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The origin of the hyperfine pressure shift (HPS) for hydrogen atoms in a helium atmosphere
has been analyzed quantitatively. The theory is discussed in terms of three distinct regions
of interaction. Calculations are carried out explicitly for the. short-range and long-range
regions, and the importance of the intermediate region is investigated. At short range, the
Pauli distortion effect is treated through an orthogonalization procedure, and a variation-
perturbation approach is utilized to consider the long-range van der Waals interaction.
Our theoretical result for the HPS is 1.9 ~ 10-"/mm Hg as compared with the experimental
value of 3.7 +0.7 && 10- jmm Hg. The major sources for the discrepancy between these results
appear to be neglect of correlation effects and uncertainties with respect to the intermediate-
range contribution.

I. INTRODUCTION

There has been sustained interest for more than
thiri, y years in the theory of interatomic and inter-
molecular forces. ' With the availability of im-
proved computing techniques and refined treat-
ments for perturbation effects and many-body ef-
fects in atomic systems, there has been a recent
enhancement in efforts to understand interatomic
forces quantitatively. Concurrently, optical pump-
ing techniques' have provided accurate values for
properties, the interpretation of which requires
not only a knowledge of interatomic energies, but
also a detailed understanding of wave functions.
Among these properties are the dependence of the
magnetic hyperfine constant of paramagnetic atoms
on pressure of a rare gas atmosphere and also the
lifetimes of polarized spin states. Our primary
concern is with the former phenomena referred to
as hyperfine pressure shift (HPS). The trend of
observed HPS for hydrogen atoms in various rare-
gas atmospheres has been qualitatively explained
as arising from a competition between short-range
and long-range effects, the latter increasing in
relative importance in heavier rare-gas atmo-
sphere. ' The short-range effect has been explained
as arising from the overlap between hydrogen and
rare gas atom orbitals' and an estimate of the
HPS due to this mechanism has been made for hy-
drogen-helium system. 4 In the present work we
have undertaken a quantitative analysis of both
short-range and long- range effects for the H-He
system. Our aim is not only to obtain improved
agreement between theory and experiment but also
to determine the limitations of current approaches
to the calculation of properties of interacting
atoms.

In Sec. II we describe the procedure that we have
utilized to obtain the long-range effect on the hyper-
fine constant. This procedure also yields a value
of the van der Waals energy. In Sec. III, the short-
range calculation is described and the dependence
of the hyperfine frequency on interatomic separa-
tion presented. Section IV deals with the combina-
tion of short-range and long-range effects and the
statistical averaging procedure used to evaluate

the HPS as well as a discussion of our results.

II. VAN DER WAALS EFFECT
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where electron 1 is associated with a hydrogen
nucleus and electrons 2 and 3 belong to helium.
As is customary, we expand this Hamiltonian (1)
in terms of spherical harmonics. ' In this work
we have included the first three terms in this
expansion. These are: the dipole-dipole term
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and the combined quadrupole-quadrupole and di-
pole- octupole interaction

When the separation between the two atoms of the
system is sufficient that overlap effects are negli-
gible, then the predominant interaction arises out
of mutual polarizations of the atoms referred to
as the van der Waals effect. For the hydrogen-
helium (H-He) system in this region, the interac-
tion Hamiltonian in atomic units is
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This last interaction will henceforth be referred to
simply as the quadrupole-quadrupole term. The
range of validity of this expansion has been ana
lyzed by several authors and broadly the criterion
is that the interatomic separation be larger than
the sum of the radii of the two atoms.

With the Hamiltonian expressed as in Eqs. (2},
(4), and (6), one is naturally led to consider the
perturbation theory technique for solving this
problem. The zero-order wave function describes
the separated atoms and can be taken as a product
of the isolated atom wave functions. However, the
first-order equation presents difficulties arising
from the inherent two-electron nature of the per-
turbation operator. Thus, it becomes obvious
immediately that any perturbation procedure which
attempts to set up differential equations for the
perturbed one-electron states will lead to coupled
equations which are particularly troublesome to
handle. In view of this, we have utilized a varia-
tional approach which avoids this difficulty.

