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High-Energy Proton Scattering and the Structure of Light Nuclei*
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The elastic and total cross sections of 1-BeV protons on H', He', C", and 0"are analyzed, in conjunction
with the corresponding electron scattering measurements, on the basis of Glauber s high-energy approxi-
mation. This leads to information which cannot be obtained from the electron data alone.

I. INTRODUCTION

~~~VER the past fifteen years, high-energy electron
scattering experiments have provided much

valuable information on the structure of nuclei. ' For a
light nucleus, this electromagnetic interaction seems to
be reasonably well described by the first Born approxi-
mation, apart from quite small corrections arising in the
vicinity of minima in the angular distributions. For
elastic scattering, however, the Born approximation
depends only upon the charge distribution in the
nucleus, that is, upon a single-particle density function.
It is seen, therefore, that the results of elastic electron
scattering can shed no light on the possibility of nucleon-
nucleon correlations in the nucleus. The effects of such
correlations can be important if we consider the transi-
tions to excited levels in the nucleus. For example, using
the closure approximation on the final nuclear states
and summing over both the elastic and quasielastic cross
sections, it is possible to get an expression which depends
upon a two-particle rather than a one-particle density
function. However, the evaluation of this sum rule is
dificult experimentally. Corrections have to be made
for bremsstrahlung and pion production, and even then
the result is found not to be too sensitive to the correla-
tion function. To investigate clearly this correlation, we
really need a probe which has an appreciable probability
of interacting at least twice as it passes through the
nucleus. Simple geometric arguments of the solar-
eclipse genre suggest that for a 1-BeV proton the ampli-
tude for a second interaction might be of the order of
2OPo of the single-interaction term in the forward
direction even for a nucleus as light as He'. This figure
rises to around 50% for 0".More important still, it
will be shown in Sec. II that for elastic scattering the
double-interaction amplitude falls off more slowly with
angle away from the forward direction than does the
single. It is more economical to compound a large-angle
proton-nucleus scattering from two smaller deQections
rather than just one large-angle proton-proton scatter-
ing. There are thus regions of the angular distribution
where the double scattering predominates. In the inter-
ference region where the single and double scattering
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are comparable, the shape of the cross section depends
critically on the relative phase. Since at these energies
the proton-nucleon amplitudes are dominantly imagi-
nary, it can be shown that this interference is primarily
destructive. This leads to a typical diffraction pattern,
the first minimum being due, in the main, to the inter-
ference between single and double scattering, the second
to double and triple, etc. The sensitivity of the positions
of the minima, and the heights of the subsidiary
maxima, on the nucleon wave function is of great
practical importance in the analysis of the experimental
data.

In the hope of discovering more about the structure
of nuclei in general and correlations in particular, the
Brookhaven group performed a series of experiments
with a beam of 2-BeV protons. ' A great many data were
accumulated on the elastic differential and total cross
sections in H D) He, C" 0' as well as on the excita-
tion of various nuclear levels, nuclear breakup, (p,d)
and (p, 2p) reactions, etc. To separate, say, the 4.4-MeV
state of C" from the ground state, very good resolution
is required. This was provided in these experiments by
the high angular resolution of wire spark chambers in
conjunction with the extreme energy stability of the
external beam of the Cosmotron.

It is the purpose of the present paper to make a
detailed analysis of the elastic-scattering and total
cross-section results under the assumption that the
nuclei in question are spherical. We defer to a later
paper problems associated with nuclear deformation
which are particularly important in the case of carbon.
A preliminary attempt is also made to understand the
excitation of the first 2+ state in carbon.

The dynamical basis of our calculation is the multiple-
scattering model proposed many years ago by
Glauber. '—' This is described in detail in Sec. II and is

'H. Palevsky, in High Energy Physics and Nuclear Structure,
edited by G. Alexander (North-Holland Publishing Co. , Amster-
dam, 1967), p. 151;H, Palevsky et al. , Phys. Rev. Letters 18, 1200,
(1967); G. W. Bennett et al. , ibid. 19, 387 (1967); G. J. Igo et al. ,
Nucl. Phys. B3, 181 (1967); H. Palevsky and J. L. Friedes
(private communication).
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W. E. Brittin and L. G. Dunham (Interscience Publishers, Inc. ,
New York, 1959), Vol. 1, p. 315; Phys. Rev. 100, 242 (1955).

4 V. Franco and R. J. Glauber, Phys. Rev. 142, 1195 (1966);
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there applied to a simplified model of the nucleus. An
exposition of the theory in terms of diagrams can be
found in Sec. III, where the nature of the approxima-
tions is presented in greater depth. Section IV deals
with the modifications to the simplified model which
are necessary to explain the helium results. Included
there also is an analysis of the proton-proton cross
section and ways to pararnetrize it. Oxygen is discussed
in Sec. V in terms of both a simple product ground-state
wave function and an antisyrnmetrized wave functior. .
A similar approach is then tried for carbon. Although
at first sight the case of deuterium would appear to be
the most simple, there are in fact complications and it
will be dealt with last, in Sec. VII. Section VIII is
devoted to a summary of our results and to some
thoughts about future experiments and calculations.

II. GLAUBER THEORY OF HIGH-ENERGY
SCATTERING

formations are extremely simple, ' and so (2.1) or (2.2)
should also be valid in the laboratory system, provided
that we interpret k as the laboratory momentum and

(2.4)

We must, however, keep the c.m. relation

g2 t

o r——(4'/k) ImL f(0)]. (2.6)

Provided that the scattering is only through small
angles, the impact-parameter transform, Eq. (2.1), has
the approximate inversion

Thus in all our formulas g' must finally be interpreted
as the four-momentum transfer and not the three-
mornentum. With our normalization, the optical
theorem becomes

The most prominent feature of high-energy scattering
of strongly interacting particles is the very strong
forward diffraction peak. The description of this phe-
nomenon on the basis of a partial-wave expansion would
require very many terms with a conspiracy of delicate
cancelations. On the other hand, this feature occurs
quite naturally in the same semiclassical picture of
scattering. ' ' We there think of a particle trajectory
passing through an absorbing sphere and giving rise to
a diffraction pattern, in complete analogy with classical
optics. The trajectory in this type of model is specified
completely by the classical impact parameter b. Con-
sequently, if we assume that the elastic proton-proton
amplitude is spin-independent, then we can write down
a representation for it in terms of the impact parameter:

where the integration is over a plane perpendicular
to k. A more precise inversion would involve the inte-
gration over the surface of a sphere which more accu-
rately represents the locus of the momentum transfer p
for fixed energy and varying angle. The correction due
to this will be quite small, provided that f(q) is sharply
peaked forward and we do not look at too large angles.

All that remains to do now is calculate the phase
shifts &(b). In optical calculations one assumes that the
total phase shift as a photon passes through a lens, for
example, is just the sum of the infinitesimal phase shifts
6X taken along the trajectory r. In fact,

f(q) =
(2~)

d"'b e'q' (1—e""' ') (2 1)

where the integration is over a plane perpendicular to
the beam direction. But because of the assumption of
spin independence the phase shift X(b) depends only
upon the magnitude of b, so that the representation
(2.1) simplifies to

f(q) =ik bdb Jo(qb)(1 e»x(b)) (2.2)

This description can be obtained by writing down the
partial-wave expansion in the c.m. frame and identifying
the impact parameter in terms of the angular
momentum by

(2.3)

Equation (2.2) then follows if one goes to the limit of
high energies and small scattering angles. Although in
this way we can justify the representation for the c.m.
system, for small scattering angles the relativistic trans-

AX= n(r)k(r) br, (2 g)

where m(r) is the local refractive index and k(r) is the
local wave vector. The crucial part of Glauber's theory
is to assume that a good approximation to the phase
shift can be obtained, not by adding up the elemental
phase shifts along the true trajectory, but rather along
a straight line, along the undeviated beam direction.
This implies that the phase shift due to a lens is inde-
pendent of whether or not there is other refracting
material around or not. As a consequence, the phase
change at impact parameter b due to a two-lens system
is just the sum of the phase shifts of each lens taken
separately, of course at the appropriate values of the
impact parameters.

Let us now. consider the scattering of protons from
an ensemble of nucleons inside a nucleus. Suppose that
during the passage of the fast particle the motion of the
positions r; may be neglected. The arguments of the
preceding paragraph lead one to postulate that the
nuclear phase shift for a particular configuration
r j, ,r~ of the nucleons is just the sum of the individual
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phase shifts
A

x»&(b, ri, ,rA) =Q x,(b—s,),
j~l

where e, is the component of r; perpendicular to the
beam (see Fig. 1).

For convenience define the operators

for the nucleons and

(2 1O) FIG. 1. Proton-nucleus scattering at imp pact arameter b is
compoun e ou od d t f many proton-nucleon scattering at impac
parameters 1—s;.

r&(b ri. . . rA)
—(1 &&'x»«b, i," .rA&) (2 11)

f th cleus. Now since we do not observe the posi-
tions of the nucleons in the nucleus we must average e
scattering operator I'~ over th phe ositions of the A
nucleons. However, this operator can generate not only

catterin but also transitions to other states o
2 3—1. Hencethe A-nucleon system, such as A(p, 2p)A —1. ence

if ~i) is the initial ground state and
~ f) is th~ is the final

ground or excited state of the nucleus, then the transi-
tion amplitude becomes

e'& bd &'&b(f
~
r»&(b,ri, rA)

~
i) . (2.12)

W have a sufhcient dynamical basis to performe now av
a calculation of proton-nucleus scattering, given e
proton-nucleon amplitudes. The latter are fed into the

-h d ide of (2.7) to give the proton-nucleon
pact-parameter amplitudes, which, using ( . anlmpac-

(2.11) lead to the proton-nucleus impact-parame
amplitude. The circuit is closed by q. ~ .amp

' . ' ' ' E . (2.12), which
l' de. Thisgives the proton-nucleus scattering amplitu e.

