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In continuation of a series of investigations of hyperfine pressure shifts (HPS) in interacting

atoms, an investigation of the long-range interaction of nitrogen atoms in a helium atmosphere
is reported. The procedure requires wave functions perturbed to first order in the van der
Waals and nuclear hyperfine Hamiltonians, respectively. The van der Waals perturbed wave

function. is obtained through a variational procedure described previously for the H-He

system. The first-order hyperfine wave function is a moment-perturbed (MP) function used

in an earlier study of the short-range N-He interaction. The theoretical result for the long-

range contribution to HPS is 0.22 cps/mm Hg to be combined with a contribution from short-
range of 0.91 cps/mm Hg, as compared with a total experimental HPS of 0.27+0.07 cps/mm

Hg. Various factors which might contribute to the difference between theory and experiment
are discussed. In particular, the role of correlation at short range is stressed.

I. INTRODUCTION

The present work is a continuation of efforts to
arrive at a quantitative understanding of the origin
of hyperfine pressure shifts (HPS) of atoms in
buffer gas atmospheres. ' The pressure shift for
nitrogen atom has been studied experimentally
through the optical pumping technique' in a number
of rare gases. In our present investigation we
have singled out the N-He system for detailed
study. In an earlier paper' we have analyzed the
contribution from short- range effects for this
system, arising from an interplay of the overlap
effect between the two atoms and the exchange
polarization within the nitrogen atom. In the pres-
ent work we are concerned with long-range effects.
For this purpose, we utilize a variational method
applied previously to study the van der Waals (VDW)
distortion in H-He system. This work will be re-
ferred to hereafter as I.

Calculation of the long-range contribution to HPS
requires4y ' a knowledge of the third-order energy
which consists of two orders in the VDW inter-
action and one order in the hyperfine effect. We
have calculated this energy using the first-order
perturbed wave function due to the VDW effect ob-
tained variationally and the first-order wave func-
tion due to the action of the nuclear moment deter-
mined by the moment-perturbation (MP) procedure. '
This method eliminates the need for using conven-
tional perturbation theory with associated uncertain-
ties for the excited states. ' It should be noted here
that an equivalent procedure would have been to
consider the wave function perturbed to second order
in the VDW interaction only. In the present case,
it is felt that there was likelihood of more error in
a second-order wave function calculation than in the
procedure utilized here involving two first-order
calculations.

Section II deals with variational calculations for
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the VDW energy and wave functions. In Sec. III,
the procedure for. the hyperfine shift calculation
will be described. In Sec. IV,, we describe the
statistical averaging procedure to evaluate the
long-range contribution to the HPS, which is then

combined with previously calculated short-range
HPS and compared with experiment. An analysis
of the possible sources of discrepancy between
theory and experiment is made and possible avenues
for future investigations are indicated.

II. LONG-RANGE VAN DER WAALS CALCULATION

In I, we have described a variational technique for treating the long-range van der Waals interaction
between two neutral atoms. The system considered there was H-He. However, as indicated in I, the
approach was developed with the intention that it should be applicable to larger systems. The present
paper deals with the extension of that procedure to the interaction between nitrogen and helium atoms.
The variation function used represents a compromise between maximum flexibility in terms of variational
parameters and practicability in terms of the computational aspects.

The N-He variational wave function is expressed in the form

5@=f4„
where 0, is the unperturbed wave function. For this function we have used the product of the Hartree-Fock
determinants for the two isolated atoms, the radial functions being those given by Clement. The form
of the perturbation function is determined from a consideration of the interaction Hamiltonian for this
system:

2 Z
He N Q N

R 2=1 riN i=3

2 9
He

jHe i=1 j=3 ij
(2)

where i =1, 2 and j =3, . . .9, refer to electrons of the helium and nitrogen atoms, respectively, and we have
used atomic units here and throughout the rest of the paper. In the van der Waals region, the Hamiltonian
(2) can be expressed in terms of spherical harmonics. We consider here only the dipole-dipole interaction
term of the expansion which has the form

2 9 1

R'=
3 C &.x. Y, A. Y, Q. ,R (3)

where C =(4v/3)(5i
i I 25 ).