The variation function which we have used is of
the form

VDW 0 (8)

where 40 is the unperturbed wave function of the
total H-He system
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where C,(m) C»(m), C,B(m), and C»(m) are given
in Eqs. 3), 5), and (7).

The variation function, Eq. (8), is similar to one
used earlier by Davison, ' except that he utilized
for the helium wave function in 4, a complicated
function incorporating correlation effects through
the inclusion of interelectronic coordinates. Since
we wanted to use the same zero-order function for
short-range effects as well, correlated wave func-
tions would have been a little too complicated to
use. Also, for larger atoms, use of correlated
wave functions would make the calculations pro-
hibitively difficult. It is therefore helpful to test
the results with simpler Hartree-Fock wave func-
tions for lighter atoms. A comparison with
Davison's van der Waals energy terms can then
provide an assessment of the importance of intra-
atomic correlation in the hydrogen-helium system.
A somewhat different type of variation function has
been suggested by Lowdin and Hirschfelder. ' This
corresponds to using different pairwise excitation
functions for each pair of states made up of one
orbital from each of the interacting atoms. This
modification is indistinguishable from the choice
in (8}for the H-He system studied here because
each of these atoms has a single orbital leading to
only one pair of mutually interacting states.

A variation-perturbation technique was employed
to determine the parameters Any. In this proce-
dure we minimize the functional

Z(64') = (5WR, —E, I 54) + 2(6W3C'%, ),
+,=yH(1)yH (2)XH (8}a,(o',P, —n, P, )/~2 (&)

For the three interactions considered, the varia-
tion functions f have the forms

where 3C =XH+XH, + =EH +EH (14)
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gCH and XHe being the Hamiltonians of the isolated
atoms and EH and EHe the co~resPonding energies.
Since our unperturbed wave function 4, is a Har-
tree-Fock function, we first express the function
J(54) in terms of the many-electron Hartree-Fock
Hamiltonian XHF

Z(6@) = (5@i(XHF —&, ) I6@ )

+ (6@I n3CIM ) + 2(54 IR'I+, ), (15)

-r,"' r. Y2 "(i)Y1 (q)], (ii)
pm ym

where hX =X,—R

or explicitly, for the H-He system,

(16)



106 RAY, LYONS, AND DAS 174

X (3) X (3) — X (2) —&X (21 1 1
f» He r23 He He ~» He

' xHe&2)xH )&) —xH &2&xH (3&), (&v&

For our system, the explicit forms of XHF and E,
are given by

1 2 1 2 2
3C VHF- 2 z y1H y2He y3He

+
XHe (3) XH, '(2)

d72 + d73
f23 F23
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Eo —e + 2f — d12 d~3
&

(18)
He F23

where cH and c& are one-electron energies for
the 1s orbitals of hydrogen and helium atoms. With
the help of Eqs. (18) and substituting for 54 from
Eq. (8), Eq. (15) may be re-expressed as

J(5%) =-,' @o
z =1' i

3
1

z =1~z

+ y, 2~Xe, +2 op X +p, 19

where Lz is the electronic angular momentum
operator.

The minimization of the functional (19) with re-
spect to the variation parameters results in a sys-
tem of linear equations, the solutions of which are
the A~~. In carrying out this procedure, it is
necessary to express the four integrals of J(5@)
in Eq. (19) in terms of radial integrals. For the
dipole-dipole case, these expressions are

A A
z=1 z

x [nn 'I(HII, n+ n' —2)I(HeHe, 0 + 0')

+ kk'I(HH, n+ n')I(HeHe, k+ k' —2)], (20)
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Here the one- and two-electron radial integrals
are defined by

I(ij, n) = f P.(x,)P (x,.)r, dh, (24)
p z

OQ Oa

J(m, n, n)= 0+1

x MPH (x,) PIPH (x,) Fdr,dr„(25)
and the radial functions P(r, ) are defined by

X(r) = [P(~)/r] FI ~(e, 0) . (28)

Similar expressions were obtained for the dipole-
quadrupole and quadrupole-quadrupole interactions.

