
PH YSI CAL REVIEW VOLUME 174, NUM BER 3

Intermediate-Coupling Polaron Effective Mass

15 OCTOBER 1968

DAvID M. LARSEN

Lincoln Laboratory, * Massachusetts Institute of Technology, Lexington, Massachusetts

(Received 29 April 1968)

We have calculated the polaron effective mass as* by extending the variational ansatz of a previous paper,
where, in the Lee-Low-Pines representation, pair correlations between wave vectors of virtually emitted
phonons are taken into account. Our results suggest that (1) effective masses calculated by fourth-order
perturbation theory lie below the true values but are quite accurate for + ~& 3 and (2) the Feynman theory
gives effective masses which are somewhat too high in the intermediate-coupling region. For +&4.5 we pro-
posethe estimate m*/m=1+n/6+0 023.63a'+0 0014. a'

I. INTRODUCTION

HE measurement of cyclotron masses of conduc-
tion electrons in polar materials like the silver

halides and alkali halides is very difFicult. Only recently
have accurate data become available. ' '

Because an electron placed in the conduction band of
a polar insulator or semiconductor will distort the
lattice and induce a local polarization charge, cyclotron-
resonance experiments in such materials do not measure
the rigid lattice conduction-band mass as calculated in
conventional band theory, but rather the magnetic
levels of a more complicated excitation (the polaron)
consisting of the electron and its accompanying lattice
distortion. Thus to determine the band mass from a
cyclotron-resonance experiment, the shift in the cyclo-
tron frequency due to electron-lattice interaction must
be taken into account.

In view of the large amount of new data becoming
available on the intermediate coupling polaron mass
and the success of the variational ansatz of I' in produc-
ing a polaron ground-state energy lower than has
previously been reported for a&3,5, we thought it
would be useful and interesting to extend the ansatz of I
for the purpose of calculating the polaron eGective mass.

Calculations based on the Frohlich' model for
electron-lattice interaction indicate that in general the
cyclotron frequency of the polaron eo„i is not linear in
the magnetic field. '7 However, in the special case that
the excitation energy of the final state remains suffi-

ciently small compared to her, the energy of the long-
wavelength LO phonons, we have

(polaron) cyclotron frequency. (By "excitation energy"
of a conduction-band state in a magnetic field we mean
the energy difference between the given state and the
conduction-band ground state in the magnetic field. )

Nonlinear behavior of co„i with magnetic fmld has
been observed in the weakly polar semiconductor InSb. '
However, in electron-cyclotron resonance experiments
reported to date in the silver and alkali halides

c/oc0. 1; thus, if the resonating electrons are not
moving too rapidly along the magnetic field, as seems
to be the case in the reported experiments, (1) should
be accurate.

Determining the relationship of m* to m is one of the
fundamental problems of polaron theory. Mathemati-
cally this amounts to calculating the coefFicient of the
P' term in the expansion of the polaron energy E(P)
(in the absence of magnetic fields) as a function of the
polaron momentum E'. Previous variational calculations
of E(P) for small P have been carried out by LLP, o

Gurari, "Lee and Pines, " and Haga. "An important
nonvariational calculation was made by Feynman" and
calculations equivalent to fourth-order perturbation
theory have been reported by Hohler and Mullenseifen, '4

LLP, and Roseler. "These calculations will be discussed
in Sec. III.

II. VARIATIONAL CALCULATION

Starting from the Frohlich Hamiltonian in dimension-
less form,

H= p'+p ttj,+g os(e '~'bkt+H. c.),
coo, i= ntoo, /nt* = eH/rn*c, (1) where

where m is the rigid lattice band mass for the conduction
band (assumed parabolic), rn* is the polaron mass in
the absence of magnetic fields, and cop, i is the observed
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where 0 is the crystal volume and ro ——(k/2m')'~', we
take our trial functions in the form

&~r (p—z»n»)UIy )
U gZ fIs(bkt —bk) (4)

hence an effective mass

m.*/m = (1+—,',n)/(1 ——,',n) . (9)

The variational problem posed by (7b), equivalent
to diagonalizing X in S~, the subspace spanned by the
zero-, one-, and two-phonon states, requires the services
of a computer, although the problem can be reduced, as
will be described, to a set of coupled one-dimensional
integral equations. The effective mass is deduced from
the energy spectrum E„(p) by

(rn*/nz). =P'/LE„(p) —E„(0)], (10)

where E„(P) is the energy found variationally to order
P'. Optimizing the energy for (7c) would be a major
undertaking because of the multidimensional integrals
involved. In fact, even the perturbation calculation of
E(P) to order a' has not yet been carried out, and this

The Schrodinger equation for
I P&& is

~le~&= E(P)
I e~),

X=Kp+Ki,
xo= (P—P kn»)'+P n» —~,
GCi ———2 P (P k) f»(b»t+b»)

+2 Q k m fI f„b»tb

+P k mf»f„(b»tb t+b»b )

+2+ k. mf»(n b»+b»tn ), (5)

where P, being the total momentum of the electron-
phonon system, is conserved and is therefore a c vector.
We have specialized our choice of f» in (4) to

f» = —~»/(1+k')

which is used by Ll P for the case I' =0.
Imagine now a sequence of possible trial functions

dI0&+-P d»Ik), (7a)

d I0&+~ d» Ik&+Z d» Ikl&, (7b)

dIO)+Pd»Ik&+Pd»iIki&+Pd»i Iklm), (7c)

etc. , where IO) is the phonon vacuum, Ik&=b»tIO),
Ikl&=-b»tbitIO&, etc. , and the indexed d coeScients are
freely varied to produce in each case, (7a)—(7c), the
lowest possible energy at given P (where P is sufliciently
small).