procedure can be summarized in one equation:

/ik ~
f,(q) =

~

—
~

&,
'&'d '&b d'r, .d'rA

&2~)

«1
xkq &r4,r~&il"'I —zr;)

X&P,(ri, ,rA), (2.13)

h e»' is the wave function of the initial (final)
learnuclear state. The over-all delta function in the nuc ear

c m variable Zr, ensures that the 6nal nucleus is in a~ ~

state of well-de6ned momentum. ' Because of this
condition the wave functions &P have to be calculated
with respect to the c.m. of the nucleus. Most of the rest
of this paper will be devoted to the application of this

. Gl b, ' H' h Energy Physics and Nuclear 5trgctzfre,
edited by G. Alexander (North-Holjand Publishing Co„ms er-
dam, 1967), p. 311,

I

equation to the various nuclei studied by the Brook-
haven group. 2

It cannot be emphasized too strongly that in deriving
E . (2.13) we explicitly neglected the spin depen ence
of the nucleon-nucleon amplitude, and

W

nd treated the
isospin in a nonrigorous way. )'If the product over the nucleus j in q.E . 2.i3 is
expanded, then we see that the nuclear amplitude F can
be represented as a polynomial in the nucleon amplitu e

f. This can be interpreted as a multiple-scattering
expansion; e

'
n the lowest order is single scattering, second

rder oforder is double scattering, etc. But since the order o

scattering. e p ysii . The h sical reason for this is that since
the proton-nucleon amplitudes are assumed to e very
sharpiy pea e in e1 k d the forward direction, it is unlikely
that the proton would scatter from nucleon 3 to an
back to A again.

west-orderA articularly simple result holds for the lowest-or er
the so-called impulse approximation. Here one

of the Fourier transforms is the inverse o e o
and we are left with

Ff '(&1) p f'(&1) 8 i &pf (ri ' ' ' rA)&p'(ri ' ' ' rA)

X&&'&~ —&r; ~d'ri, ,d'rA. (2.14)
(1

In this approximation the proton-nucleus amplitude is
proportiona o sol t me proton-nucleon amplitude multi-

1' d b a form factor. For a light nucleus, Eq. ( . )pie ya or
~ ~

ut for awould describe electron scattering quite we, ut fo
strongly interacting particle the multiple scatterings
lnvo ve
likel for the light nuclei we are concerned with that e
proton and neutron distributions in the nucleus are
very similar, that is, isospin is a good quantum number.

I. t study a rather oversimplified mode o a
onl thenucleus. For elastic scattering, we require ony e

density distribution of the ground state:

p(ri ' ' rA) 4'g (rl ' ' rA)4'g(rl ' ' ' rA) (

We now make the drastic assumption that the nucleons
in the nucleus are completely uncorrelated, so that t e



1182 R. H. BASSEL AN D C. KILKI N

IO3

IO

discussed in detail in Sec. IV, for not too large values
of ItI Lsay, less than 0.4 (BeV/c)'j, the proton-proton
cross section falls exponentially with

I
tI. Therefore,

we take

f (V) =( i ~/4 )(1 p,—)e-'"'". (2.19)

IO

E IO'

b

IO-'

By taking 0; as the total proton-proton cross section,
Eq. (2.19) satisfies the optical theorem (2.6). Note that
the relative real part of the amplitude p; is taken as
being independent of momentum transfer q. Since the
present model is so simplified, let us go even further
and forget the difference between protons and neutrons.
Thus the parameters o, p, and P of Eq. (2.19) are taken
to be the average of those for neutrons and protons.
This parametrization can be fed into Eq. (2.18) to give

IO'
0

-t (BeV/c)

l.5

'lk 'l
I'(q)= —Ie"1'" ' e"' d& &b

2~)

Fio. 2. Differential cross section for elastic proton-He scattering
at 1 BeV; the experimental data are from Ref. 2. The theoretical
predictions are from Eq. (2.21) with o.'=0535 F ' p'=545
(BeV/c) ', a=44 mb, and p= —0.3. Curve 1 represents the
contribution of single scattering (impulse approximation), curve 2
represents single plus double, etc.

density function factors into the product of A terms

p(rt, ,rg) =y(rt)x xp(rg) . (2.16)

Inserting this into Eq. (2.13) we see that all the r, inte-
grations would factorize if it were not for the c.m. delta
function. By use of an ingenious transformation due to
Gartenhaus and Schwartz, it is possible to remove this
delta function, but the result is only simple if we are
dealing with harmonic-oscillator wave functions. We
therefore take all the A nucleons to be is bound states
in a harmonic well of range 1/n. Then

p(f ) (ns/~)size a~rs— (2.17)

The Gartenhaus-Schwartz prescription is now to
neglect the delta-function constraint and multiply the
remainder by e p(qx'/4A ') nThis rec.ipe is also valid if
the nucleons are in V' or higher waves and we shall have
occasion to use it again elsewhere. With these assump-
tions the proton-nucleus elastic amplitude (2.13)
becomes

P(q) — eq&/4Aa& e~ sbd(2)h'
(2~)

X 1—g
2m'k

Xe "' '""'f(C') . (218)

To go much further we must have some parametrization
of the nucleon-nucleon amplitudes f, As will b. e

8 $, Gartenhaus and C, LSchwartz, Ph, ys. Rev, 108, 482 (1957),

o(1—ip)n'expL —n'b'/(1+2 n')8')]»—III1—
2~(1+2n')8')

(2.20)

— o(1—ip)n' -'
2rr (1+2n'P')

(1+2n2Ps)q2-
exp —- (2.21)

This formula, first derived by Cysz and Lesniak, ' has
all the general properties associated with more compli-
cated models of the nucleus. As was stressed earlier, it
is a polynomial in the nucleon-nucleon interaction, the
expansion parameter being roughly X=on'/2s. . This is
because the relative real part p is comparatively small
at these energies and the proton size ( P') is much less
than the nuclear size ( n ') If we put i.n typical num-
bers for proton scattering off He4, using the value of n'
deduced from electron scattering, we find X 0.25. In
the forward direction, therefore, the single-scattering
terms are the most important, but examination of the
exponent in (2.21) shows that single scattering falls off
more rapidly with angle than does double scattering, so
that some value of q' the double- and single-scattering
contributions will be equal in magnitude. For larger q'
the double will be dominant until, for even larger q',
the triple takes over, etc. As was remarked above, at
these energies p is quite small (at most 30'Po). Conse-

' W. Cysz and L. Lesniak, Phys. Letters 248, 227 (1967); W.
Cysz, in High Energy Physics and nuclear Strnctgre, edited by
G. Alexander (North-Holland Publishing Co. , Amsterdam, 1967).

'0 R, H, Bassel and C, Wilkin, Phys. Rev, Letters 18, 871 (1967).

Since there is no explicit j dependence in the product
of Eq. (2.20), this simply becomes a, quantity to the
power A. This can be expanded in a power series in r
and the Fourier transforms done analytically.

A (—1)'+'

j
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quently, the (—1)'+' factor makes the odd scatterings
be principally out of phase with the even ones. If p were
zero, then the amplitude would have zeros, but with

p 0.3, the resulting cross section just shows sharp
minima. The application of Eq. (2.21) to the case of
He4, viz. , A =4, o.'=0.535 F ', is shown in Fig. 2. This
compares to the experimental data of Ref. 2 with (1)
keeping only the impulse approximation, (2) keeping
both single and double, etc. Even with this simple
model, the qualitative agreement with the data is
remarkable. The magnitude and slope of the primary
diffraction peak are well 6tted, as is the total cross
section (143 mb as against an experimental value of
152&8 mb and the impulse-approximation value of
176 mb). Even more encouraging, the position and
magnitude of the 6rst minimum are in very good agree-
ment. The larger-angle data diverge quite drastically
from the theoretical prediction. One can now take the
somewhat negative attitude that since the Glauber

approximation was only justi6ed for small angles,
better agreement shouM not be expected. In Sec. IV
we shall take the opposite approach and assume that
the theory is valid to larger values of q' and ascribe the
deviations in Fig. 2 to the poor quality of the nuclear
model. Hopefully this enables us to say more about the
wave function of He4.

In order to illustrate more features of the multiple-
scattering formalism, let us calculate the total nuclear
cross section from Eq. (2.21) with the simplification
p=O P'=0

2 (A (—1)'+' ')'
o iv=-

n' ~=i kg j 2~
(2.22)

By differentiating this with respect to o. and then
reintegrating, the following representation is obtained:

2m- 'do' f o'n' "
1—i1-

cx p 0 — 5 27I

(2.23)

2vrA 'I' ~ do-' ( co'A "'
1—exp~ — — . (2.25)

This can be approximated by

Consider now the limit of a large nucleus for which the
number of nucleons A tends to infinity but at constant
density

A = c/n'. (2.24)
Then roughly

FIG.3. Graphical representa-
tion of the impulse approxima-
tion to elastic proton-deuteron
scattering.

For larger o- or A the cross section is proportional to
A'", as common sense tells us it must be. The presence
of an extra logarithmic factor is due to the lack of
saturation of the Gaussian density. For a uniform
density of range R the logarithm is absent. "

III. DIAGRAMMATIC FORMULATION
OF GLAUBER THEORY

In order to illustrate the approximations that were
made in Sec. II and in the hope of improving upon them,
it is instructive to have a diagrammatic derivation of
the theory. Such a derivation has already been given
for the specific case of a deuterium nucleus, "but the
extension to more complicated nuclei appears to involve
merely tedious algebra.

Consider first the impulse approximation to proton-
deuteron elastic scattering. The deuteron virtually
dissociates into a neutron-proton pair, the two protons
scatter, and the deuteron is reformed. This is illustrated
in Fig. 3. There will, of course, be a similar contribution
with the roles of the proton and neutron in the deuteron
reversed. The crucial point now is that if Fig. 3 is
interpreted as a Feynman graph, then in a certain
approximation it can be calculated and leads to the
same result that can be found in one of Glauber's
papers. Following Ref. i2, we write the amplitude as
a four-dimensional Feynman integral. This is most
conveniently calculated in the Breit frame where the
deuteron momenta before and after the scattering are

(—+/2)'" and —(—+/2)'". Note that in this system,
as in the c.m. frame, we have the relation

(3 1)

Provided that q is small compared to the mass of the
nucleus, we can then forget the Lorentz contraction
and still treat the nucleus as spherically symmetric
(neglecting the small d-state admixture in the deuteron).