For our calculations we have utilized Clementi's'
helium atom wave function; the isolated hydrogen
atom wave function is, of course, exact. Once the
variational parameters have been obtained, the
second-order perturbation energy due to the van
der Waals interaction is given by J(5%') with the
values of the parameters substituted in (19). This
yields an expression for the energy in the familiar
form

E~~=Cd /R'+Cd /R'+C /R".
dq qq

(27)

TABLE I. Coefficients in the van der Waals energy
expansion.

The terms arising from &X in J(54') merit special
attention. These terms represent a type of intra-
atomic correlation (within the helium atom) in the
perturbed state. In carrying out the calculation of
energy, we have investigated the importance of this
effect in the case of the dipole-dipole interaction by
repeating the calculation with and without the 43C
term. As is seen in Table I, where these results
are listed, this correlation effect is about 3%.

The results in Table I indicate that good conver-
gence was obtained with 49 variational parameters
for all three interaction terms. Two earlier theo-
retical results are available for the dipole-dipole
term. One of these was obtained by Karplus and
Kolker, ' using time-dependent perturbation tech-
nique neglecting intra-atomic correlation effects
completely. Their value for Cdd= —3.0116 is in
excellent agreement with our result without corre-
lation. A later result, Cdd= —2. 8173, was ob-
tained by Davison' who used a correlated wave
function for the isolated helium atom and a varia-
tion function f similar to our choice. Davison s
result is about 3. 5% smaller than our value in-
cluding bXterms. It is interesting that the 3/o

+p l ~ ~ +p g~e A ~A ~pI

Number of Cdd
variation without
parameters A Ã

Cdd
with
EX

Cdd
with
AK

Cqq
with
DX

x (HH, n+n')J(k, 1, 0'), (22)

4p +&' 4p = 3
—

6 A &I 1,n + 1 I 2, k + 1

9
16
25
36
49

-3.0214
-3.0218
-3.0218
-3.0218
-3.0218

-2.9085
-2.9132
-2.9134
-2.9140
-2.9142

-41.903
-41.906
-41.906
-41.906
-41.907

-858.76
-858.90
-858.91
-858.92
-858.93
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p I IX X
yDW

+X hf
(28)

where X'VDW is defined by Eqs. (1) through (7).
The term X'hfs describes the Fermi-contact inter-
action'3

intra-atomic correlation effect introduced through
&X in the Hamiltonian is comparable" with the corre-
lation effect from the ground-state wave functions.
Davison's value compares very well with the best
semiempirical estimates Cdd = —2. 82 and —2. 83
made by Dalgarno and Kingston" and Bell " re-
spectively.

Davison' has also evaluated the dipole-quadrupole
term and obtains Cd = —41.782 which agrees with-
in 0. 3% with our value. This seems to indicate
that intra-atomic correlation effects associated
with the wave function for the helium atom are
even less significant for the dipole-quadrupole ef-
fect. No other result is available for comparison
with our quadrupole-quadrupole term, but experi-
ence with the other two terms indicates that our
Cqq should be quite reliable.

We next consider the calculation of the HPS. For
this purpose we have to obtain the hyperfine energy
for the van der Waals perturbed wave function. For
this purpose, we consider formally a system sub-
jected to two perturbations described in our case
by

5~E„=2(54'~wl x'~wl M'~

'&5 VDWIX'hfsl5 VDW&

&. (5)

In Eq. (35), the first-order hyperfine energy 6Ehfs
is given by

6E = (e, IX I +,&

= —,'A IXH'(H) =A I/2w, (s6)

since XH'(H) = 1/m in atomic units, and where we
have assumed that the nuclear and electron spins
of the hydrogen atom are in states my =I and m~
= 1/2. The perturbed wave function 6@hfs due to
the proton hyperfine field requires a solution of
the first- order equation

the suffixes of 6 Em+ indicating mth order in hyper-
fine and nth order in the van der Waals effect. On
examining the two matrix elements on the right, it
can be seen that O'E» vanishes. This then leaves
53E as the lowest-order nonvanishing contribution.
On extracting linear hyperfine terms out of (33),
we get

