126, A = 310), which because of
their doubly magic numbers may exist with rela-
tively long half lives. If such isotopes could be
made, there is the likelihood that in the decay of
the excited nuclear states, inner-shell vacancies
of the atom, particularly the E shell, would be
formed that would subsequently lead to the emis-
sion of characteristic x rays. The energy of an
in!.smally converted electron will also depend on
the binding energies. These x-ray and binding
energies might be used to identify the elements if
they exist, perhaps in remnants of supernovae or
as a product of heavy ion bombardment. In addi-
tion, a comparison of the experimental x-ray en-
ergies with calculations based on a finite nucleus
might yield an estimate of the nuclear, size.

We have calculated relativistic self-consistent-
field (SCF) wave functions for the elements 8 =114
and 126. For these calculations, we have solved
the Dirac equation numerically for a self-consistent
field with spherical symmetry and Wigner-Seitz
boundary conditions. A Slater-type electron ex-

change approximation, and both point and distrib-
uted nuclear charges were used. From the eigen-
values of the solutions for neutral atoms, one can
estimate the energies of the x rays which would be
emitted following an inner-shell vacancy. In addi-
tion, Ee» x-ray energies have been calculated
from the difference in the total energies of the
appropriate one-hole conf igur ations. C alculations
on gold and uranium have also been made, and
have been compared with the experimental results
to determine the accuracy of our program for x-
ray energy calculations. Finally, an evaluation
is made of the dependence of the atomic binding
energies on the nuclear size and diffusivity.

In a discussion of superheavy elements, those
with Z&137 have always been of special interest.
The Darwin-Gordon'~ solution of the Dirac equa-
tion for a point nuclear charge breaks down for
Z) 1/n, where n is the fine-structure constant.
An earlier investigation4 by Werner and Wheeler
has shown that, with a nuclear charge distribution
of finite size, a E-shell electron may exist with a
stable electronic configuration where Z) 1/o. .
There remained, however, a degree of uncertainty
on account of the approximate nature of that inves-
tigation, which did not incl»de, among other things,
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a self-consistent treatment for the electronic shell
structure. Our self-consistent solution for a finite
size nucleus remains valid for Z&1/n, and we have
computed an ion with Z= 140.

and gl R
=0 for odd l.

WS

B. The Slater Exchange Potential

II. WAVE FUNCTIONS AND EIGENVALUES

The wave functions and eigenvalues have been
obtained using the same theory and code which
was applied to calculate the Mossbauer isomer
shift for metallic gold' and the shake-off proba-
bility for elements with 2 ~ Z & 92. ' The code
gives the eigensolutions of the Dirac equation with
a self-consistent potential including a Slater-type
exchange term. These solutions are similar to
those obtained by Liberman et a/. ' In the calcu-
lations we have employed either a point or a finite
nuclear charge distribution; and have used a Wigner-
Seitz boundary condition, rather than the usual
free-atom boundary condition.

For the computations reported in this paper, we
required a self-consistency of 1 part in 10' (or
better) in the contribution to the potential from
each subshell as well as for the potential due to the
total electron cloud. Subshell eigen energies were
iterated to a relative deviation of less than 5 parts
in 10'. Computations were done on a CQC 1604-A
computer. Details of this code for the calculation
of wave functions may be found elsewhere. '~' Three
points need special comments here. These pertain
to the use of (i) the Wigner-Seitz boundary condition,
(ii) the Slater exchange potential, and (iii) the finite
nuclear size.

A. The Wigner-Seitz Boundary Condition

Instead of calculating wave functions and eigen-
values for a free atom, which would be appropriate
to a very dilute gas, we have chosen to use a bound-
ary condition based on a proposal of Wigner and
Seitz, "restricting the atom to a finite volume of
radius R~S. This has two advantages: (1) Such
a boundary condition may approximate the "true"
situation better in a condensed medium such as a
chemical compound or a metal, and (2) such solu-
tions often require less time on the computer for
convergence, which may be of particular conse-
quence in the case of a very heavy element.