It is in the spirit of the Glauber theory that while the
two protons are interacting, the neutron is completely
unaffected. Remember the lens analogy. Ke therefore
replace the neutron propagator associated with the
neutron of Fig. 3 by a delta function. In the simple case
where all the nucleon spins are ignored, this leads to
an amplitude

ln 1+
C 27'

(2.26) f:(q)= d'q'f. .(il) v*(q' —lq) ~(q'+-'q), (3 2)

For very small o- the logarithm can be expanded and
the impulse result recovered, where the nuclear cross
section is proportional to A, the number of nucleons.

"B.M. Udgaonkar and M. Gell-Mann, Phys. Rev. Letters 8,
346 (1962)."E.S. Abers, H. Burkhardt, V. L. Teplitz, and C. Wilkin,
Nuovo Cimento 42, 365 (1966); Phys. Letters 21, 339 (1966).
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FIG. 4. Graphical repre-
sentation of the elastic
double-scattering contribu-
tion to elastic proton-
deuteron scattering. In the
Glauber approximation, the
three particles marked with
a cross are taken to be on
their mass shells.

where q' is the Fermi momentum of the neutron and q
is the deuteron wave function in momentum space. If
the spectator neutron is on its mass shell, then obviously
the interacting proton can not be. Any o6-mass-shell
correction is neglected and the physical proton-proton
amplitude is fed into the right-hand side of Eq. (3.2).
However, this amplitude is required at an energy which
is a function of both the incident proton momentum
and the Fermi momentum q'. In Sec. II the target
nucleons were taken as frozen in their positions during
the projectile's passage. This corresponds to taking
f»(q) out of the integration at an energy corresponding
to q'=0:

(3.3)

where S is the deuteron form factor. This is the same
result as we shall obtain later using conventional
Glauber theory, Eq. (7.4). The approximation of
neglecting the Fermi motion can be very misleading if
there is a resonance in the direct channel. "Note that
the situation does not necessarily get better at higher
energies. Disregarding this problem, the relationship
between the c.m. energies for f» and f„q in (3.3) is not
universal; it has some slight dependence upon q. This
dependence, which is connected with the restriction
applying to Eq. (2.7), is very weak for small scattering
angles.

A graphical representation also obtains for the re-
scattering corrections. In one such term the deuteron
dissociates, and the immigrant proton interacts first
with the neutron and then with the proton before the
deuteron reforms; see Fig. 4.

As before, while one nucleon is interacting the other
one is supposed free. A more questionable assumption is
that in between the two scatterings, the fast proton also
is on its mass shell. This could perhaps be justified if the
proton and neutron were far apart compared to the
high-energy proton-nucleon force, a situation which is
better approximated by the light nuclei, which are

mainly surface, than by the heavier ones. After replac-
ing the three propagators by delta functions and
neglecting the Fermi motion, the results of Sec. II are
reproduced.

A diagram which is very similar to that of Fig. 4 is
that shown in Fig. 5. Here both nucleon-scattering
amplitudes involve charge exchange, " a possibility
which was implicitly neglected in the simple derivation
of Sec. II. However, the amplitude associated with
Fig. 5 is simply related to that of Fig. 4 by isospin
considerations. If the latter amplitude is proportional
to f 'f " then the former goes as (f "—)' the
minus sign arising from the interchange of an e-p pair
at a deuteron vertex. Since there is only one graph of
the charge-exchange type, but two purely elastic ones,
a simple prescription to take account of isospin is to
make the following replacement in the double-scattering
amplitude as calculated in Secs. II or VII:

Since charge exchange becomes quite small at high
energies, the additional term is not large and can
probably be neglected entirely above about 2 GeV/c.
Note that expression (3.4) is true only for protons on
deuterium, but the techniques can be extended to other
systems. The corrected formula for p-He' will be used
in Sec. IV.

Similar considerations also apply to coherent double
spin Aip. In contrast to isospin, at these energies one has
very little idea of the spin structure of the nucleon-
nucleon amplitude, so that no simple expression like
(3.4) can be written down.

%e should like to stress that the ability to describe
spin and charge degrees of freedom is not the privilege
solely of the diagrammatic formulation; the ordinary
eikonal method can be generalized to many channels to
include them. "But the former is much easier to apply.

One place where diagrams seem essential is where
there is a truly inelastic intermediate state, such as the
E* contribution of Fig. 6. There are two big problems
about calculating such contributions: the phase of the

pp —+ pcV* amplitude is unknown, and the kinematics
resulting from an E* mass different from that of the
proton is much more complicated. This mass difference
introduces a minimum momentum transfer in the

pp —+ pcV* reaction,

q.„„=(M~' —m')/2k. (3.5)

Inserting the mass of the 3-3 resonance, it can be seen

Fro. 5. Graphical repre-
sentation of the double
charge-exchange contribu-
tion to elastic proton-
deuteron scattering.

"R.L. Cool, G. Giacomelli, T. F. Kycia, B. A. Leontic, K. K.
Li, A. Lundby, J. Teiger, and C. Wilkin (to be published).

Fzo. 6. Graphical repre-
sentation of a truly inelastic
double-scattering contribu-
tion to elastic proton-
deuteron scat tering.

"C. YVilkin, Phys. Rev. Letters 17, 561 (1967)."R. J. Glauber and V. Franco, Phys. Rev. 156, 1685 (1967).
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that this restriction severely cuts down the S* con-
tribution at smaller angles; the probability of two
relatively large scatterings canceling is very small. The
problem of larger angles, say, q 2q;„or even backward
scattering remains unsolved.

The principal result of this section is, hopefully, a
clarification of the Glauber approach, especially with
regard to charge and spin variables. There is also a
series of cautions about the use of the model, especially
away from t= 0. In this context it is interesting to note
that a Regge behavior of the nucleon amplitudes is in-

compatible with Glauber's theory. "As the energy rises,
the effective size of the target proton increases in a
Regge model, so that at some point the approximation
of putting the fast proton on its mass shell breaks down.

In the main, these problems will be neglected in the
applications of the succeeding sections. They should,
however, be borne in mind in assessing the value of any
results obtained.
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then P'=5.45 (BeV/c) '. A generalization of this repre-
sentation to include terms quadratic in t in the exponent
is often to be found in the literature. A minimization
routine then leads to a cross section proportional to

IV. PROTON-He4 SCATTERING

In this section we shall endeavor to improve upon
the results for p-He4 scattering shown in Fig. 2. We first
study the nucleon-nucleon amplitude. Shown in Fig. 7

are the data of the Brookhaven group' for proton-proton
elastic scattering at 1 BeV. As can be seen, a straight
line on this semilogarithmic plot fits the data very well
indeed out to 1=—0.45 (BeV/c)'. lf the cross section is
represented as

FIG. 7. Forward-angle elastic proton-proton cross section at
1 BeV. The experimental points of Ref. 2 are approximated by the
linear and quadratic forms of Eqs. (4.1) and (4.2), respectively.

plicity then we take

f„„(t)= (iso i /4') (1—

ipse

)e
—s'~'~ ", (4.3)

with" crI 47 Sm——b, P.
'=5.45 (BeV/c) ', pi = —0.05.

The size of this last parameter is consistent with a
Coulomb-nuclear interference measurement. " It is, of
course, by no means certain that p is independent of
angle, but the introduction of too many parameters
reduces the theory to the level of curve fitting. In the
absence of any experimental evidence to the contrary,
we shaH take P' the same for proton-neutron as for
proton-proton, but use different estimates for 0 and p.

d&r/dQ exp( P'
~

t
~

+—y'1') (4.2) (4.4)

with P'=6.67 (BeV/c) ' y'=2. 64 (BeV/c) '. The
difference between the two forms is not very great (see
Fig. 7) until quite large values of t, for which Glauber's
theory is of doubtful use. A more plausible description
of the data than (4.2) would take account of the sym-
metry of the proton-proton cross section about 90' in
the c.m. frame.

Both the linear and quadratic forms when extrapo-
lated to t=0 lie above the optical point, the former
by 8%, the latter by 17%. On the other hand, the
forward-dispersion relations predict that the relative
real part of the amplitude p —0.05&0.1, so that
curves should pass extremely close to the optical point.
However, the Brookhaven data have quoted errors in
the absolute normalization of &10%.The above value
of p is in good agreement with an evaluation of the
t oulomb-nuclear interference effect in a recent proton-
proton small-angle scattering experiment. " For sim-

"L.M. C. Duttott et al. , Phys. Letters 2SB, 245 (1967).

with o.„=40.4 mb, P'=545 (BeV/c) '
p = —05 A

value for p can be deduced from dispersion relations, "
or equally indirectly by analyzing small-angle proton-
deuteron scattering. " Both methods yield p„~—0.5
&0.15, which is consistent with the forward neutron-
proton charge-exchange data. "Using this value of p„,
O„can be deduced from the proton-deuteron total cross
section, as will be discussed in Sec. VIII. %e take
0.„&——83.04+0.06 mb, where only the statistical error.
is quoted.

These parametrizations of the nucleon amplitudes
can be used in the description of the helium data. Keep-
ing the same simple nuclear model as in Sec. II, repre-
sented by the density function (2.16) and (2.17), we can
also take account of Inultiple-charge-exchange eGects.
However, any improvement on the predictions shown
in Fig. 2 is at best marginal. The discrepancy is largest

' D. V. Bugg el, al. , Phys. Rev. 146, 980 (1966)."D.V. Bugg and A. A. Carter, Phys. Letters 20, 203 (1966)."J.L. Friedes et al., Phys. Rev. Letters 15, 38 (1965).
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density function. '0 However, recent experiments at
Stanford" have now found a sharp minimum in the
form factor for g ].0 F ) which is clearly at variance
with a Gaussian form (see Fig. 8). A plausible
hypothesis, which might explain both the proton and
electron results, is that the simple product density (2.16)
has to be modihed to forbid the close approach of any
two of the nucleons in the nucleus. This nucleon hard
core can be introduced into the density function via a
Jastrow correlation function g(r;;),

»(r~, r4) =II p(') II L1-g(lr' —r I)& (4 ~)

X
0.0 I

with the subsidiary conditions

g(r) ~0 as r~ ~;
if the core is really hard, then

(4.6)

(4.7)
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Since for small q' the electron data are consistent with
a Gaussian density, we can, as before, try

p(r,)=e- '"" (4.8)

and ascribe all the deviations of the charge density to
the Jastrow function g. This is, however, an assumption
and if, for example, it reproduces the Stanford data it is
not in itself evidence for a correlation. Since it is doubt-
ful whether the experiments, as yet, are very sensitive
to the shape of g, for computational simplicity we take

FIG. 8. Elastic electron-He' form factor; the experimental data
are from Ref. 21. The solid curve is evaluated using the double-
Gaussian density (4.11) with a~=0.579 F ', p'=0.308, and
D =0.858. Introducing a correlation via Eq. (4.10) with C= 1,
a'=0 573 F ', and 5'=1,552 F ' leads to the dashed curve.