Optimization of (7a), first attempted by Haga, "
amounts to diagonalizing X in the subspace S~ spanned
by I 0) and the one-phonon states

I
k). For small P this

can be done analytically yielding the simple result

We have used the convention dk~
——0 for k& t.

In determining E„(P) to order P2 it is convenient to
introduce the quantities

P Pmf„d =P'~(P), (12a)

Q lfi(d»i+di») = kf»1 i(P,k)+P»if»f2(P, k), (12b)

where P»i=P —(P k)k/k', and therefore is a vector
perpendicular to k in the plane of P and k. We remark
that (12a) and (12b) are more than definitions of ), f'i,
and 1 &. Actually these equations contain assumptions
about the nature of the solutions of (11).

The assumption embodied in (12a) is almost self-

evidently correct. From the equation for dk it is clear
that dk contains only one preferred direction, namely,
the direction of P. Hence g mf d must be a vector
lying along P, as is implicit in (12a). Less easy to predict
a priori is the direction of V=—g lfi(d»i+di»), since the
two vectors, k and P, determine V. It turns out to be
self-consistent to assume merely that V lies in the plane
of k and P. Within this restriction, (12b) gives the most
general expression possible for V.

Introducing (12a) and (12b) into (11) produces the
equations

E„(p)= n+P' —2P'$(p)—
+P k'f»'f'i(P, k), (13a)

(P.k)'
lP'k= —2 f"(1—5+1 (P,k))

Di(k)

(P k)
+Q f»'k'1'i(P, k) ) (13b)

Di(k)

perturbed energy is the weak-coupling limit of the
energy deduced from (7c).

Turning now to the determination of E,(P) from

(7b), which is the subject of this paper, we obtain from
the diagonalization of K in S2 the equations

E.(p)ya P'=——2P P kf»d»

+g k mf»f (d» +d»),
Di(k)d» ———2P kf»+2f»k Q mf d

+ 2(k—P) P ifi(d»i+di»),

D, (k)l)d i ——2k. lf»fi

+2(k—P) 1fid»+2(1—P) kf»di

+2+ k.mf»f„(di +d &)

+2+1 mfif„(d» +d»),
D,(k) =E„(p)y~ —(P—k)' —1,

D, (k,l) =E„(P)+n—(P—k—1)'—2,
d»=d»/d, d»l= d»i/d.



i048 DAVID M. LA RSE N

TABLE I. Comparison of the ratio of the polaron mass to the band mass as calculated from Eqs. (13) and (10) L(m*/m), ],
(16) L(m~/m)r, , and (15) P(m*/m), 4] as a function of Frohlich's coupling constant n, given in (3).

(m /m),
(m'/m)s
(m*/m), 4

0.5

1.08940
1.08968
1.08924

1.0

1.19146
1.19417
1.19029

1.30656
1.31749
1,30316

2.0

1.4344
1.4653
1.4278

2.5

1.5738
1.6458
1.5643

3.0

1.7229
1.8711
1.7126

3.5

1.8788
2.1605
1.8728

4.0

2.0383
2.5467
2.0447

5.0

2.3543
3.8940
2.4240

where

+g fs'(Psr ll s(P,k)
Ds(k, l)

+Pi, kl, (P»)), (13d)

C(k) = —[2P k/Di(k)][1 —(+t t(P,k)]
y[2/D, (k)][A'1.,(P,k) —P„st.,(P,k)].

To obtain E„(P) to order P' it turns out to be suK-
cient to expand $, ft, and f's..

1 (»1)= n(1)+P 4 (1)+(P 1)'~ (1)+P.' (1), (14a)

1 (P»)=v(f)+P b (l), (14b)

where the r) and y functions in (14a) and (14b) are
spherically symmetric and independent of P.

Inserting (14a) and (14b) into (13b)—(13d) and
equating terms of the same order in P 1, Pns, and

(P l)Pr„' gives a set of coupled integral equations for
the etas and the gammas. These equations are quite
complicated and will not be reproduced here. An
important point is that all i4 nontrivial distinct angular
integrals which appear can be done analytically, and
the resulting coupled system of linear one-dimensional
integral equations can be solved iteratively by machine.

The iteration proceeds in steps. First the equation
for rj is solved and E„(0) found as discussed in I. Then
the two coupled equations for p& and p are solved by
iteration using an initial guess for $; ( is computed
from (13b) after each solution for r)r and yr is found.