For Dirac's relativistic radial wave functions,
the Wigner-Seitz boundary condition cannot be
satisfied simultaneously for both components. '
In the case of a Schrodinger wave function gS,
this boundary condition, which is based on the
translational invariance for each atom in a solid
lattice may be specified by (d(S/dr)R~S = 0 when
quantum number l is even and gS(R~S) = 0 when I
is odd, where RWS is the radius of the Wigner-
Seitz sphere used to approximate the polyhedral
cell for the atom. Since the major component g
of the relativistic wave function is predominant
in the surface region of the atom, we have chosen
to satisfy the Wigner-Seitz boundary condition for
the major wave function:

Since a Hartree-Pock calculation is complex, it
is often replaced by an approximate treatment.
Slater proposed" that the exchange potential
at any point in the atom be approximated by that
for a free-electron gas having the local charge
density. This approximation, at large radii in
free atoms, tends to zero as a negative exponential
rather than the self-exchange value of 1/r, causing
outer electrons to be less tightly bound than they
should be. Latter's n:odif ication, "which
essentially puts a floor of 1/r under the Slater
exchange potential at large radii, is generally used
to correct this problem. When Wigner-Seitz bound-
ary conditions are used, however, it seems more
reasonable to use the unmodified Slater potential,
since the electron density does not become zero
at large radii. V~e have done this.

One other question concerning Slater's approxi-
mation is which value should be assigned to the
constant multiplier, in particular, whether it be
either 1 or 2/2. Our attitude is that since we are
using an approximation, we shall choose the factor
which gives better agreement with experimental
data for the phenomenon we wish to predict. "

C. The Finite Nuclear Size

Most solutions of the Schrodinger and Dirac
equations for the electron orbitals in the many-
electron problem assume that the nucleus can be
represented by a point charge. The effect of the
finite nuclear size on any observed phenomenon is
then taken into account by a perturbation method,
e.g. , the treatment of Brix and Kopfermann'4 for
the isotope shift in atomic spectra. For super-
heavy elements, however, these perturbation
methods may be inadequate. In the extreme case
of ~) 137, any such perturbation treatment is
impossible because for a point nucleus the Dirae
equation does not have a physically acceptable
solution. ' We therefore decided to incorporate
the finite nuclear charge distribution in terms of
an appropriate potential function V(r) corresponding
to a charge density distribution p(r),

V(r) -=(r) 'f, 4m" p(r')dr'+ fr 4wr'p(r')dr' (2).
We used a modification of the "smoothed uniform"
distribution of Yennie, Ravenhall, and Wilson'~'

p(r)= C&(l+ exp[(r- r,)/a]] ' r ~r

= Vp+ '02&

where C~ is a normalization constant, determined
from the total charge Z

dg/drl R =0 for even I
~=RWS 4. f. r'p(r)dr=Z; (4)
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x~ is approximately 0. 1&0, and g, and p, are chosen
such that p(x) and p'(r) are continuous at r= x~
Besides the nuclear potential, bound electrons
are subjected to a SCF potential of the Hartree
type, modified by a Slater-type exchange poten-
tial 6

In order to study the nature of the analytical
solution of the Dirac equation for a nuclear poten-
tial with distributed charge and for the self-
consistent potential. due to other electrons, we
note that the nuclear and the SCF potential can
be expressed by