g(r") = Ce-"" ~' (4.9)

where C=1 for a hard core. The distribution then
becomes

in the height of the subsidiary maximum; no reasonable
variation of the parameters could remove the factor
of 2 between theory and experiment. This discrepancy
could perhaps be due to the neglected spin-dependent
parts of the nucleon-nucleon amplitude. As we have
discussed previously, spin-dependence involves the
invocation of four additional independent complex
functions. Therefore, it seems worthwhile to ignore
these and explore the consequences of reining the
nuclear model for He4. Examination of Fig. 2 shows
that the height of the subsidiary maximum is over-
estimated if triple scattering is neglected, but under-
estimated if it is included. Provided that we can change
the nuclear density to reduce somewhat the double
scattering but reduce even more the triple, then a better
6t would obtain. Since the multiple-scattering develop-
ment is roughly an expansion in 0 (r,; '), where r,; is the
distance between two of the nucleons in the nucleus, we
can get the required eRect if we increase the average
nucleon separation in the nucleus. There is one extra
piece of information. The electron-scattering results for
small q' were consistent with a Gaussian shape for the

=cVge '"'g
t 1—C exp( —5'r, )]. (4.10)

To check whether the data are really dependent upon
a correlation, it is important to try to interpret the
experiments by modifying only the single-particle
densities and dropping the correlation. Now if the
nucleon-nucleon hard core is of long range, we might
expect that this would result in some decrease of density
in the middle of the n particle. Four strongly attractive
billiard balls have a tetrahedron as their lowest energy
state and this has zero density in the middle. Therefore,
we want to reduce p(r) for small r. An example of this
type of model is

pDG(r&, ',r4)

=cV Q exp( —n'r')L1 —D exp( —n'r'/y')j (4.11)

"G. R. Burleson and H. W. Kendall, Nucl. Phys. 19, 68 (1960)."R. F. Frosch, I. S. McCarthy, R. E. Rand, and M. R.
Yearian, Phys. Rev. 160, 874 (1967).
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When the density functions are as complicated as
these, the Gartenhaus-Schwartz transformation' is not
a simplification and it is easier to deal with the c.m.

function explicitly. We first rearrange the basic
equa, tion (2.13) so that the integration over the nuclear
coordinates can be performed last. The other integra
tions can be performed analytically and lead to

F(q) = d'rr d'r4p(rr, ,r4)()")(rr+ +r4)

X [Ft+Fs+Fs+F4], (4.13)

where F», F2, F3, and F4 are the contributions of single,
double, etc., scattering. In closed form they are

Ft (ik/2zr)(f„——+f )e'q "e e'"",

Fs— (3zp/16zrspz) f f e((q/s) ~ (sy+sm)

(4.14a)

Xe // q /4e (8—i az) /4e— —(4 14b)

z7 f.f-(4f.f- f' f-') .
— —

F =3= &s (q/3) ~ (sz+s2+s3) &
—P& q2/6

192zr'P4

XexP( —[(srs+ss'+ss')

—-', (st+ ss+ ss) ']/2P'), (4.14c)

z&Lf'f-' —f.f-(f.—f-)']
F4

1024zr 4Ps

Xexp{—[(st+ss+ss) +(sr'+ ss'+ss )]/2p')

Xexp( —-,'P'q'), (4.14d)

where we have used the abbreviation f=o(1—ip). In
evaluating F4, the s4 coordinate has been eliminated by
the 8 function. Multiple charge-exchange effects which
are included in (4.14) are examined for this case in
Appendix A.

After having performed the integration over the r4
coordinate with the 8 function, all the density functions
considered were sums of terms of the form

p exp( a;,"'r,r;), i j=1,2,3 —(4.15)

where A(') =(a;,(')) is a real symmetric 3X3 matrix.
Moreover, all the operators F have the representation

F exp[—(sr, sz, ss iq)8(4)(st, sz, ss,i(I)r], (4.16)

One can, of course, study even more complicated
forms, since it is by no means certain that a three-
parameter function such as (4.10) or (4.11) can re-
produce all the aspects of the two sets of data. Taking
the direct product we have

pr)os(rt ' ' r4)

=.$~' g exp( —(r'r ') [l.—D exp( —('rr '/y')]

X P [1—C exp( —i&'r, ,')]. (4.12)

with 8(4) a real symmetric 4)&4 matrix. If we define
8(3) to be the north-west submatrix of 8(4) and A(4' to
be the matrix A"' extended to 4)&4 by the addition of
a null fourth column and row, then it is shown in
Appendix 8 that

(~s/2) s

Fpd r»d r2d'r3 ——

ll~ "'ll"'If~ "'+~"'ll

ll~ (4)+~(q)
lip

+exp q2 (4.17)
ll~ ")+~"'ll&

The calculation of the amplitude from (4.13) principally
involves sums of integrals like the above. In the worst
case (4.12) there are 4096 terms. All that is required,
however, is bookkeeping and this is best left to the
computer.

In Fig. 8 the results of the recent electron scattering
measurements from Stanford are shown. As was stressed
before, these data are sensitive only to the impulse
approximation (2.14), so that the plotted form factor
is the Fourier transform of the charge distribution
except in the vicinity of the diffraction minimum
((7' 10 F '), where higher-order electromagnetic cor-
rections fill in the potential zero. To account for the
finite proton size, we have taken the electromagnetic
form factor of the proton as the by now conventional
double pole" gg,

(4.18)G(C)=(1+V'/a') ',

"M. Goitein, J. R. Dunning, and R. Wilson, Phys. Rev.
Letters 18, 1018 (1967).

where a=0.71 BeV/c.
Let us first consider the predictions of the double-

Gaussian density (4.11).There are three parameters to
be determined here, viz. , 0., p, and D. This was done by
a simultaneous least-squares fit to both the electron and
proton cross sections. Since the Glauber approximation
is of doubtful validity for large-angle proton scattering,
and the impulse approximation does not hold near the
electron minimum, such experimental points were
eliminated in the fitting process. The outcome of this
procedure is shown in Fig. 8 for electrons and in Fig. 9
for protons witho. '=0.579 F ' y'=0.308, and D=0.858.
The agreement with the proton data is markedly better
than that of the simple model (Fig. 2), especially in the
region of the subsidiary maximum. In addition, the
electron scattering form factor of Fig. 9 is quite well
reproduced, in particular the position of the minimum
and the height of the maximum.

Ke now turn to the other limit and try to ascribe the
discrepancies of the simple model with experiment to a
correlation function rather than to the single-particle
density. Constraining C to unity in model (4.10), the
minimization routine leads to values a'=0.573 F ' and
8 =1.552 F ', i.e., a quite acceptable healing distance
of the order of 0.8 F. However, the improvement in the
proton predictions (Fig. 9) over those of the simple
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better agreement with experiment is obtained by the
inclusion of a correlation which we know must be
present, viz. , the hard core. It is, however, likely that
similar amelioration would result if the extra parameters
were absorbed in the single-particle density rather than
in the Jastrow function. Of course we do not know wit, h
what precision the Glauber theory should work,
especially when spin eRects are neglected. Somewhat
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FIG. 9. Elastic proton-He4 cross section at 1 BeV; the experi-
mental data are from Ref. 2. The solid curve is evaluated using
the double-Gaussian density (4.11) with o.'=0.579 F ', p'=0.308,
and a=0.858. Introducing a correlation via Eq. (4.10) with C=1,
o. =0573 F and 8 =1.552 F leads to the dashed curve.

0.00I—

Gaussian model (Fig. 2) is very small. The electron
scattering minimum is in about the right position, but
this is not surprising since this carries great weight in
the fitting routine. Nevertheless the predicted maximum
is a factor of 4 too low. If C is taken less than 1, then
this maximum is depressed even further.

To see the eRect of varying both the single-particle
density and the correlation function, density (4.12) was
considered. Putting C=1, the other parameters were
determined to be e'= 0.644 F ', 6'= 6.0 F—', y'= 0.190,
and a=1. Despite the good over-all agreement with
both the electron data of Fig. 10 and proton data of
Fig. 11, the amelioration over the no-correlation case
(4.11) is not too large, except in the value of the form
factor for small q'. This manifested itself in the mini-
mization routine by the relative insensitivity of the data
to a simultaneous increase of y and 8 from the above
values, subject to the condition that the electron
minimum be kept in the correct region.

What then have we learned from the electron and
proton experiments' In the present state of theory and
experiment, there seems to be no positive evidence for
nucleon-nucleon correlations in He'. Only a slightly

O.OOOI
0

l I I I I I I I t

4 8 I2 16 20
q (frn )

similar conclusions were reached by Cysz and I.esniak, 23

who work in a much cruder mathematical framework,
neglecting both the c.m. 8 function and the 6nite proton
size.

An objection which may be, and frequently has been,
raised by nuclear theorists is that density (4.12) with
D=1 is zero at the origin and this is unphysical. The
four-billiard-ball model would be vitiated by the zero-
point motion. We have no reply to this argument except
to say that this particular model does not, in fact,
suppose an actual hole in the middle of He'. In Fig. 12
is plotted the density obtained by integrating over the
three unwanted coordinates of Eq. (4.12). With the

23 W. Cysz and L, Lesniak, Phys. Letters 2SB, 319 (1967).

FIG. 10. Elastic electron-He' form factor; the experimental data
are from Ref. 21. The theoretical curve is derived using a density
(4.12) containing the double-Gaussian and a correlation with C = 1,a=1 a2=0.644 F 2 62=6.0 F 2 and y2=0. 190.
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same parameters that gave the best fits of Figs. 1i
and 12, this density is zero for r=o. However, this is
only the density of nucleon centers and the central
depression is completely eliminated by folding in the
6nite proton size. It is really this resultant matter
density with which intuition is usually concerned. The
density normally quoted in the literature is the charge
density, and it may well be if the one-particle density p
were derived from this it would have similar unpleasant
features.