X~ =A 1 Z. s. 5(r.),hfs c z z z ' (28)

where Ac = (16m/3)(p~/I) p, ~,-', pIV and I being
the nuclear moment and spin and p, , the Bohr mag-
neton, 6(rz) being expressed in atomic units. The
dipole-dipole interaction term is not of interest
here because it makes vanishing contribution to
HPS after statistical averaging. '4 Since we are
interested in linear hyperfine effects, we want to
retain terms in the energy of the system which in-
volve one order in X'hfs and various orders in

On introducing the first- order perturbed
wave function

for the separated atoms. Equation (37) may be
shown to reduce to the perturbation equation for
the isolated hydrogen atom for which the solution
can be obtained analytically. Thus

6@hfs=6xH hf (1)xH (2)xH (3)o.,(o.,p,

—o' P )/~&, (38)

where 6X „=(A I/4m)(E(r ) (X I@IX &)X

VDW' ~~hfs (30)
F(rH) = —1/rH+ 2 lnrH + 2r (38)

where 6+~W and 54hfs are individually orthogonal
to 4„ it is easy to show that first-, second-, and
third-order energies are given by"

6E = (+,IX'I+, &,

52E=(@,IX'I M &,

O'E = (54'I X' —6E I 64'& .

(sl}

(32)

(33)

On substituting for X' from (28) in (31), we get the
first-order van der Waals energy 5E~W which
vanishes and the hyperfine energy for the isolated
atoms. The only part of (32) that we are interested
in is the one involving linear terms in both X'hf
and X~ . Thus

5'E„=(@,lx'~ IMVDW&+(@,Ix'~WI64~ ), (34)

Since the van der Waals perturbation admixes l 0
character in the hydrogen atom wave function, the
second term on the right in Eq. (35) vanishes, as
may be seen from Eqs. (10) to (12). The other two
terms can be evaluated by substituting for 54VDW
and 6%'hfs from Eqs. (8) through (12) and (35). Thus,
for the dipole-dipole case,

A I
&'~VDWIXVDW'I'~M. &

= 3.It ~kA.kIF(")

x I(HeHe, k+ 1), (40)

VDW VDW& 3A'
k k nk n'k'

xI(HH, n+n')I(HeHe, k+ k'), (41)

where the radial integrals I(2, k+1)'are defined in
Eqs. (24) and
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JE(&) = (XH ~
&H"+ [&(~H) —

(yH I E I yH) ] I yH) .(42) H H "He He
)( '(r, lt)=

[1 S2(R)]'&2
(47)

Using this integral,

(yHl EI yH) = 2. 459 368 66

and fE(n) =4(-(n+1)t/2s+ +(&+3))/2s+

—2. 45936866(n+2) )/2

+2 f x"+ e "lnxdx). (44)

Corresponding expressions were derived for the
dipole-quadrupole and quadrupole-quadrupole van
der baal terms. The quantity of interest to us is
the fractional frequency shift Av(R)/v, which may
be obtained from 5 E» in (35) by dividing with
5Ehfs. Using the variation-parameters A„y ob-
tained by ener minimization, we then obtain an
expansion for bv(R)/vo]LH for the long-range
region of the form

dd dq gq
R' R' Ri'

LR
(45)

The terms fy(+) can be evaluated exactly because
of the special forms of yH and E(xH). This evalu-
ation requires the definite integral

1"x"e '"lnxdx
0 n

—0. 57721567 —1no. + g —. (43)1J

""'=&&H"H) ~&He"He) &
. (48)

To obtain the hyperfine interaction energy of the
proton, we need to calculate the expectation value
of the hyperfine Hamiltonian X&& in (29) over a
determinantal function composeB of the three or-
thogonal orbitals on the two atoms. In the calcu-
lation of (Khfs ), the contributions from the two
paired spin states of the helium atom cancel each
other. From the orthogonalized hydrogen atom
orbital one then gets the hyperfine energy

5E (R) =-,'X f [q„'(0,A)]&, (49)

where again we have considered the states m~
1=I and ms=-, .