near the origin. ' Thus the solution near the origin
1S

with s = lk I
=

l (I -j)(2j+ 1) I,

a,/b, = (s —k)/(s+ k),

and

III. RESULTS AND DISCUSSION

To determine the accuracy which might be ex-
pected from our codes, we calculated wave func-
tions and eigenenergies for gold and uranium. In
these calculations we included the effects of both
finite nuclear size and Wigner-Seitz boundary
condition. In Table I are given the eigenvalues
for the E and L shells of Au and U, using either
the Slater exchange multiplier 1 or 1.5. The Ee,
and Kn, x-ray energies (representing respectively
K-Lill and K-LII transitions following a & vacancy)
may be estimated from the difference in eigen-
values between the two shells of a neutral atom.
(Method I). This follows from the energy cycle of
bringing an electron from the continuum into the
E hole and then removing from the atom an elec-
tron in the I- shell. This treatment is, however,
only approximate since it neglects the readjust-
ment of the entire atom. A more consistent cal-
culation (Method II) is to take the difference in
total' energy for the initial and final configuration,
i.e. , the difference in total energy for the singly
charged ion with the hole respectively in the K
and I shells. The calculated x-ray energies are
also displayed in Table I, together with experi-
mental values for the binding energies and x-ray
energies. We see that the best agreement with

a = [(s/n —nC, )b
1

—nC, b

—nC, b 5]/(s+ k+ n), (8)

b„= [(2 —e)/n+ o,C,)a + nC,a

+ nC,a ]/(s —k+ n), (9)

TABLE I. Binding energies and Ko, x-ray
energies for Au and U (keV).

Calculations
a

Au

Binding energies I(1.5)

Experi-
rnentalb

subject to the condition

a . =b . =0forn(i; i=1 3or 5.n-i n-i
(e and o. are, respectively, the eigenvalue and fine
structure constant. We have used e = 0.007 297 2
and 1 Ry= 13.6053 eV. )

The important difference in the behavior of the
wave function for a point and a finite nucleus is
that for a point nucleus the first power of r in the
Darwin expansion' is nonintegral, (k' —n'Z')'~', and
both leading coefficients are nonzero; but for a
finite nucleus, the first power of r [Eq. (5)] is an
integer, lkl -1, and, depending upon the sign of
k, either ao or b, is zero. Moreover the solution
exists for Z) 1/o. , because Z enters only in the
magnitude of the finite coefficients C&.

In our calculations the nuclear radius ro and the
diffusivity parameter a are estimated from Elton"
although the choices are somewhat arbitrary. In
the case of elements 114 and 126 the nuclear radius
and diffusivity are treated as parameters, solutions
being obtained for a variety of values. The Wigner-
Seitz radius for gold and uranium is estimated
from the molar volume of the metals. For the
superheavy elements an arbitrary value of 5 Bohr
radii is assigned.

K
LI
LD
LDI

X-ray energies

80.958
14.336
13.778
11.922

80.546
14.205
13.631
11.797

80.895
~ 0 ~

13.675
11.833

80.725
14.353
13.734
11.919

K~ ) (L~ K) 69.036 68.749 69.062 68.804

K(y2 (Lg K) 67.180 66.915 67.220 66.990

Binding energies I(1.5)

K

II II
Lgz

116.069
21.752
21.031
17.168

115.527
21.564
20.824
17.001

115.950
~ ~ ~

20.872
17.033

115.606
21.757
20.948
17.166

X-ray energies

Kng (LIO K) 99.068 98.526 98.917 98.439
Ke2 (LII K) 95.038 94.703 95.078 94.665

aCalculations based on eigenvalues are given by Method I,
and those on the differences of total energies between the ini-
tial and final configurations by Method II. Coefficients for ex-
change potential are in parentheses. For Au: rp= 6,38 F,
a=0.567 F, RW8=3.01 bohr. For U: rp=7. 33 F, a=0.569 F,
RWS=3.25 bohr.

J. A. Bearden, Hev. Mod. Phys. 39, 78 (1967);J. A. Bear-
den and A. F. Burr, ibid. 39, 125 (1967).
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TABLE II. (a) The effect of nuclear shape on the K-shell
eigenenergy for atomic number 114. BWS=5.0 bohr,
Slater exchange coefficient =1.0, configuration Sf«4, 6d~,
7s, 7p . (b) The effect of nuclear shape on the K-shell
eigenenergy for atomic number 126. B~S=5.0.bohr,
Slater exchange coefficient =1.0, configuration 6f6, 7P6,
Ssm.