~ ~ ~

-'l't (P,l) =2 f"(C(1)+C(k))
Ds(k, l)

(k 1)'fg'
+Z (1+| (P»)+1 (P,k))

Ds(k»)

1

+P fs'(Ps, ll s(P,k)
Ds(k, l)

+Pi, kl s(P»)), (13c)

[(k I)—(P k)]Pi, k
sPir't s(P») =2 f"(C(1)+C(k))

Ds(k, l)

(k 1)(Pi, k)
+Q fs'(1+1 t(P»)+lg(P, k))

Ds(k»)

When ( becomes stable the three coupled equations
for p2, p3, and p& are iterated using the already estab-
lished values for $, r), t'ai, and y and a guessed value for
[E.(P)—E„(0)]/P'. Computation of a current value
for [E„(P)—E.(0)]/P' is alternated with iteration of
the equations for res, res, and yt until [P.,(P)—E„(0)]/P'
becomes stable. The final result (m*/m)„ is then com-
puted from (10).

III. RESULTS

In Table I we compare the effective mass deduced~
from (11) with the fourth-order perturbation result'

(m*/m)„, 4——1y-s'n+n'

X [7/36 —ssv2+ s ln(1+v2) —ss ln2]

=1+-',n+0.0236276n'

and I.angreth's" expression

(15)

'6D. C. Langreth, Phys. Rev. 159, 717 (1967). Owing to a
typographical error, (16) is misquoted in Ref. 1.

(m*/m) z= (1—0.0008n')/(1 —en+0.0034n') . (16)

Equation (16) was devised in order to provide a con-
venient and accurate interpolation between (15) (for
n«1) and the values of m*/m given by Feynman's
theory" for n&5. [Actually Feynman's theory comes
remarkably close to (15) in the weak coupling limit. )

Inspection of Table I shows that over the range of n
for which we expect our variational calculation to be
quite accurate (say, n(3.5—see I), our effective masses
lie slightly higher than (15) and lower than (16). From
one point of view we can say that our variational results
certify the accuracy of fourth-order perturbation
theory for the effective mass for n&3. The validity of
the variational calculation, in turn, is supported by the
calculation in I of the mean number /t'/ of virtual
phonons in the field. It is shown in I that X, which
increases monotonically with n, becomes equal to 2
fol n~3.3.

It is very interesting to investigate the accuracy of
(9), which, being derived from ansatz (7a), approaches
correctly the exact effective mass only to order n and
not to order n' as n~ 0. Ke would hope that, for small

n, Eq. (9), being a variational result, would pick up
part of the correction to order n' in (15) even though
(7a) neglects two-phonon correlations. Expanding (9)
to order n' we obtain the approximation to E„,4.
m*/m= 1+-',n+0.01389n'. Comparison with (15) shows
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that Haga's ansatz, (7a), produces almost 60% of the
exact n' term.

This result suggests that if we wish to estimate the
coeKcient of the n' term in the perturbation expansion
of ma/m in powers of n, we could reasonably use the
corresponding coeScient obtained from the expansion
of (m*/m) „in powers of n even though we have neglected
three-phonon correlations. To evaluate this coeKcient
we compute C for 0.1(0.(0.5:

C= {~.(P)—~.(o)—r~(P) —&(0)]-4)/o'P', (17)

where (E(P)—E(0)]„,4 is the polaron-excitation energy

3.0

2.8

correct to order n' in the weak-coupling limit. "We then
expand P'/(LE(P) —E(0)]„,4+Cn'P'} to order n' and
obtain our estimate:

(ma/m)„t = 1+isa+0.0236276a'+0.0014ns. (18)

The high accuracy of fourth-order perturbation
theory for X&2 suggests that sixth-order perturbation
theory (order rrs) should have good accuracy for X&3
or n&4.5. In the absence of knowledge of m*/m to
order n', we believe that (18) should provide a satis-
factory estimate of m*/m for a&4.5.

We find that (ma/m)„& lies considerably closer to
(m*/m)„ than to (m*/m)z, for 0&n&5.

In Fig. 1 we give a graphical comparison of (m*/m). ,
(m*/m) r„and the lowest-order weak-coupling or
LLP-Gurari result:

(m /m)i, i,p o= 1+en. (19)

2.4
E

C

Q 22
I-
IK

co 2.0
«f

I.8
K

g I 6

l.4

In a more ambitious calculation one might have
attempted to assume fs is P-dependent and written a
variational equation for fs(P) instead of assuming (6).
For the ansatz (7a) we find that this procedure leads to
the LLP-Gurari theory, which gives a less accurate
energy spectrum than the Haga theory. We do not
know what the results of a more general choice for fs
would be for ansatz (7b) but we doubt that significant
improvement could be obtained.

Finally we remark that Haga has studied ansatz (7b)
for the exactly soluble one-dimensional Gross model. "
At a coupling constant corresponding to'~ o;= 2 he finds
extremely close agreement between the exact and
variational solutions for small P.

1.0 2.0 3.0 4.0 5.0
COUPLING CONSTANT (0)

FIG. 1. Com arison of the ratio of the polaron mass to the
band mass m~ m, as calculated from Eqs. (16) (Langreth), (13)
and (10) (present calculation), and (19) (LLP-Gurari).
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