Had a symmetric orthogonalization procedure
been employed instead of the Schmidt procedure,
the same result as in Eq. (49) would have been
obtained. However, 6Ehfs(R) would now be com-
posed of finite contributions from both the orthog-
onalized hydrogen and helium orbitals. The
Schmidt procedure is therefore particularly ad-
vantageous when one has a number of electronic
states on either the paramagnetic or buffer gas
atom, since one has then to deal only with the
orthogonalized unpaired electronic states.

Combining Eqs. (36) and (49), one obtains for
the fractional pressure shift at short range

R being the internuclear distance and S(R) the over-
lap integral,

where add = —4. 0578, Dd = —90. 866, [~ (A)/ .]S = [X'„(H)/XH(H)]'-1, (50)

D = —2561.6 . (46)
qq

Further discussion of this result in the calculation
of HPS will be postponed to Sec. IV.

III. SHORT-RANGE CALCULATION

In this section, we shall be concerned with the
contribution to the hyperfine constant from short-
range interactions. For small interatomic dis-
tances, there can be two effects: first that due
to the Pauli exclusion principle through the over-
lap of the orbitals on the two atoms, often referred
to as Pauli distortion; and second, an actual defor-
mation of the orbitals due to the additional poten-
tial produced by the neighboring atoms. For atoms
which do not form a covalent bond, the second type
of distortion is usually assumed to be sma11. %e
shall thus confine ourselves to a quantitative analy-
sis of the Pauli distortion effect,

%'hen the atoms overlap, this distortion effect
can be described by orthogona1izing the orbitals
through the Schmidt procedure. After orthogonali-
zation, the three electrons of the H-He system
occupy the orbitals gH'(rH, A)n, yHe(rHe) n and

yH (rH )P, where

where the argument H will always indicate the value
at the proton site. For numerical accuracy, it is
better to deal with small quantities rather than with
the difference between large numbers. Thus, it
is more convenient io calculate [nv(R)/vo]SR di-
rectly by expanding the right-hand side of Eq. (50)
in powers of S(R) leading to

n,v(A) XH (H)
= S2(R) —2S (R)

SR X

X„(H) 2 XH, (H)
+S2(R) ' —2S'(R') . + o(S') . (51)

XH(H) XHLH)

The overlap integral S(R) was calculated by ex-
panding the helium orbital about the proton using
Lowdin's e-function technique. " Our results for
[hv(R)/v, ]SR are shown in Fig. 1 and compared
with the results obtained, using a single-parameter
hydrogenic wave function (effective charge Z = l.6875)
for helium as used by Clarke. 4 The curve of the
short-range fractional pressure shiA with the more
realistic Hartree-Fock wave functions lies consis-
'tently higher than the one parameter result since
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lo
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= 4. 606 e —3.0116/R' for R )3 (53)
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For large R, the potential is dominated by the van
der Waals dipole-dipole term which agrees very
well with our calculated result in Sec. III. Clarke'
had used a somewhat different choice for V(R) in
his calculation. We have used both choices of V(R)
in the averaging procedure and find differences only
in the fourth significantfigure indicating that the
final result is not very sensitive to V(R) .

In Table II we have listed the values of the long-
range and short-range contributions to the frac-
tional frequency shift (b.v(R)/v, ) as well as their
sum and the weight factor R' exp[- V(R)/k T] for the
averaging process. For the sake of clarification
of the relationship between the short-range and
long-range results, the entries of Table II are
plotted in Fig. 2. Carrying out the average indi-
cated in Eq. (52), we get the short-range and long-
range contributions and the total HPS as

R(Atomic unit s)

FIG. 1. Variation of short-range fractional frequency
shift (&v(R) /vo) S~ with R. The continuous line represents
our results while the dashed line represents results
obtained with effective charge 2= 1.6875 for the helium
orbitals (Ref. 4).

the overlaps S (R) are underestimated in the latter
case.