Nuclear Radius
(F)

K-shell eigenenergy
(keU)

Surface Diffusivity
(F)

0.500 0.575 0.650

10.00
7.35
5.00
3.00

0

200.802
200.062
200.770
201.365
201.812
202.807

200.734

10.00
7.45
5.00
3.00

0

269.767
267.605
268.667
271.728
273.384
278.922

269.556

the experimental x-ray energies comes from using
Method I with an exchange coefficient of 1.0. This
is, however, probably fortuitous. Whether an
exchange coefficient of 1.0 will give the best x-
ray energy values in the range of the superheavy
elements is as yet open to conjecture. We shall,
however, use the value of 1.0 in our calculations
of elements 114, 126, and 140.

Before giving the x-ray energies for the super-
heavy elements, one should first examine the role
played by the finite nucleus. In Table II we have
shown calculations of the K-shell eigenvalues for
elements 114 and 126 as a function of nuclear radius
and nuclear surface diffusivity. We see that for
these elements one of the greatest errors in the
calculation of K x-ray energies will probably come
from the assignment of the nuclear radius. In
fact, if good experimental results were obtainable
for the x-ray energies, fairly good estimates of
the nuclear size might be obtained. For example,
a variation of 0. 1% in the & x-ray energy for ele-
ment 126 will reflect a change in the nuclear radius
of about 0. 3 F.

Calculated En x-ray energies for elements 114
and 126 are given in Table III. For each element,
a Wigner-Seitz radius of 5 bohr and exchange co-
efficient of 1.0 were used. For element 114, the
nuclear yar ameters wer e xp = 7. 3 5 F and a = 0. 575 F,
and the outer electron configuration was 5f' 6d'
7s'7p'. For element .126, the nuclear parameters
were rp 7 45 F and a=0. 575 F, and the outer
electron configuration was 6f 7P66s

Since approximate methods may be used to pre-
dict the change in binding energy with Z and nu-
clear size, we have compared our calculations
with such methods for the K-shell binding energy.

TABLE III. Binding energies and Ka x-ray energies for
superheavy elements 114 and 126 (keV).

Binding energies Method I Method II

LD
LIII

200.770
40.209
28.210

201.389
40.295
28.252

X-ray energies

Keg (L ~-K)
Ku, (L&-K)

172.560
160.562

173.137
161.094

126

K
LIJ

269.667
58.305
35.715

270.418
58.403
35.735

X-ray energies

Ko.'g (LIII K)
Ku, (LII-K)

233.952
211.362

234.683
212.015

xp=7.35 F, a=0.575 F, exchange coefficient=1, RWS
=5 bohr.

b
Fp = 7 45 F, a = 0.575 F, exchange coefficient= 1, g~S

= 5 bohr.

The E binding energy has been estimated from
Dirac's solution for a one-electron ion" with a
point nucleus using as the nuclear charge ~ —o,
where o, the screening constant, has been esti-
mated' to be 0. 7 for heavy elements. The change
in binding energy due to nuclear size has been
obtained from the method of Breit" based on first-
order perturbation theory, where the 1s electron
densities were taken from our relativistic SCF
wave function for a point nucleus. We see from
Table IV that the more approximate methods yield
only crude estimates, and for elements with Z
above 137, calculations based on a point nucleus
give imaginary eigenvalues while the use of a
finite nucleus yields real eigenvalues.

Physically it is very easy to understand why
the finite nuclear charge distribution allows a
stable electronic configuration even when Z& 137.
In Fig. 1 we have plotted for Z=140 the net equiv-
alent charge seen by an electron at point x, which
is rV(r). As the electron moves within the nuclear
radius toward the center, it effectively sees less
positive charge, analogous to the classical case
of the charge seen by a test charge inside a homo-
geneous charged sphere. In the same figure, the.
modified major and minor components rg and rf
have been plotted for the 1s», electron. The max-
ima of the major and minor components lie well
outside the nucleus, and only a very small fraction
of the electron density distribution lies within the
nucleus. This fact refutes the usual heuristic
argument based on the Darwin expansion that as
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TABLE IV. Comparison of X binding energies (keV),
using SFC wave functions and approximate methods.