V. SCATTERING FROM P-SHELL NUCLEI:
OXYGEN AND CARBON

j=5
(5.1)

of charge and spin variables, the four target nucleons
are distinguishable; for the p-shell nuclei they are not,
and so we must expect effects here from the Pauli
principle. However, there will be no important effects
in electron scattering since in the Born approximation
use is made only of a one-body operator. %e first then
try a simple product wave function with four particles
in s states and A —4 in p states, which, as was explained
above, agrees with the electron data

It was shown many years ago that elastic electron
scattering from the nuclei C" and 0" can be very well

where the s- and p-wave densit;ies are

(5.2)

0
IxIO

Ip 25

q (frn )

6 12 18 24 30

(5.3)

If this density is substituted into the basic Eq. (2.13),
after removing the 8 function, one gets

ik
P(q) = —e"l4"~' e'~'"d("h d(')r& d(')r&

27r

4 A

,
A 0(l ip)—

X 1—II 1— e ' '*'&"~"
l

. (5.4)
)4np~

C4

E
O

IO ~—
b

I

c
Note that in this expression the proton-proton and
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FIG. 11. Elastic proton-He4 cross section at 1 BeV; the experi-
mental data are from Ref. 2. The theoretical curve is derived using
a density (4.12) containing the double-Gaussian and a correlation
with C=1, D=1, a~=0.644 F ', 8'=6,0 F ~, and y'=0. 190.

represented in terms of the shell model with harmonic-
oscillator wave functions. ' As was emphasized in Sec.II,
these functions are extremely expedient in that the c.m.
8 function can be disposed of via the Gartenhaus-
Schwartz transformation. ' In the case of He, because

'4 H. F. Ehrenberg et a/, , Phys. Rev. 113, 666 (1959).

0
0 1.0

r FERMI
2.0 3.0

Frc. 12. Matter density of He' corresponding to the best fits of
Figs. 10 and 11.The central depression associated with the point
proton size is completely eliminated when the finite proton size
is folded in.
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l 04 of b, viz. , it is of the form

lp I'(q) = ik
0

bdb Jo(qb) (I'w(b)) . (5.6)

IO

lO

b

IO

lP-I

10~
0 O. l 0.2 0.3

—t (BeV/c)
G4 0.5 0.6

FgG. )3. Elastic proton-0" cross section at 1 BeV; the experi-
mental data are from Ref. 2. The theoretical curves are evaluated
with a=44 mb, p= —0.275 P =5.45 (BeV/c)2 andn2=0. 342 F 2,

The effect of using an antisymmetrized nuclear wave function
rather than a simple product is shown. These are to be compared
with the impulse approximation which characterizes reasonably
the electron scattering results.

(qk
P(q) I

eqq/4Aaq e/q bdi2)b

&2~

a(1—ip) 2n'
X ~2b2/(&+2eb 0 )

4qr 1+2n2P2

n(1 ip) —n' 2n'
X

2qr 1+2n2P2 3(1+2n2P2)'

proton-neutron amplitudes have been replaced by some
average nucleon amplitude. The evaluation of charge-
exchange effects, though straightforward, is tedious in
a nucleus as large as carbon and does not fit in well with
the numerical techniques which we shall employ.
Without charge exchange, keeping the individual proton
and neutron amplitudes has not much point.

Since the r; integrations are now separable, P can be
reduced to a single Fourier transform

1p (2) —(4n3/~1/2) 1/2c aq 2/2—
(4 )—(8n 3/3~1/2) 1/ 2r C

aqr 2/2—
The spin angular functions are

s wave

(5.7)

The integration can now be performed numerically, so
that all the multiple scatterings are taken into account
simultaneously. The numerical integration routine"
used reproduced known functions with an accuracy of
1 part in 10~. This is critical in order to reproduce well
the strong cancellations in the vicinity of the diffraction
minima.

The nucleon-nucleon parameters were taken as the
average of those used to describe He4: 0.=44.0 mb,
p= —0.275, and P'= 5 45 (BeV/c)' The radius of 0"as
measured by electron scattering" is (r')'"=2.65 F.
When due account is taken of the proton form factor
and the c.m. motion, this leads to a value of the size
parameter o.'=0.342 F '. With these parameters the
p-0" elastic amplitude was calculated and is shown
in Fig. 13. The agreement over so many orders of
magnitude is extremely impressive and lends support
to both the scattering theory and the simple nuclear
model which we have used. For comparison the impulse
approximation is also shown. It bears no clear relation
with the data. The predicted total cross (459 mb)
accords well with the experimental value (475+44 mb).

As was remarked earlier in this section, a more reason-
able nuclear wave function would include the effects of
the Pauli principle. In general, it is necessary to include
the incident proton in the antisymmetrization, but the
effects of this are negligible for small-angle high-energy
elastic scattering. Since we are neglecting charge
exchange it is sufficient to antisymmetrize the target
protons and neutrons separately and forget the correla-
tions between the two groups.

For C' we shall take the proton wave function as
(gl/2)2(p3/2)4 and 016 as (gl/2)2(p3/2)4(pl/2)2 For
harmonic oscillation the s- and p-wave radial wave
functions are

2n4b' —A—4

+ —a2b&/t (1+2a2p2)

3(1+2n2P2) ' (5.5)
I

& 2 2&= I'o'N4,

I
s —,

' ——,') I oo24

p3/2 wave

(5.8a)

Now in the simple s-wave model of the nucleus studied
in Sec. II, the integrand was expanded in a polynomial
in a., the transform performed analytically, and the
result presented in a simple form. The same approach
can be used for Eq. (5.5) except that the final result is

by no means simple.
The assumption that the nuclei are spherical has led

to an integrand which depends only on the magnitude

I p 2 2)= I'1'24+

—:&=(V'-.') l' ".+-'.~» '

I
p-: --:)=-:~».-".+(~-:)I,

I p l —l&= Fi'I-;

(5.8b)

"We are grateful to Dr. R. I'. Peierls for supplying us with
this numerical routine.

26 P. Goldhammer, Rev. Mod. Phys. 35, 40 (1963).
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pii2 wave

here I+~ i represents a proton with spin up (down).
The spherical harmonics are referred to the coordinate
system of Fig. 14, where s is the direction of the incident
proton. Hence

x, =r, cosg;,

y; = r, sin8, cosy, ,

sz=t& sln0 sing&.

(5.9) Z, k

Since for elastic scattering the amplitude has cylindrical
symmetry in q and hence in b, we can evaluate &FN(b) &

by choosing b to lie in a specific direction, say along
the x axis. The individual scattering operators become Fn. 14. Coordinate system used for elastic proton-carbon

and proton-oxygen scattering.

b lP ( 2sb' )
b' 2bs;+c —+y

&
exp-

47rp' 2p2
(5.10)

b' bbr; cosb;+ —'—r' sic'b; sic'c;&exp-
4m. ' 2 2

To complete the treatment, we must antisymmetrize
the proton wave functions and this we do by taking the
ground-state wave function as a Slater determinant
rather than just a simple product:

(5.11)

where the bP are the wave functions given by (5.7)
and (5.8). We then need matrix elements of the form

where
(5.12)

(5.13)

(5.14)

It is well known that antisymmetrization is only re-
quired for the bra, and that we can take the ket as

(5.15)

Combining the above equations

(5.16)

As can be seen in (5.13), the operator 0 has the im-
portant property that it is factorizable into operators
which act in one and only one particle subspace, so that

where the O„are matrix elements deined by

0 = 8 —
ibt *(r)I'(b —s)bP (r)d'r. (5.17)

Consequently, the eRect of antisymmetrizing the
wave functions is to replace the integrand of Eq. (5.5)
by 1. minus the square of an SXS determinant. The
squaring takes care of all the multiple scatterings of the
neutrons, which are assumed identical to the protons.
It is straightforward to derive the expression for the
matrix 0, which is given in Appendix C. The elements
are just linear combinations of ar;(i= 1, ,5), which are
polynomials in b multiplied by an exponential in b'.
Because of the choice of quantization and b axes, the
operator 1' of Eq. (5.10) is even in cosy and hence can
only cause transitions of the type AJ,= even. For this
reason 0 decomposes into two equivalent distinct sub-
matrices, so that the determinant is the square of a
function of the ~;:

Now since we have taken the target nucleons as being
in a central potential (the same radial wave function is
used for the psi2 states as for the pii2), the expression
obtained for

I IOII in the j-j representation must be the
same as that holding in the I--S scheme. Things are
rather simpler in the latter case because the nucleon-
nucleon interaction is assumed to leave S invariant,
and so 0 decomposes into four distinct 2g 2 submatrices.

The appropriate scattering amplitude was calculated
as before by a numerical Bessel transform, with the
expression (5.18) replacing the simpler integrand of
Eq. (5.5). The predicted cross section is exhibited in
Fig. 13, where it is compared with both the experimental
data and the results obtained from the product wave
function. Although it is hard to improve upon the
quality of the latter, the antisymmetrized theory does
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Fzo. 15. Elastic proton-C" cross section at 1 BeV; the experi-
mental data are from Ref. 2. The theoretical curves result from a
multiple-scattering calculation with antisymmetrized wave func-
tions and +=44 mh, p= —0.2/5, and Ps=5.45 (BeV/c)s. The
dependence upon the carbon radius parameter is illustrated;
a'=0.401 F ' is the value derived from electron scattering. The
impulse-approximation minimum occurs at t~—0.15 (BeV/c)'.

6t the data marginally but not significantly better.
Throughout the whole range it lies slightly higher,
which is owing to the inclusion now of transitions where
an s-wave nucleon is excited to a p wave, while another
nucleon does the opposite transition. The predicted total
cross section is 467 mb.

The remarkably good description of the 0" data
leads one to believe that the Glauber theory can give
numerically meaningful results for this kind of nucleus.