IV. PRESSURE SHIFT CALCULATION

The hydrogen atom collides successively with a
number of buffer gas helium atoms in a variety of
relative configurations. The observed hyperfine
constant is therefore an ensemble average of the
hyperfine constants for various relative configura-
tions of the hydrogen and helium atoms. Taking
a classical average, the pressure shift is given by

a ~v(R) 1 ~v(R) —V(R)/I T„
p sp vo kT v(&

(52)

(f ) =2. 597x 10 '/mmHg,

(f ) = —1.574 x 10-'/mm Hg,

(54)f = 1.023 x 10 '/mm Hg,

which is substantially smaller than the experimental
value "

(f ) t
—(+3.7~0.7) x 10 '/mm Hg. (55)

However, in making a simple addition of [Ev(R)/
v,]i H and [&v(R)/v, SH, we assumed the long-
range result in Eq. 46) to hold for all values of R,
as has been done in the past. " However, the ex-
pansion in terms of R ~ in Eq. (45) is not justi-

x 10~ x 102 x 1p~ ( a.u. )

TABLE II. Fractional frequency shifts and weight factor.

(»(R)b» (R)3 (»(R) 2 -V(R)/
J 8R vo JI-R 4 vo tot.

A quantum-mechanical averaging procedure would
require a, knowledge of the motional wave function
for the atom-pair. Clarke4 has shown that such a
procedure only leads to 3% correction for the H-He
system. In Eq. (49), the function hv(R)/vo that we
use does not depend on the direction of R. One
could get a directional dependence if account was
taken of the classical dipole-dipole interaction be-
tween the nucleus and electrons, but it has been
shown that on statistical averaging, the contribu-
tion to the pressure shift from this source vanishes. '4

For V(R) we have utilized the most recent inter-
atomic potential available in the literature. "

3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0
7.5
8.0
8.5
9.0

3.9100
1.8936
0.8787
0.3942
0.1720
0.0734
0.0307
0.0127
0.0052
0.0021
0.0008
0.0003
0.0001

-6.2797
-1.5529
-0.4820
-0.1781
-0.0755
-0.0356
-0.0183
-0.0101
-0.0059
-0.0036
-0.0023
-0.0015
-0.0010

-2.3696
0.3408
0.3967
0.2161
o.0966
0.0378
0.0124
0.0025

-0.0008
-0.0016
-0.0015
-0.0012
-0.0009

0.0000
0.0048
0.6526
5.6804

15.3736
25.4264
34.1341
41.8581
49.2404
56.7098
64.4953
72.7080
81.3982
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10 '

10 2

10 s

10-4

10 '

10 „I

-10'

.10o

. 10 '

10 a

10 '

Similar, but less serious, limitations apply to
the validity of the averaging procedure for the
short-range pressure shift. Thus, in the region
where van der Waals effects are important, it is
no longer justifiable to take the overlap between
undistorted s orbitals on the two atoms. This
would not be a significant consideration if the over-
lap effect were negligible in the long-range region.
However, from Table II it appears that [hv(R)/v„]s&
is still appreciable over the region beyond Rz = 6.
Values of the short-range HPS for cut-offs at var-
ious upper limits R~ are listed in Table III. We
have chosen this value of R~ =6 as a reasonable
upper limit for the average procedure which leads
to a short-range HPS of

-10 ' (f ) =2. 350x 10-'/mmHg, (57)

-10-"

-10 s

about 10% less than in Eq. (54). Combining these
plausible choices for long-range and short-range
contributions, we then get the total HPS as

-10 '-'

(f )„„=1.907x 10 '/mm Hg. (5S)

-10 '

R (atomic units)

FIG. 2. Fractional frequency shifts and Boltzmann
weight factor (R exp[-V(R)/k Tt}. Dashed portions of
total and long-range frequency shift curves for values
of R& 6 are unreliable because of the failure of the
multipole expansion of the interatomic Hamiltonian.