The function f is taken as

1
g3 (4)

As in I, we have obtained the optimum values of the parameters Any by a variation perturbation technique.
This requires the minimization of the functional

J(54') =(54'l3C, -E, l54)+2(5@IX'I+,),

+ 2(4',f 13C'14',) .

where X, and E, are the Hamiltonian and total energy of the N-He system at infinite separation. The ap-
proach followed for N-He is exactly analogous to that described in I. As shown there, the function J'(5g)
will contain terms involving the difference between the actual Hamiltonian and the Hartree-Fock Hamiltonian.
These terms represent the effect of intra-atomic correlation on the perturbed wave function. It was shown
in the case of H- He that this effect r epre sents a change of only 3% in th energy. It does not necessarily follow that
the effect of these intra-atomic correlation terms in the nitrogen-helium system will also be quite as small.
However, in view of the great cost in terms of computational complexity of keeping these terms, we have
neglected this effect. Thus, in this case, the functional consists of three integrals:

[L.~,f]
Z(5@)=2 @,lg l

&
i I4' + oflg 2, I@' (6)

2=1 2 i=1 2
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The expression for J(54) may be re-expressed in terms of radial integrals as

&(&+)=, g A kA, k, t(nn'+2)I(He, He; n+n' —2) 2I(lsls;k+4')9R,z, y, n', )e' =

+2I (2s2s; k+0')+3I (2P2P; k+0') —2I (1s2P; k)I (1s2P; k') —2I (2s2P; k)I (2s2P; k')

+(kk'+2)I(He, He;n +n') 2I(lsls; 0+k' —2)+2I(2s2s;0+k' —2)+3I (2p2p; k+4'- 2)

&n

+ 9&, A kI(He, He;n+1)' 2I(ls, ls;@+1)+2I(2s,2s;k+1)16
9R 1

+3I(2p, 2p; k+ 1)—2I(1s2p; 1)I(1s2p; k) —2I(2s2p;1)I(2s2p; k)],

where the integrals I(ij;n) are defined in the same manner as in 1, namely,

(7)

I(ij;n)= f, P (r)r P. (r)Cr. (6)
z

Minimizing the functional (7) results in a system of linea, r equations which are then solved for the varia-
tion parameters A~y. The dipole-dipole van der Waals energy is then obtained by substituting back the
values of these parameters in the function (7). This energy is expressed in the form

VDW dd

The results of this calculation are given in Table I for various numbers of variation parameters. Kith the
computer facilities available ( IBM 7040), 49 parameters was the maximum number that was practicable.
However, we see from Table I that the convergence is quite good with 49 parameters. If the intra-atomic
correlation terms had been included, the number of parameters would have to be reduced since the computer
time would increase substantially.

III. LONG-RANGE HYPERFINE EFFECT

In calculating the HPS for N-He, we must obtain the hyperfine energy for the van der Waals perturbed
wave function. Because of the form of the van der Waals interaction Hamiltonian, the lowest-order energy
contribution will involve second order in this operator. The calculation of hyperfine energy may be con-
sidered as a problem in double perturbation theory. If the perturbation Hamiltonian is written as

7 X K yDW+ 3C

where &'hf =A I Z$.5(r.),hfs c z z i

with A = (16m/3)(V&/I) Poao', .

(10)

(12)

and I being the nuclear moment and spin, and p. o the Bohr magneton, 0 (rf) being expressed in atomic
units. Then the energy which is required will be ~ E» where the first subscript gives the order in

hfs while the second ref ers to X '~W . From the analysis of I with

5EyDW
——0,

i' VDW&
=

(@,i64& ) =0,

the expression for O'E» is given by

2=2(5@VDWIK VDW15+hf )+ 6+VDWIR M
I &+VDW ) 6Ehfs( 6+VDWI64'VDW).

(13)

(16)

In this expression, 5Cyp~ is the perturbed wave function obtained in Sec. II and 5%hf is the moment-
perturbed (MP) wave function presented in an earlier paper. The hyperfine energy 5Ehfs is given by

5Ehf
—(@,i3C'~ i@,), (17)
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and is zero for 4, as chosen in Sec. II. When an unrestricted Hartree-Fock approximation is used'~' for
the nitrogen atom, 5Ehfs is nonvanishing and leads to a finite observed hyperfine constant. We shall use
for 5EMs the value corresponding to the experimenta12 hyperfine constant 10.45 Mc/sec for isolated
nitrogen atoms.

lt should be noted here that the three terms included in our Eq. (16) correspond in form to the terms in
a similar energy expression given by Adrian' in his HPS calculation using conventional perturbation theory.
Substituting expressions given previously for the quantities which appear in Eq. (16), we can express
5 E» in terms of radial integrals. The resulting expressions for the three terms are