E (point nucleus)
E (point nucleus)

—E (finite nucleus)

Element HFSa
Approx&-

mate HFS
Approxi-

mate

Au 80 591
U 115 708
114 202 807
126 278 922
140 2'

91 629
129 906
223 523
304 559

pc

0.045
0.181
2.037
9.255

pc

0.051
0.34
4.5

37.2
'p C

Based on Hartree-Fock-Slater solutions for finite size (cf.
Table I and Table II) and the corresponding case for point nu-
cleus. The calculation of 140 is ba.'ed on the same parameters
as 126 except for the nuclear charge.

Approximate calculation for point nucleus based on Dirac
solution for one electron and finite Z. Finite nuclear correc-
tion obtained from first-order perturbation theory.

Impossible to make calculations based on point nucleus.

I'=N &. Z f, (f'+g')~'d~,elj (10)

140

120 "- 12

100 --—

80 ——

60

UJ

g 40

O
20 ——

6 o
I-
O

4

2

-20

-40

-60 ——

-80
10 2 5 10 2 5 10 2 5 10 2 5 10

r (Bohr radii)

Z is increased close to 137, the E electron will be
completely absorbed into the nucleus —that is not
the case at all. Rather, the finite nuclear charge
distribution pushes the electron out slightly in
comparison with a point charge.

It is of interest to compare the probabilities of
finding an electron inside the nucleus for the ele-
ments calculated with a finite nucleus. The prob-
ability, given by

where Nz~& is the number of electrons in:.shell nlj,
is listed for each element in Table V. The prob-
ability increases with Z, but not precipitously.
To a first approximation, the rate for allowed
electron capture is, in addition to other factors,
directly proportional to the probability for finding
an electron in the nucleus, " Apart from nuclear
considerations and taking into account the contribu-
tion of electron charge density within the nucleus
only, Table V suggests that the superheavy ele-
ments would not be so unstable with regard to
electron capture that it would be the determining
factor in their detection. For example, there is
only about a 20 times greater probability for find-
ing an electron inside the nucleus in element 126
than in uranium, which implies the same enhance-
ment for electron capture.

Since this is one of the first SCF relativistic
calculation made of the superheavy elements, "
it was thought interesting to include the eigenvalues
and mean radii for all the shells, although for the
outer shells such values have only a specialized
meaning dependent on the choice of configuration
and signer-Seitz boundary condition. In fact it
is possible to obtain eigenvalues with the opposite
sign, i. e. , unbound states, for some of the orbitals
because these electrons are artificially constrained
within the Wigner-Seitz sphere. (For convenience,
we have assigned in this paper a positive sign to the
binding energies and eigenvalues of bound states. )
For the lower shells (i. e. , K, L, M, and N) the
eigenvalues may be used with confidence for calcu-
lating x-ray energies. The nature of the outermost
shell does not greatly affect the energies of the in-
ner shell. Compare, for example, the calculations I

for the two configurations of element 126 in Table
VI. In addition, the difference in energy between .
the eigenvalues of nearly all but the outermost shell
(and, in consequence, the evaluation of the x-ray
energies) remains essentially constant. The same
result has also been noted for changes in the ion-
ization state" and Wigner- Seitz radius. '

Before concluding, we wish to point out that
some types of error which are negligible when
computing eigenenergies of light atoms are quite
important for the superheavy elements. For ex-
ample, the large relativistic effect observed within
the framework of the Dirac equation makes one
wonder about the importance of higher-order rel-
ativistic effects such as the vacuum polarization
and fluctuation. Any estimate of such effects
within the framework of existing perturbation
theory does not have any meaning for these ele-
ments. Particularly this cannot be carried out

TABLE V. Probability of finding an electron
inside the nuclear radius.