fiable for small R, since it depends on the validity
of the expressions (2) through (7) for the inter-
atomic perturbation Hamiltonian. These expansions
do not hold for small R. Since the Boltzmann fac-
tor is not sufficiently small in this region to make
the contribution to fh insignificant, one must be
careful in handling the long-range effect. Rather
than use a wrong result for small R, it is better
to use a cut-off Rz for the lower limit in the inte-
gration for the averaging process in the long-range
case. This cut-off procedure is justified because,
in actuality, at short-range the atomic distortion
is completely dominated by the Pauli repulsion
effect. A value for R~ may be chosen in a number
of different ways. The energy expansion in (19) be-
gins to diverge in the neighborhood of R =4, the hy-
perfine expansion showing a similar behavior
around R = 5. These then represent two plausible
choices for R~. The statistical averages for the
long-range HPS have been listed in Table III for
these values of R as well as for some additional
values to demonstrate the sensitivity of the final
result to R~. It appears from Table IQ that the
final long-range result in fact depends rather
strongly on the choice of R. We have chosen Rz
= 6 as a sufficiently large distance to assure con-
vergence of the hyperfine expansion. With this
cutoff, the long-range contribution to HPS is

TABLE III. Dependence of long-range and short-range
HpS on cut-off R~.

R (a0)
a

~p LR y ), P'total= &P LR
'&P) SR

4.0
5.0
6.0
7.0
8.0
9.0

-1.4626
-0.8437
-0.4429
-0.2556
-0.1615
-0.1090

0.2147
1.6131
2.3496
2.5425
2.5843
2.5927

-1.2479
0.7694
1.9067
2.2869
2.4228
2.483.7

This result is substantially better than that in
Eg. (54) where no cutoff was used. However, the
theoretical result is still only about half the experi-
mental value.

To avoid the uncertainty connected with the validi-
ty of the long-range and short-range results for
intermediate values of R, it would be best if one
could carry out a first-principle calculation of the
frequency shift for this region. In this intermediate
range, the Pauli distortion and the potential dis-
tortion (van der Waals-type effect) are expected to
be comparable, and it is therefore necessary to
incorporate both effects simultaneously. Thus one
would have to use a zero-order function which is
a determinant involving the three electrons on the
two atoms and consider the perturbation of this
wave function by the interatomic potential (1) rather
than the multipole expansions in (2) through (7).
Such a perturbation calculation could be carried
out by a variational procedure resembling a molecu-
lar wave function calculation. A calculation of
this type would be rather elaborate and beyond the
scope of the present work. '0 However, we have
utilized a rather approximate procedure proposed
by Margenau" for calculation of energy in the in-

(f ) = —0.443 x 10-~/mm Hg. (56) b
The range of R in the averaging procedure is R —~

C
The range of R in the averaging process in 0—R~.
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termediate range. In this approach, the zero-
order wave function is given by

+o = detlXHo'(1)XH n(2)XH &(2)] . (69)

The first-order perturbed wave function is as-
sumed to have the form

@=[1+&(X-E,)]+, , (60)

where Xis the total Hamiltonian for the two inter-
acting atoms and E, is the total energy for the two
separated atoms. The quantity X has the dimen-
sions of reciprocal energy and is taken as

X = 1/E. , (61)

hv(R) &v(R)
vo vo SR (1 —S'(R))

x 1g 2,g ]

—2S(R)(yH(1)y (2) g (1)y (2))

+&'(&)((x„,(&)x„,(2) ', x„,O)x„,(2)) -&„),,

(68)
where the first term is the short-range effect ana-
lyzed earlier and the rest of the terms (referred
to as intermediate-range terms) represent the
combined effects of interatomic exchange and or-
bital distortion. Using Ef = 2. 8 Ry and carrying
out the requisite one-center and two-center inte-

where Ez is the sum of the first ionization poten-
tials for the hydrogen and helium atoms. The
hyperfine energy for the hydrogen atom using the
perturbed wave function 4' is then given by

( e lZ . g . 6(r. —r ) (e)
6Ehf =A I (~t @) . (62)

On substituting for 4' from Eq, (60) and after some
manipulation using the requisite expressions for
the energies EH and EHe of the isolated atoms in
terms of one-electron matrix elements, one ob-
tains a fractional frequency shift

grals involved, we find that the intermediate-
range terms are orders of magnitude smaller
than both the short-range and long-range terms in
the corresponding regions. The wave function 4
in Eq. (60) therefore appears to be inadequate for
a description of the perturbed orbitals in the
neighborhood of the proton, although Margenau
finds it suitable for interatomic energy calculation.