N,

VDW VDW hfs &,A A I (HeHe; n+ 1)f-I(51s2p; 1)I (2pls, k) —I (52s2p; l)I(2p2s; k)

n, k=1
—I(51 2

k)I(2Pls; 1) —(52 2, k)I(2P2s; 1)+ I(2s2P; )I(2Pls; k)
1s2Py 2s2p

+ I(2s2p; k)I (2p1 s; 1)[I(51s2s;0) +I(52s1s; 0)]), (18)

hf VDW ) 4 A P A A, p I (HeHe; n +n')[4)f (0)X (0)I (ls2P; k)I (2P2s; k')s 9ge ~, nk n'k' ' 1s
n, k, g'k' =1

X, '«)I(»2P;k)I(2P»;k'). X (0)I(»2P k)I(2P2. k )]
0

( 5@~Wi 5+~W ) = 8 Q A A, ,I (HeHe; n+n')
9/6 k /kl 1 nk n'k'

r &Pl

x [ —I (1s2P; k)I (2P 1s; k' ) —I (2s2P; &' ~ (2P2s; k')1, (20)

where the notation for the radial integrals is as in (8).
Using our 49-term variation function for 5C~W, the results for the three terms are

2(54'~Wl K'~WI M'& ) = (3574. 5/R') Mc/sec, (21)

( 5%'~WI X'hf 54'~W) = (48.2/R') Mc/sec,

M (5@ I54& W) =(4.0/R')Mc/sec.

(22)

(23)

(24)

The magnitudes of the three terms are in the same relative order as predicted earlier by Adrian. ' As
previously indicated, the third term would be zero if core-polarization effects were neglected and is seen
to be still negligible when one includes such effects through the experimental value for 5Ehfs. Our ratio
between the second and first terms is somewhat smaller than that obtained by Adrian through his semi-
quantitative estimates.

The change b a&(R) in the hyperfine constant as a function of R can be obtained using the relation
Aa (R) = 5'E„/IJ, '

where I=1 and 4 = —', for the N" atom.

HYPERFINE PRESSURE SHIFT AND DISCUSSION

Paving obtained the change in the hyperfine con-
stant baN(R) as a function of interatomic separation,
we can caluclate the hyperfine pressure shift (HPS)
for the system by averaging baN(R) over all values
of B. As shown by Clarke' and as discussed inI,
it is entirely sufficient to carry out a classical
statistical average in this case. In the Boltzmann
weight factor, R'exp[- V(R)/kT], we have used the
Lennard- Jones potential"

v(R) = 4&[(v/R) —(G/R) ] (»)

(27)

TABLE I. Coefficients in the van der Waa1s energy
expansion (atomic units) .

Number of variation parameters

equating the R-' term in (25) to our dipole-dipole
energy term calculated in Sec. II. The value of
e. and 0 thus obtained are

e/k=15. 7'K, o =5.35ao, (26

as compared to the values

e/k=26. 7'K, a =5.35a„

The parameters 0 and e are determined empiri-
cally following a procedure described by Adrian. '
Thus, a was taken as the mean of the collision

~ radii of helium and nitrogen atoms. These were
determined from virial coefficients for helium
and empirical rules due to Pauling in the case of
nitrogen. " The quantity c was determined by

4
9

16
25
36
49

-4.2614
-4.3297
-4.3487
-4.3592
-4.3652
-4.3678
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obtained by Adrian' using an estimated dipole-.
dipole potential. The final expression for the
HPS is given by:

a~ =
s~ (( AN(R ) ) )

1 J'~ (R)
—V(R)/kTd (28)kT N R'

For purposes of further discussion, we have plot-
ted ~aN(R) and R'exp[- V(R)/kT] against R in Fig.
l. As discussed in I for H-He, carrying out this
average brings up the question of specifically what
range of interatomic distance may be termed
"long range". It is clear that the van der Naals
calculation described above may be applied only
at values of R greater than some minimum dis-
tance. The multipole expansion for the interac-
tion Hamiltonian is only valid for large separa-
tions. The best procedure for bridging the gap
between large and small R is to carry out a vari-
ational calculation in the intermediate region
where both exchange and polarization effects are
important. Such a calculation would be similar
to a molecular calculation and is beyond the scope
of the present work. An alternative approach is
to apply a cut-off process as discussed in I. The
justification for the cut-off procedure is that the
polarization. effect should not diverge at small R
as in Fig. 1 but should instead decrease continu-
ously in magnitude below a certain value of R and
join the short-range curve. A plausible choice of

7
IO

I.AQ, (R)

E,R exp(-V(R)/kT)

0
IO

a
to
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I
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FIG. 1. Frequency shift &a~(R) in cps and the Boltz-
Boltzmann weighting factor R exp[—P(R) /k T] in units
of ao.

TABLE II. Dependence of (a~) LR on cutoff.