FIG. 1. Results from the solution of element 140 (cf.
Table VI for parameters). Upper curve: plot of net equiv-
alent charge {proton + electron + exchange potential) as
a function of radial distance r, when the net equivalent
charge is r times the potential acting upon a test charge
at r. ro =nuclear radius. Lower curves: the major
|r xg) and minor Px f) components of the 1sig2 wave
function [iJIg +f2) etch =1) as a function of r

Atomic
Number

79
92

114
126
140

Cf. Eq. {10).

fQ

(F)

6.38
7+33
7.35
7.45
7.45

Probabilitya
(%)

0.0014
0.0058
0.038
0.12
0.43
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TABLE VI. Eigenvalues and mean radii for elements 114, 126, and 140. a=eigenvalue; F=mean radius=J x)2dr,
where e & 0 corresponds to a bound state.

114a 126b 126 140

Shell e (eV) r (bohr) Shell e (eV) r (bohr) Shell e (eV) r (bohr) Shell e (eV) r (bohr)

1sg(2 200 770.2 0.009 494

2sgg2 41 150.2 0.038 89,
2pg(2 40 208.6 0.029 93

2p3(2 28 209.9 0.043 VQ

3s~/2 ll 067.5 0.103.42

3pg(2 10 582.4 0.095 27

3pe(2 7673.00 0.1198
3d3(2 6887.25 0.1020

3d~(2 6401.56 0.1086

4s~(2 3185.16 0.2220

4pg(~ 2942.38 0.2170

4p3/2 2108.53 0.2617

4d3/2 1725.13 0,2528

4d~(2 1593.16 0.2645

4f~(2 1090.29 0.2435
4f)(2 1051.22 0.2489

Gsg(2 838.59 0.4376

p 1/2 728.06 0.4433

5p3(2 485.19 0.5304
5de(2 322.89 0.5584

288.96 0.5840
6s~(2 156.46 0.8860

6pg(2 115.42 0.S3S4
Gf 5(r 2 96.435 0.6671
Gfg( p

89.047 0.6830

6ps(g 62.628 1.167

6/12 15.421 1.509

Vs~(2 12.024 2.191
6'(2 11.173 1.651

Vpg] 2
2.6025 2.464

1si(2 269 667.2
2s&(2 58 603.4
2pg(2 58 305.4
2p3/2 35 715.1
3s&/2 16 139.8
3pi(2 15 734.9
3p3/2 1Q 171.4
3d3/2 9243.29

3d~(2 8473.00

4s((2 4916.16
4p~(2 4663.80

4ps/2 3017.48

4d3(2 2553.34
4d~/2 2332.57
4f ~/2 1730.81
4f7/2 1663.65
Gs

Gpi/2 1327.27

5ps/2 812.92

Gds(2 604.22

5d5(2 540.83

6s(/2 361.08

6p((2 303.37
5f~(2 286.79
Gf )/2 270.73

6p3(2 161.86

6d3(2 84.872

6ds/2 71.084

7s&/2 57.789

Vpi/2 38.537

7p3(2 13.137

Ssi(2 5.936
6f )(2

—1.355

0.007 562
0.030 95
0.022 42
0.038 80
0.084 45
0.076 11
0.105 47
0.089 23
Q.QS6 47
0.1822
0.1754
0.2275
0.2178
0.2301
0.2088
0.2144
0.3540
0.3529
0.4478
0.4615
0.4856
0.6755
0.6945
0.5171
0.5295
0.8938
1.010
1.073
1.384
1.506
2.108
2.416
1.701

1s~(2 269 651.5
2s~(2 58 586.9
2p)(2 58 289.2
2p3(2 35 698.3
3s&/2 16 121.4
3p)/2 15 716.8
3p3/2 10 152.1
3d3(2 9224.67
3d 8454.10
4si/2 4894 17