While the uncertainty associated with the inter-
mediate region can influence the final result for
pressure shift appreciably, it appears from Table
III that the elimination of this uncertainty alone
cannot produce agreement with exyeriment. The
short-range effect by itself is appreciably smaller
than the experimental value and the long-range
effects make a contribution of opposite sign. It
seems to us therefore, that the remaining discrep-
ancy with experiment can only be explained by in-
clusion of correlation effects at short range. This
expectation is in keeping with a similar conclusion
of Kestner and Sinanogulu" for the helium-helium
systt. m.

V. CONCLUSION

Various contributions to the HPS for the hydro-
gen atom in a helium atmosphere have been con-
sidered quantitatively. The short-range Pauli
distortion effect is obtained by considering the over-
lap between orbitals on the two atoms. A varia-
tional procedure is proposed and carried out for
the long-range van der Waals energy and long-range
hyperfine effects. The results indicate that a
proper treatment of the intermediate region is
necessary to make a reliable combination of long-
range and short-range effects. However, it appears
that ultimate agreement between exyeriment and
theory will require explicit treatment qf. correla-
tion effects at short range. It would be,of interest
to investigate whether these conclusions apply to
other systems involving heavier paramagnetic
atoms and buffer gases.
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In continuation of a series of investigations of hyperfine pressure shifts (HPS) in interacting

atoms, an investigation of the long-range interaction of nitrogen atoms in a helium atmosphere
is reported. The procedure requires wave functions perturbed to first order in the van der
Waals and nuclear hyperfine Hamiltonians, respectively. The van der Waals perturbed wave

function. is obtained through a variational procedure described previously for the H-He

system. The first-order hyperfine wave function is a moment-perturbed (MP) function used

in an earlier study of the short-range N-He interaction. The theoretical result for the long-

range contribution to HPS is 0.22 cps/mm Hg to be combined with a contribution from short-
range of 0.91 cps/mm Hg, as compared with a total experimental HPS of 0.27+0.07 cps/mm

Hg. Various factors which might contribute to the difference between theory and experiment
are discussed. In particular, the role of correlation at short range is stressed.

I. INTRODUCTION

The present work is a continuation of efforts to
arrive at a quantitative understanding of the origin
of hyperfine pressure shifts (HPS) of atoms in
buffer gas atmospheres. ' The pressure shift for
nitrogen atom has been studied experimentally
through the optical pumping technique' in a number
of rare gases. In our present investigation we
have singled out the N-He system for detailed
study. In an earlier paper' we have analyzed the
contribution from short- range effects for this
system, arising from an interplay of the overlap
effect between the two atoms and the exchange
polarization within the nitrogen atom. In the pres-
ent work we are concerned with long-range effects.
For this purpose, we utilize a variational method
applied previously to study the van der Waals (VDW)
distortion in H-He system. This work will be re-
ferred to hereafter as I.

Calculation of the long-range contribution to HPS
requires4y ' a knowledge of the third-order energy
which consists of two orders in the VDW inter-
action and one order in the hyperfine effect. We
have calculated this energy using the first-order
perturbed wave function due to the VDW effect ob-
tained variationally and the first-order wave func-
tion due to the action of the nuclear moment deter-
mined by the moment-perturbation (MP) procedure. '
This method eliminates the need for using conven-
tional perturbation theory with associated uncertain-
ties for the excited states. ' It should be noted here
that an equivalent procedure would have been to
consider the wave function perturbed to second order
in the VDW interaction only. In the present case,
it is felt that there was likelihood of more error in
a second-order wave function calculation than in the
procedure utilized here involving two first-order
calculations.

Section II deals with variational calculations for