R
C

4.0
4.5
5.0
5.5
6,0
6.5
7.0
7.5
8 ' 0

(' &LR
(cps/mm Hg)

0.712 678
0. 653 808
0.459 800
0.380 127
0,264 746
0.223 173
0.162 061
0.139092
0.103 850

a
The range of R in the averaging process is R~

R~ was made in I from considerations of the con-
vergence of the series in R " in the long-range
energy and hyperfine constant expressions. Since
we have not calculated higher multipole contribu-
tions for the N-He system, we cannot utilize the
same considerations as in I. Instead we have used
the form of the empirical potential in Eq. (25) for
arriving at a choice for R. The zero of the em-
pirical potential occurs at R, =5.35 and minimum
at R, = 5. 5. Either of these points could be con-
sidered as plausible choices for R&. However,
our long-range polarization calculation of the
spin density may not be valid for these values of
R and so we have chosen a slightly larger dis-
tance R~ = 6.5 as a reasonable cut-off distance.
The sensitivity of the pressure shift to the choice
of R& can be gauged from Table II where results
are listed for a number of values of Rz. For
our choice of R~ =6.5, the long-range pressure
shift is given by

(a )L& = 0.22 cps/mm Hg. (29)

This value is to be compared with earlier values
of 0.76 cps/mm Hg and 0.26 cps/mm Hg obtained
by Adrian. '~" The first of these values was an
estimate obtained from conventional perturbation
theory with the usual approximations regarding
energy denominators. The second result was
briefly stated to have been derived from a varia-
tional calculation. It is, however, difficult to
make any comparison between this latter result
and ours, since no details of the variational cal-
culation employed" are available and presumably
no cut-off procedure was utilized in the statistical
averaging. From the results in Table II, it appears
that one can make a significant overestimate of
pressure shift if no cut-off is used.

The long-range contribution in Eq. (26) is to be
combined with the short-range contribution calcu-
lated in an earlier paper. ' This result utilized the
parameters (27) proposed by Adrian' for the po-
tential V(R) in (25). On utilizing the parameters
in (26) derived from our dipole-dipole energy, the
short-range contribution has the value

(a )S&——0.91 cps/mm Hg. (30)

The short-range contribution thus appears to be a
factor of 4 larger than the long-range effect. The
exact ratio is not, of course, very meaningful be-
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cause of the arbitrariness in the choice of R~.
However, one can state definitely that within the
approximations utilized in these calculations, the
short-range and long-range results are of the same
order of magnitude. For larger, more polarizable,
buffer-gas atoms, one can, however, expect the
van der Waals effect to increase and possibly dom-
inate the short-range effect.

Combining the calculated values of (ap) R and
(ap)SR, our theoretical value of the (HPS for the
N-He system is

(a ) „=l.l3 cps/mmHg,

which is to be compared with the experimental val-
ue' of 0.27+0.07 cps/mm Hg. The theoretical re-
sult is well outside the quoted value of 25'%%uo for the
experimental error range. In view of this, it
would be helpful to have confirmation of the ex-
perimental value by a remeasurement, hopefully
with a smaller limit of error. . However, at the
present time it does appear that the predominant
change will have to be in the theoretical result in
order to obtain agreement with experiment. It is,
therefore, worthwhile to consider here some areas
in which the theoretical procedure could be im-
proved and their possible relative impact on the
HPS result.

First of all, we analyze the calculation of
b,a(B)Z,R. The variational procedure we have
adopted here has been quite successful in predic-
ting van der Waals energy curves in other sys-
tems, &" and in the present case has shown good
convergence. A somewhat different variational
function adapted particularly to analytic one-
electron wave functions' has recently been util-
ized in energy calculations'~ without substantial
improvement. While the VDW polarization is an
interatomic correlation effect, it can be signifi-
cantly dependent on intra-atomic correlation with-
in the nitrogen atom. This latter type of correla- '

tion has not been included in the present calcula-
tion. This intra-atomic correlation was not found
to be very important in the H-He system, but its
importance with respect to the N-He system would
have to be assessed through an actual calculation.
Another source of uncertainty in the long-range
calculation of HPS is the determination of a cut-
off distance Rz. The long-range HPS is quite
sensitive to the choice of Az, and as mentioned
earlier, a molecular-type calculation for the in-
termediate region would eliminate the need for
selecting a cut-off distance. However, even if all

of these effects were included in the calculation of
(ap)Z, R, it is extremely doubtful that the result
could become negative as would be required in
order to counteract the large short-range contri-
bution. In fact, it is our feeling that the result
for &a(R)LR as given in Fig. l would not be changed
significantly by inclusion of correlation effects.