We are thus encouraged to investigate C" which has
roughly the same radius, density, etc. Since there are
only six protons in C", the matrix 0 will now only be
6)(6. This can easily be obtained from the SX8 matrix
corresponding to 0" /see Eq. (C6)) by deleting the
rows and columns associated with the pr~s states. We
then obtain

(5.19)
with

case. There is much evidence to show that C" is, in fact,
a very deformed (oblately) nucleus. The first excited
state (2+ at 4.4 MeV) looks very much like the second
member of a rotational band with E=O. Impulse
approximation, which describes well electron scattering,
is not sensitive to a deformation since the single-particle
density is spherically symmetric. KGects can only come
in second order, where, say, the first scattering excites
the 2+ state and the second leads back to the ground
state. Consequently, it is expected that the deformation
will manifest itself first around the seocndary maximum
where double scattering is the most important term.
In fact, on the basis of a completely black ellipsoid
model, Drozdov" has shown that the height of the
subsidiary maximum does decrease as the deformation
increases. Although his model is considerably cruder
than the one used in this work, it is known that this
characteristic is much more general. It may then be
possible to deduce the size of the deformation from a
careful analysis of the data in this region. Some ap-
proaches that are worth trying include the following:
(a) In the same spirit as Drozdov, put the nucleons into
a deformed oscillator well and neglect the problem that
the nucleus will not, in general, then have a well-defined
angular momentum —the multiple scatterings are
mainly a function of the geometry of the nucleus. (b)
Mix in more configurations of the shell model. (c) In
order to reduce the number of configurations use the
alpha cluster model for C"—this has an intrinsic
deformation built in.

As was remarked in the case of He, the depth of the
first diffraction minimum is quite a sensitive function
of the real parts of the nucleon-nucleon amplitudes. The
curves for 0" in Fig. 13 have the average p about &0.3
(it is independent of the over-all sign), and although
this is probably not the optimum value, the agreement
gets worse if p is changed by more than 0.1, say.

iso(i = D1 —oui)(1 —(os)(1—2tos/3 —sco,)
—

s '(1—.)—s "(1— )j (52O)

Once more the numerical Bessel transform provides
us with the scattering amplitude. Using the same values
of the nucleon-nucleon parameters that were so success-
ful in 0" and He4, together with n'=0.401 I'" ', which
is the size obtained from electron scattering, " the
predicted cross section is compared with the Brookhaven
points in I ig. j.5. Although there is some general
qualitative agreement, it is by no means the striking
quantitative success that oxygen was. The minimum is
expected at too small a value of q and the data lie 50%%u~

below the theory in the vicinity of the subsidiary maxi-
mum. If the radius of carbon is decreased so that the
minimum occurs in the right region, the problem of the
subsidiary maximum is possibly aggravated, as can be
seen from the figure.

The contrast between our 6ndings for 0" and C"
leads one to suspect the nuclear model used in the latter

VI. INELASTIC SCATTERING FROM C"

In the Brookhaven experiments there was only one
example of nuclear excitation, where the level could be
cleanly separated from both the ground state and the
higher excited levels. This was the case of the 2+ (4.4-
MeV) state in C". As was emphasized in Sec. II, the
Glauber approximation should be just as valid for an
inelastic process as for the elastic scattering cross
section. We should like, therefore, to develop the
formalism necessary to handle the details of this
excitation.

The first essential is some nuclear model for this 2+
state. It was remarked in Sec. V that the level is almost
certainly collective. Since this is not easily built into
the present microscopic theory, we shall treat it rather
as a particle-hole state, viz. , (ps~&)-'(pr~s). However,
we should not be surprised if the theory then gives a

'7 S. I. Drozdov, Zh. Eksperim. i Teor. Fiz. 28, 736 (1955)
LEnglish transl. : Soviet Phys. —JETP 1, 588 (1955)7.
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poor description of the data. It shouM prove at least a
useful pedagogic exercise.

The structure of the equations is very similar to that
for elastic scattering. For example, if a proton undergoes
the transition, then, in analogy with Eq. (5.20),

r &= —llo. ll llo„'ll. (6.1)

Th ne is missing because the excited state is ortho-e on
6gonal to the ground state. The 0„ is the same 6X

matrix that we come across for the elastic case. How-
ever, since one of the protons is removed from the p3/2
and put into a p1/2 orbit, 0~' is a similar 6X6 matrix
but with one of its P3/2 columns replaced by a P1/2 one.
It just resolves to choosing the appropriate 6&6 minor
of the 8X8 matrix of Eq. (C6).

Since the excited state has T= 0, its isospin structure
is 12V2(pp+Nn). In the absence of charge-exchange
effects, the amplitude for exciting the proton particle
hol.e is the same as that for the neutron. Ke can, there-
fore, just consider the proton excitation, provided that
we multiply the resulting cross section by 2. The con-
siderable complications that arise in describing t is
process are due to the spin of the excited nucleus.
Because of this, there are 6ve possible orientations of
the final state which we shall denote by

&=2.
M=1.

M=O.

M= —2:

IP2 2&
—'IP2 l),

3 3 —1 1 1

+2~~IP 2 2&
'—IP l —:&,

—2'&2IP -', —-')-'IP -', ——,')
+i~21 P l -'& 'lP -'-'&,

l IP l —
l& 'IP l l&

+2v3IP2 l& 'lP 2
—

2&,
33-i (6.2)

d0

dQ
(6.3)

Although the differential cross section is axially sym-
metric, in contrast to the elastic case Ii~ will depend,
in general, also on the direction of q. This implies that
(I'/3&3r will depend upon the direction of b as well as
its magnitude, which makes the calculation much more
tedious, We have to consider b as making some arbi-

These are to be interpreted under the following con-
vention: The amplitude, associated, for example, with
the AM=2 transition, is to be obtained by taking the
determinant of the 6X6 minor derived from 0 Lcf.
Eq. (C6)| by eliminating the two (P 2 I

rows and also
t"e IP 2 2) and IP 2

—2) columns.
In this way we shall derive five different amplitudes,

and since experimentally the polarization is not ob-
served, the final cross section is the sum over all the
spin orientations:

Z, k

Pro. 16. Coordinate system used to evaluate
the C"(p p')C"" reaction.

trary angle X with the x axis (see Fig. 16), so that

b, = b cosX,

b„=b sinX,

and the scattering operator becomes

(6.4)

zk
F3/(q) =— bdb

2x'
dX&i33 cosx(p ) (6 6)

Note that in Eq. (6.6) we have let I7 lie along the x axis,
because the unpolarized cross section is obviously
independent of the direction.

In performing the X integration it is important to
realize that (I'~)34 is a polynomial in sinX and cosX. We
can go much further than this though. Under the
transformation X —& —X, we have from Eq. (3.4)

O/1, 2, 3,4, 3 ~ +tent, 2,3,4, 3 p

6, 7 ~ —6, 7 (6.7)

The array 0 obtained from 0 by this transformation
may be brought back to the original state by multiply-
ing the following rows and columns by —1:

Rg,R2, R3,R4,. Cg, C2,C3,C4. (6.8)

The total 8X8 determinant is invariant under this
transformation and is, therefore, an even function of X
(it is, of course, independent of X). However, some of

I'(b —~) = (.i4 /3')

Xexp{—(Lb cosx x)2+—$b sinx —y)2)//2P2} . (6.5)

The presence in this operator of terms odd in cosy
induces transitions also of the form AM= odd. For this
reason the matrix 0 does not factorize and we must
consider the more complicated (C6), where the to;

( =1, ,7) are given by (C4). It is from this matrix
that the appropriate minors must be procured.

There is one additional complication. Because (I'/i)3r is
not axially symmetric, one cannot reduce the impact-
parameter transform to a single Bessel transform. It
must be left in the form
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Since by symmetry Fo(q)=F o(q), we have only two
transition amplitudes to evaluate.

Two interesting results follow if we calculate the F,~
in impulse approximation. Firstly,

Fo(q) =0 (6.13)

follows because we have taken g to lie along the quanti-
zation axis. Even allowing for spin Rip, the maximum
change in angular momentum in this direction for a
single nucleon is 635= 1, which can not engender the
excitation of the nuclear level with AM=2. Secondly,
conservation of angular momentum in the s direction
for forward scattering leads to the following relation
between the twp amplitudes:

(6.14)FiG. 17. Cross section for the excitation of the first 2+ level
(4.4 MeV) in C" with 1-SeV protons; the experimental data are
from Ref. 2. The impulse-approximation and multiple-scattering
curves are calculated with the following parameters: 0.=44 mb,
p = —0.275, P'= 5.45 (BeV/cl', and n'=0401 F '.

» impulse approximation (6.13) then implies

(6.15)

the subdeterminants do change, from which we can
deduce whether they are even or odd in X.

Secondly, under the transformation X -+ X+w,

Z, ~,3,5,7 ~ X, 2,3,0,7,

CO4 6 ~ —
CO4 6. (6.9)

(1N)M=wpn HM(cos X),

(&~)~=,oe = sinX cosXH~(cos'X), (6.10)

where H~(a) is a polynomial in a.
Now it is easily seen from (6.6) that functions which

are odd in sin& integrate to zero. With this choice pf

the q axis, then, we find that the odd 3I states are npt
excited. Furthermore, from looking at the ppwers pf
cpsx which occur in the determinant, it seems that we

can end up with fifth-order polynomials in cos'X. In
fact, there are very strong cancelations such that there
is at most a linear term in cps'X. This follows from
angular momentum conservation. If instead of calcu-

lating the amplitudes for excitation with a definite M,
we had used helicity states P, then since no orientation
in space is fixed, the amplitudes could have at most a
trivial dependence on X. Now the M amplitudes can be
derived from the equivalent X amplitudes by making a
rotation through an angle X, which introduces factors
of d&,or2(X) which have at most a cos'X term in them.
Hence

(6.11)(&m)or= = ai +a& cos2X

ere aq and a2 are independent of X. Substituting this
representation into (6.6), we get

F~(q) =it bdbLai~Jo(qb) —ao~Jo(qb)]. (6.12)

This provides more restrictions on the subdeterminants
and we eventually find

Equation (6.15) follows also from the orthogonality of
initial and final states. Consequently, the greatest
change between the predictions of the single- and
multiple-scattering theories is in the forward direction,
since the latter are not subject to the conditions (6.13)
and (6.15).