4p~(2 4642.02

4p3(2 2994.67

4d3/2 2530.74
2309.81

Q 5/2 1708.42

7/2 1641.15
5s 1435.04
5p 13Q4,76

GP./. 792 19
5d3/2 583.91

5/2 521.11
6s~/2 346.59
6p )(2 289.40
5f 5(2 267.96
5f 7(2 252.22

6p3(2 152.62

6d3/2 77.609
6d ~/2 64.722

Vs)/2 . 54.499
7p )(2 35.928

7p3(2 12.268
Ss g(2 5.857
Q' )(2 -3.457
Gg 7( -5.488

0.007 562
0.030 10
0.022 42
0.038 80
0.084 44
0.076 10
0.105 46
0.089 22
Q.096 45
0.1821
0.1754
0.2274
0.2177
0.2300
0.2087
0.2143
0.3542
0.3532
0.4489
0.4631
0.4876
0.6810
0.7011
0.5217
0.5345
0.9076
1.035
1.101
1.413
1.544
2.157
2.405
1.838
0.7590

1s~/2 388 124.7
2p,(, 97 940.0
2s&/2 91 310.5
2p3/2 45 883.4
3p(/2 26 433.1
3s((2 25 546.6
3p3/2 13 837.1
3d3(2 12 716.6
3d5(2 11 469.4

8322.VO

4s
&/2

8258.56

4p3(2 4532.39
4d3(2 3965.86
4d (2 3590.03
4f ~/2

2869.14
Gs

&/2
2822.47

5p (( 2770.42
4f (2 2753.44

Gp3/2 1521.36

Gd3(2 1253.78
Gd5/2 1135 44
6s &/2

983.10
6p,(, 93V.43
5f )(2 808.58
Gf 7/2 776.15
6p 3/2 536.31
6d3/2 422.67
6d 5/2 388.82
Vs

&(&
380.16

7p (/2 355.43
6f 5/2 262.46
7p 3/2 235.47
Ss ((2 190.35

0.005 462
0.013 77
0.022 69
0.034 14
0.054 86
0.064 87
0.092 03
0.077 33
0.085 34
0.1316
0.1426
0.1963
0.1865
0.1996
0.1790
0.2760
0.2654
0.1850
0.3772
0.3824
0.4060
0.5076
0.5010
0.4155
0.4266
0.7057
0.7576
0.8038
0.9278
0.9376
0.9288
1.3070
1.6270

aCalculation based on relativistic Hartree-Fock-Slater (HFS) solutions where r0=7.35 F, a = 0.575 F, RWS=G. O bohr

radii. Exchange coefficient =1.0, configuration 5f, 6d, Vs, Vp .
Calculation based on relativistic HFS solution where ro= V.45 F, a =0.575 F, RES=5.Q bohr radii. Exchange coeffi-

cient =1.0, configuration 6f, 7p, Ss .
cCalculation same as b except configuration Gg, 6f ., Vp, 8s .
dCalculation based on relativistic HFS solution where ro =7.45 F; a = 0.575 F, RES=5.0 bohr radii, exchange coeffi-

cient=1.0, configuration 6f6, 7p, Ss (+14 ion).

for S= 140. A possible estimate of these in terms
of perturbation calculations based on our computed
wave functions is beyond the scope of this paper,
although it may be necessary if the experimentally
observed x rays have resolutions better than 1%.

CONCLUSION

It is now possible to obtain relativistic SCFatomic
wave functions for the superheavy elements, includ-
ing exchange and finite nuclear size. It has been

further shown that such calculations can also be
made for el:ements higher than 137. If and when
these elements are produced, good values of the
x-ray energies and binding energies will be avail-
able to help in their identifications. Further, if
good experimental binding energies are obtained,
it will provide an important challenge to atomic
structure calculations because of the great en-
hancement. of effects caused by the relativistic
velocity of the inner-shell electrons and the no
longer negligible nuclear size.
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