Thus attention must be focused on possible im-
provements in the short-range calculation. In
looking for sources that could significantly alter
the theoretical result for the short-range effect to
improve agreement with experiment, two factors
suggest themselves for consideration. First, the
distortion of the atomic orbitals that could arise
from the interatomic potential have been neglected.
It is conceivable, but not very likely, that this type
of distortion could significantly counteract the
effects of the calculated Pauli distortion. Possibly
a more important source that could influence the
short-range result significantly is the correlation
effect, both among orbitals within the atom and
between orbitals on the two different atoms. An
analysis of the effects of correlation on HPS wouM
thus be very useful; however, such a calculation
for the N-He system would be rather complicated.
The relatively simple H-He system would serve
as a more reasonable starting point in a considera-
tion of correlation effects on HPS, in view of the
fact that a similar situation arises in that system. "

In conclusion, we would like to emphasize that
the procedure employed in these calculations has
special merit in that it allows an evaluation of
HPS from first principles without the introduction
of any arbitrary parameters. The utilization of
the MP procedure is somewhat novel for this prob-
lem and makes it easily extendable to more com-
plicated systems. It would be illuminating to
carry out similar investigations in other systems
for which HPS data. are available, such as alkali
atoms in various buffer gases. A knowledge of
the relationship of theoretical to experimental re-
sults in these systems would disclose the gener-
ality of the behavior observed for N-He and thus
clarify the relative importance of correlation and
other effects in interacting atomic systems.
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Relativistic Hartree-Fock-Slater atomic wave functions have been calculated for the
superheavy elements Z= 114 and 126. The calculations have been made both for the atom
and for singly ionized states with holes in the X or L shells. A Wigner-Seitz boundary
condition is used, and results for both point and finite nuclei are presented. From these
solutions, binding energies and x-ray energies have been evaluated. Similar calculations
have been made on Au and U, and have been compared with experiment so as to ascertain
what degree of confidence one may have in these computations. A discussion is made of the
importance of finite nuclear size in determining the X-shell binding energy, and a so-
lution for element 140 was obtained to demonstrate the atomic stability in the present
approximation of elements above Z= 137. Finally, the probability for finding an electron
within the nuclear radius is given for each of the elements studied, and a brief discussion
is given concerning the stability of the superheavy elements against electron capture.

I. INTRODUCTION

There has recently been much speculation' about
the formation of the superheavy elements (Z= 114,
A = 298) and (2 = 126, A = 310), which because of
their doubly magic numbers may exist with rela-
tively long half lives. If such isotopes could be
made, there is the likelihood that in the decay of
the excited nuclear states, inner-shell vacancies
of the atom, particularly the E shell, would be
formed that would subsequently lead to the emis-
sion of characteristic x rays. The energy of an
in!.smally converted electron will also depend on
the binding energies. These x-ray and binding
energies might be used to identify the elements if
they exist, perhaps in remnants of supernovae or
as a product of heavy ion bombardment. In addi-
tion, a comparison of the experimental x-ray en-
ergies with calculations based on a finite nucleus
might yield an estimate of the nuclear, size.

We have calculated relativistic self-consistent-
field (SCF) wave functions for the elements 8 =114
and 126. For these calculations, we have solved
the Dirac equation numerically for a self-consistent
field with spherical symmetry and Wigner-Seitz
boundary conditions. A Slater-type electron ex-

change approximation, and both point and distrib-
uted nuclear charges were used. From the eigen-
values of the solutions for neutral atoms, one can
estimate the energies of the x rays which would be
emitted following an inner-shell vacancy. In addi-
tion, Ee» x-ray energies have been calculated
from the difference in the total energies of the
appropriate one-hole conf igur ations. C alculations
on gold and uranium have also been made, and
have been compared with the experimental results
to determine the accuracy of our program for x-
ray energy calculations. Finally, an evaluation
is made of the dependence of the atomic binding
energies on the nuclear size and diffusivity.

In a discussion of superheavy elements, those
with Z&137 have always been of special interest.
The Darwin-Gordon'~ solution of the Dirac equa-
tion for a point nuclear charge breaks down for
Z) 1/n, where n is the fine-structure constant.
An earlier investigation4 by Werner and Wheeler
has shown that, with a nuclear charge distribution
of finite size, a E-shell electron may exist with a
stable electronic configuration where Z) 1/o. .
There remained, however, a degree of uncertainty
on account of the approximate nature of that inves-
tigation, which did not incl»de, among other things,