The amplitudes were calculated by a numerical inte-
gration of Eq. (6.12) and the unpolarized cross section
is shown in Fig. 17 together with the predictions of the
impulse approximation. The comparison of theory with
experiment is rather discouraging, being a factor of 4
too low. It is unlikely that the introduction of a spin
dependence in the nucleon amplitude would affect the
result radically since the 2+ state can only be reached
in second order. At lower energies, distorted-wave
impulse approximation (DWlA) calculations" for
proton excitation of this level are also too small by at
least a factor of 3 if the same simple particle-hole model
is used. A similar situation arises in electron excitation
of the state. "Considerable improvement is obtained if
configuration mixing is introduced, and this is almost
certainly the case here. Work is, at present, in progress
on the introduction of a more realistic wave function
for C", with the aim of understanding better the elastic
scattering and the 2+ production reaction.

VII. ELASTIC SCATTERING FROM DEUTERIUM

Since the whole of Glauber's theory was first derived
to explain cross sections in deuterium, it may seem
strange to have left this case to the last. It has, however,
been often discussed in the literature and sp will be
treated in correspondingly less detail. Furthermore,
we shall here come across additional complications,
which are not so important elsewhere.

R. Haybron and H. McManus, Phys. Rev. 140, 3638 (1965).
M. Bouten and P. Van Leuven, Ann. Phys. (X. V.) 43, 42$

(1967).
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We go back to the basic formula (2.13) and use the
conventional definition of the deuteron wave function

5
10

~(r) = lf(rr, rs), (7.1)

where r=(rr —rs) is the internucleon separation. We
shall neglect the small d-state probability so that p(r)
is then spherically symmetric. After changing the
integration variable to r, expanding the product in
multiple scatterings and performing the integral over b,
we obtain

IO

IO

Ff,(q) = d'r pr*(r) p, (r) E po

bIcl

X exp(-,'iq s)f (q)+exp( —-', iq s)f„(q)
10

exp(iq' s)f (q+-', q) f„(q'—-', q) . (7.2)

S(q)= d're"
~
p(r) ~'. (7 3)

In terms of this function, the elastic amplitude (7.2)
becomes

~"(q)= f-(q)~(l q)+f.(q)~(—l «)

+ ~(«')f-(l«+q')f. (l«—q')d"'q'. (7.4)
2mk

As was demonstrated in Sec. III, charge-exchange
effects can be included by replacing f„f„by
f„fp—rs(f„—f„)' to obtain

~(«) = f-(q) 5'(l q)+f.(q) 5'(—l q)

+ 5'(«')d"'«'(f. (-'«+q')f. (lq —«')
2vrk

—lL(f.(l «+ «') —f.(i«+ «'))

X(f.(-;q—q') —f.(-;q—«'))j}. (7.5)

From analyses of low-energy nucleon-nucleon data,
numerical deuteron wave functions have been derived.
Since these are only tabulated for discrete values of r,
an interpolation is required in order to perform the
integrals in (7.3) and (7.5). Using as a basis the
expansion

v(r)=-P C,e-p'" (7.6)

The factors of ~~ occurring in the exponents arise because
r is equated to the diameter of the deuteron rather than
the radius. For elastic scattering, de6ne the deuteron
form factor

IP~ I I I I I I I I I

0 .1,2 .3 .4 .5,6 .7 .8,9 I.O

t (BeV/c)
2

FIG. 18. Elastic proton-deuteron cross section at 1 BeV; the
experimental data are from Ref. 2. The theoretical curves result
from a multiple-scattering calculation, with 0.~ =47.5 mb, cr„=40.4
mb, pz= —0.05, p = —0.5, P = 5.45 (BeV/c) ', and the deuteron
wave function of Ref. 31. A sharp minimum is then predicted
at t —0.35 (BeV/c)', but this can be washed away by letting the
relative real parts of the nuclear amplitudes vary with angle. The
value I =0.3 F' is from Eq. (7.10).

Moravcsik' and McGee" were able to reproduce well
the tabulated s-wave functions of Gartenhaus" and of
Harnada and Johnston, " respectively. With this inter-
polatory function, the integral for the form factor (7.3)
can be evaluated analytically. One has then only a
two-dimensional integral of (7.5) to perform
numerically.

The high-energy nucleon-nucleon amplitudes are
represented as in the previous sections )see (4.3) and
(4.4)), and the result of using them in (7.5) is shown in
Fig. 18 together with the Brookhaven experimental
data. ' The agreement between the two is reasonable in
the vicinity of the primary and secondary maxima, but
for q'~0.35 (BeV/c)s the theory predicts a sharp
minimum, whereas only a change in slope is found
experimentally. This marked discord persists if (a) the
interpolation of Moravcsik or McGee is used (in fact,
they give extremely close answers), (b) a quadratic
term is introduced in the exponent describing the
nucleon-nucleon amplitudes, as in Eq. (4.2), and (c)
o„and o„are varied while keeping the total p-d cross
section roughly constant around the value obtained by
Bugg et al. '7 In the absence of spin dependence, the

'0 M. J. Moravcsik, Nucl. Phys. 7, 113 (1958)."I. McGee, Phys. Rev. 151, 772 (1966}."S. Gartenhaus, Phys. Rev. 100, 900 (1956}."T.Hamada and I. D. Johnston, Nucl. Phys. 34, 382 (1962}.
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small d-state admixture in the deuteron wave function
can have but little inhuence.

It has been previously stressed that the depth of the
minimum is a very sensitive function of the relative real
parts of the nucleon amplitudes, and so one is led to the
question of the angular constancy of p. For instance, if
we take p„=p„=—0.9 then the predicted minimum is
washed out and reasonable agreement with the data
obtained in this region. I.et us therefore try a quadratic
dependence of p upoIl g':

p (q2) P p im)qsm

m=0
(7 7)

f»(q) = ( &o/4~)( —~)

where k(q) is a real function with

h(0) = 0.

The simplest such function is

h(q) = iq',

(7.8)

(7.9)

(7.10)

and we shall try this for both the proton and the
neutron with the same value of t This valu. e was varied
and it was found that a reasonable description of the
deuterium data required at least )=0.25 or 3.3 I"

'4 v. Franco and R. J. Glauber {private communication).

and similarly for the neutron. The zeroth-order coeffi-

cients are obtained from the dispersion relation values
of p. The other coefficients were varied subject to the
constraints that the average p be about —0.3 or 0.4
for q' 0.23 (BeV/c)' (the He' minimum) and —0.9 for
q' 0.35 (BeV/c)' (the deuterium minimum). In this

way we arrive at the somewhat surprising result that
the theoretical minimum is actually deepened. This can
be understood in the following way. In general, both
the real and imaginary parts of the total amplitude (7.5)
each have a zero, although up to now we have thought
mainly about the latter. In the constant p approxima-
tion (say, p —0.9), these zeros are far apart. If p is
allowed to vary with angle the single-scattering ampli-
tude depends on the value of p for a particular value q,
whereas the double is sensitive to a whole range of
momentum transfers clustered about ~~q. This allows

the zeros to move relative to each other as functions of
the coeKcients in expansion (7.7) and the above condi-
tions allow them to come quite close together. Con-

sequently, the average real part of the deuteron ampli-
tude can be rather large on the average (larger, say,
than that predicted using the dispersion-relation values
of p), but in the vicinity of the minimum it is accident-

ally small.
It may well be that p varies much faster than was

allowed for by the previous considerations, in which

case it is important to ensure that the chosen parametri-
zation still reproduces the proton-proton cross section.
This is most easily achieved by taking'4

(see Fig. 18). This is so large that the amplitude for
t= —0.35 (BeV/c)' is almost completely out of phase
with that for 3=0. We cannot rule out such a rapid
phase variation a priori, but its existence must disfigure
the essential simplicity of the discussion in the present
paper. Happily we can state that with i' 0.3 F' the
minimum in He' completely disappears, so that we are
forced to seek an alternative explanation of the
deuterium experiment.

The most important qualitative difference between
0",C", and He4, on the one hand, and H2 on the other
is that while the former have spin 0, the latter has
spin 1.Now there is quite strong experimental evidence
that there is a spin dependence in the proton-proton
amplitude even at this high energy. Recent small-angle
proton-proton data at this energy, " extrapolated to
the forward direction after the removal of the Coulomb
contribution, lie 25% above the optical point. A spin
dependence of the nucleon-nucleon amplitude is much
more important for deuterium than for the other nuclei.
To see this, consider the following oversimple model.
If we neglect the spin of the fast proton, the cross
section in helium is just the absolute square of a
quantity which can have strong calcellations at a
particular angle. However, the deuterium cross section
is the incoherent sum of three partial cross sections
corresponding to no spin Rip, spin Rip of one unit, and
spin Qip of two. Unless either each of these partial cross
sections has a minimum at about the same angle, or one
of the cross sections completely dominates the other
two, then no very sharp minimum would be expected.
If this is, indeed, the explanation of the shallowness
observed, a sharp minimum couM be detected only in
an experiment with a polarized target where the final
polarization is also measured. This effectively rules out
the use of the deuteron to measure p, as has been
recently suggested. "It is necessary to test this line of
reasoning by introducing an explicit model of the
nucleon-nucleon spin dependence which fits the avail-
able data. One must then show that the minimum is
not destroyed in He, whereas it is in deuterium. Care
must be taken with this latter because if we assume

f»= a+be. (q)&k), (7.11)

then a strong cancellation takes place if we let u and b

have the same angular form exp( —isb'q').
All that can be said at the present is that if there is a

background of 25% of the impulse approximation due
to spin dependence (see Sec. IV), then this would fill up
the minimum considerably.

The situation should be clari6ed when experiments
are performed on high-energy elastic pion-deuteron
scattering. There are many advantages in doing this

experiment rather than the analogous proton experi-
ment. From charge symmetry we have direct informa-

'"' L. Bertocchi, Xuovo Cimento 50A, 1015 (1967);J. Formanek
and I. S. Tre61, Nucl. Phys. 18, 155 (1967).
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tion on the pion-neutron interaction. Furthermore,
because of its simpler spin structure, reliable phase-shift.
analyses have been pushed to a much higher energy
than for proton-proton. Thus, if experiments are
performed at about 1 GeV we should have all the
information necessary to analyze them.

VIII. CONCLUSIONS

It is apparent from the results of the previous sections
that high-energy protons are a very useful complement
to electrons in the investigation of nuclear structure.
This follows because experimental techniques have
reached such a high precision and because in the Glauber
model we have a theoretical tool which seems capable
of handling at least the small-angle elastic scatterings.
There are many doubtful assumptions in this theory
which warrant further investigation, but the ultimate
test of the approach must lie in continued comparison
with experiment. In the cases looked at in this work,
such a comparison has been very encouraging. In the
main the discrepancies with the data have, we hope,
been understood. The most remarkable agreement has
been obtained for 0", where we believed a priori that
we had a reasonable nuclear model. The deviations in
C" could then be laid at the feet of the nuclear physics,
rather than the scattering theory, and so the present
work can be considered as some confirmation of the
strong deformation in this nucleus. The results on the
excitation of the low-lying 2+ state in C" have much in
common with the electron and lower-energy proton
data. The theoretical curve has the same general shape
as that observed, but is too low by a factor of about 4.
It is very important to try to improve upon this by
taking better nuclear wave functions which have proved
themselves elsewhere. There were many other nuclear
transitions measured, but not clearly separated, in the
Brookhaven experiment, and these too remain to be
investigated.

It was found that in He4 correlations do not seem to
play an important role and a good 6t to both the elec-
tron and proton observations could be obtained by
modifying the single-particle density. The attempt to
explain the results by keeping the Gaussian single-
particle density and introducing a Jastrow correlation
function was a failure. This may, however, be due to
the rather soft nature of the damping used. A. form
which should then be tried is (1—e ""'~')", since for
large I this kills the wave function very strongly at
small separations, but still leads to integrals which can
be performed analytically. It is mainly a, question of
extending the bookkeeping,

The deuterium analysis seems at erst disappointing,
but if, as we have speculated, this is due to spin
dependence, then, from the study of proton-deuteron
scattering, we may learn something about the spin
structure of the proton-proton amplitude. A similar
di%culty may be present in simplified quark models for

nucleon-nucleon scattering. '6 The situation should be
clearer after the measurement of pion-nucleus scattering
and the subsequent analysis. Other useful proton
experiments would include the scattering from He'
and Li', both having spin and both in their own way
interesting nuclei.

Even away from the diffraction minimum, the neglect
of spin dependence is much more important for deu-
terium than for the other nuclei. Since He' has spin 0,
target-nucleon spin Aips cannot occur singly. Conse-
quently, spin Rip should not be important until the
secondary maximum. Even there they are suppressed
somewhat with respect to the non-spin-Rip term by
combinatorial factors. For deuterium, spin fiip can occur
even in the impulse approximation.

Note that we have not looked at, for example, the
(p, 2p) reactions. This should provide much more in-
formation about correlations in the nucleus, but addi-
tional work must be done on the theory before it is
capable of treating such problems. The same remark
applied to the (p,d) process, where a high-energy
deuteron is seen to emerge. It is likely that the deuteron-
production reactions will not really be understood until
we have a good model for high-energy backward elastic
proton-deuteron scattering. This is still lacking.
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APPENDIX A

We here illustrate the method of calculating charge-
exchange effects for proton scattering from He4,
analogous to the deuteron case described by Eq. (3.4).
Denote the target nucleons by pq(eq) for the proton
(neutron) with spin up and p2(e2) with spin down.
Since by assumption the nucleon-nucleon amplitude is
spin-independent, the only charge exchanges which
need be considered are those between pq and Nq and
between p2 and e2

There are 12 elastic double-scattering terms of which
six are p~p2, pqe2, pqeq, ttqpq, m~p2, and nqe2. The other
six are obtained by interchanging the labels T and 2. A
double charge exchange can only arise if the first
nucleon is a neutron and the subscripts are the same,
viz. , for the combinations eqp~ and e2p2. Now a neutron-
proton system with spins aligned must be in a state
with T=O. Hence, as was argued in Sec. III, the
amplitude must be odd under the interchange n;+~ p, .

"D. Harrington and A. Pagnamenta, Phys. Rev. Letters 18,
ii47 (1967).
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The double-scattering terms should be modified to be We go over to a new basis via the transformation

I' -2f'+2f. '+8f.f- 2f'+2f-'+ gf.f-
—2(f")' (Al)

s,= t,+ip, q (87)

so that

c.e.—
such that the cross terms between q and the coordinates

(A2) disappear. The quadratic form becomes

F2 12f~f„.

~a-12(f~+f.)f~f 6(f~'—+f )(f")' (A4)

Similar counting techniques lead easily to the correct
expressions for triple and quadruple scattering. They
are

=C,;&4)s; s+2iC,«')s; q —C«")q2
= C,, /4) t;.t,+it,"q(2C;4&')+ 2P,C;, /4) )—(C /')+2P;C, &')+C,;")P.P )/t' (88)

where the summation is over i,j= j.,2,3.
In order that the cross terms vanish,

~4-24f 'f ' 4(f '+-f '+4f f-)(f")' g .C . .(4) — C.4(4)

+2(f")' (A5)
If C(" is the north-west submatrix of C'4', then

(89)

APPENDIX B (C(2)-1) .,C,4/4) (810)
In the evaluation of the scattering amplitude for He'

in Sec. IP, considerable attention was paid to integrals Using this condition, the coefficient of the q term

of the form becomes

l= d'rzd'r2d'rz expl —(rz, rz, r2)A &')(rz, r2, r2) ']

xexpj —(sz,sz, sz, zq)B/')(sz&sz, sz, zq) 7, (Bl)

where A(" is a 3)&3 and 8(4) is a 4&(4 real symmetric
matrix. Also the s, are the components of the r, in the
x-y plane. Let us then erst calculate the s, integrals
which depend only on the A") matrix.

—
t C44(4) —(( (2)—1) . .C .4(4)( . /4)7

—(AdjC'2)), /C;4&4) C,4&')]/I
I

C&')
I I

= —Ifc«) fl/flc/» If. (811)

All that remains is the normalization integral, which
can be done as for the s case. Thus

~If~&)+~& &II,J= expf q2 . (812)
pf-

—(» )~"'(»')"7 (82) Ila/&II /Il, c/)+8&&II &Ilg&)+

The transformation into another basis wherein A&') is
diagonal can be effected by a unitary matrix, so that
the corresponding Jacobian is unity. Then (82) becomes

~3/2

I,= dsz'F2'd&2' exp( —&,2,")=, (83)
(X,Z,&,)'/2

where the A.; are the eigenvalues of A &'). Since only their
product occurs in (83), the result can be simplified:

I =zr2 "/IIA "&fl'"

There remain the x-y integrations

I»= d s~d's2d s3

x expL —(sz,sz, sa, iq) c'"(sz,sz,sz, zq) '7. (85)

Here C(') is a symmetric real 4)(4 matrix defined by

APPENDIX C

The inclusion of the Pauli principle in Sec. V fol.
elastic scattering from ( ' and O' and in Sec. PI for
the excitation of the C" nucleus, necessitates the
introduction of an 8)&8 matrix O. We discuss erst the
general case of Sec. VI, where the impact parameter b
makes an angle X with the x axis. In this frame the
scattering operator is

~(b—;)=(;/4-p')
Xexpt (—(b cosX—x,)2+(b sinX —y;)2)/2P 7. (C1)

A (L,M; J',CV') =/Vr, lVz, dzrl'(b —S)r~~'

where
X e '"'Vr, ~'"Yr~, (C2)

Let us define the various projections of this operator by

C,,&4)=A,, /»+B, ,&4), ', j=1,2,3
=8;,(4) otherwise.

—(4~2/~l/2) I/2 + (8~5/3~1/2) 1/2 (C3)

(86) The elements of 0 are just linear combinations of the
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A' s. Explicitly,

~i=A(0,0;0,0)=- -A
2' (1+2n'p')

o'Q 1 2n'P' 2n'b' sin'X-
&o~ = A (1,1;1,1)= + +

47r (1+2n2P2) (]+2n2P2) 2 (1+2n2P2) &

b' cos~X
(u3 ——A (1,0; 1,0)=— E

(1+2n'P')' (1+2n'P') 3

o;3b cosX
co4= A (1,0; 0,0)=

~(2)'t' (1+2n2P2) 2

a);=A(1,1;1,—1)=—

oo;~b slnx
E

2~(1+2n'P') '

OO! 2n'b2 sin2X
E

(1+2n2P2)2 (]+2n2P&) 3

o.o.4b' sinx cosx
M E

~(2) '"(1+2n'P') '

where E is an abbreviation ior
E=exp( n'b'/—(1+2n'P') j

Then 0 becomes
(C6)

-',&3~,
-(v'3)~6

074

1—3CO3
—3G02

2 1

3V3Q)~~

—-',42((o2—(u3)

—3V3606

-(v'3)~7
0

0
—3V3G) 5

1 G02

G05

G06

0

(&3)~7
-,'&3(u7

(-',v3) o)4

—3%2(Q3 ~ M g)

(d5

1—3' 2
—

3G03
1

(d6

343(d 7

606

406

1 (dg

0
C04

—3736)4

(~ l Sl
—

CO6

&z

0
3V3cd z

0
1—cd2

a&34lg

(v'3)~5

3~3%6

0

Gdz

M4

393(d5

1—
3Gd3

—
3G02

2 1

-',&2((u,—~3)

—(v's)~6

-',&30pz

0
—3&3M g

(&3)~~
-',K2(cog —~3)

2 11—3cd2—3or3 l~ l —2).
(C7)

For the spherically symmetric cases dealt with in Sec. V it is legitimate to take b along the x axis, i.e. , X=0. This
introduces enormous simplifications. The Gd; reduce to

G01=— E
2~ (1+2n'P')

o(x 1 2n2P2

+ jV

4m (1+2n'P') (1+2n'P') '
b2

+ I~~

(1+2n'P') ' (1+2n'P') '
(C8)

Gd4= E
n (2)'~' (1+2n'P')'

Go E
4m (1+2n'P')'

Gd6
——0, Go =0.

The vanishing of ~6 and ~z means that the matrix 0 decouples into two distinct 4)&4 submatrices, as can trivially
be seen from (C7).


