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Theory of Optical Parametric Noise
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Optical parametric noise (OPN) is treated as a quantum-mechanical decay process in which a photon co3

decays in an optically nonlinear medium into two photons ar&, co2. The correct form of the interaction Hamil-
tonian is derived in terms of the usual second-order susceptibility, the field is quantized in a simple way,
and the transition rate is obtained for an arbitrary field distribution at co3. Et is shown that focusing does not
enhance OPN. The properties of OPN are then described in considerable detail for a plane wave at co3 using
a rigorous treatment of the crystal optics. OPN will usually be dominated by processes which very nearly
conserve momentum and which produce a narrow-band emission whose frequency is determined by the
direction of emission. Also considered is the background due to momentum-nonconserving processes, which
produce broad-band emission up to a sharp cutoG frequency which depends on the emission direction.
Appendices are provided on the group velocity in crystals, the "noise-wave" theory of OPN, second-harmonic
generation, and OPN with beams of finite cross section.

1. INTRODUCTION

~W~PTICAI. parametric noise (OPN), also known as
parametric fluorescence' or spontaneous para-

rnetric interaction, ' is radiation emitted in an optically
nonlinear crystal due to the spontaneous decay of a
photon co3 into two photons co1, co2.'

&S=CSi+&S I

where co=2m-v is the angular frequency. The greatest
emission occurs when conservation of momentum
(phase matching) can also be satisfied:

ks ——k+j,
where k, j, ks are wave vectors at ce&, res, res, resPectively.
OPN satisfying (1) and (2) has been observed' r and
may prove valuable' ' as a tunable source of radiation
and as a technique for measuring the nonlinear optical
coeKcients of crystals. It is also the main source of
noise in low-gain optical parametric ampli6ers and
frequency converters employing a laser pump at ~3.

The theory of OPN is in need of clari6cation because
of several diferent approaches in the literature and
drastically diGerent results which have not been recon-
ciled. The notion most often employed'»' is that OPN
is due to parametric ampLification by the pump of a
6ctitious "zero-point" power hv1dv1 in bandwidth de~,

' S. E. Harris, M. K. Oshman, and R. L. Byer, Phys. Rev.
Letters 18, 732 (1967). Equation (1) is incorrect.' D. Magde and H. Mahr, Phys. Rev. Letters 18, 905 (1967).
Equation (2) is incorrect.' D. Magde, R. Scarlet, and H. Mahr, Appl. Phys. Letters 11,
381 (1967).

'R. L. Byer and S. E. Harris, Phys. Rev. 168, 1064 (1968).
Results embodied in (5), (6), and (8) are correct.' R. G. Smith, J. G. Skinner, J. E. Geusic, and W. G. Nilsen,
Appl. Phys. Letters 12, 97 (1968). Equation (4) is too small
by a factor of 2.' S. Akhmanov, V. Fadeev, R. Khokhlov, and O. Chunaev, Zh.
Eksperim. i Teor. Fiz. Pis ma v Redaktsiyu 6, 575 (1967) LEnglish
transl. : JETP Letters 6, 85 (1967)j.

7 C. H. Henry and I. J. Hopfield, Phys. Rev. Letters 15, 964
(1965); W. L. Faust and C. H. Henry, ibid. 17, 1265 (1966).
The Raman scattering of the polariton is an example of OPN if
the polariton is regarded as a photon propagating in an extremely
dispersive region of the spectrum.
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after amplification the original "zero-point" power is
subtracted off and the remainder is assumed to be
observable as OPN. Results obtained with the assump-
tion of fictitious powers, although possibly of interest,
must certainly be considered tentative. Another notion4
employing fictitious powers is that OPN is a mixieg
process in which "zero-point" power of one photon
ho&2 per mode mixes with the pump co3 to produce the
observed OPN at ~1. One might be tempted to add the
contributions from parametric ampli6cation and para-
metric mixing. Actually, both contributions appear in
a consistent treatment (Appendix 8) of the parametric
interaction of two "noise waves" with the pump. It is
necessary to allow for arbitrary initial conditions,
arbitrary mismatch hk, and arbitrarily small gain
compared to Dk; the correct answer then results from
assuming the correct zero-point energy —,'Ace in each
mode. It is also true (although hardly obvious in
advance) that the correct answer can be obtained by
either of two arbitrary procedures in which (a) one
neglects mixing, and the energy Ace per mode is assumed
to be amplified, or (b) one neglects amplification and
assumes that energy Am per mode mixes with the pump.

The direct way' to calculate OPN, which makes no
use of fictitious powers, is by means of quantum-
rnechanical perturbation theory. In this method one
obtains the transition rate for the decay res —+~i+&os
using an interaction energy proportional to the non-
linear susceptibility. In this method it is important to
derive the interaction with care, because confusion can
arise between interactions of the form j'E dP and—J'P dE, where E is the field and P is the (nonlinear)
polarization. As a check, one can compute the second-
harmonic generation from the transition rate (Appendix
C). Recently, Giallorenzi and Tang' have given a
detailed quantum-mechanical treatment in which they
prove that OPN is independent of the coherence of the

' D. N. Klyshko, Zh. Eksperim. i Teor. Fiz. Pis'ma v Redaktsiyu
6, 490 (1967) (English transl. : JETP Letters 6, 23 (1967)g.
Equation (1) is too small by a factor of 4 and should not con-
tain cosvJ.' T. G. Giallorenzi and C. L. Tang, Phys. Rev. 166, 225 (1968).
i027
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pump beam. Their final result, Eq. (35) of Ref. 9,
however, varies inversely with the solid angle 303 of
the pump and therefore is awkward to apply to a
plane-wave pump (r&,=0). This happened because
they tacitly assumed 603 to be much larger than angular
effects dependent on the Gnite length of the crystal. It
is the opposite case (plane-wave pump, DQs ——0) that
exhibits the most interesting and significant features.

None of the theories mentioned is valid for large
dispersion; they all make the approximation that the
group velocity equals the phase velocity. The case of
large dispersion is very interesting, however, because
large dispersion and large nonlinear coe%cients often
go together. ~ Dispersion together with the optical
anisotropy of the crystal can be treated rigorously by
means of the vector group velocity v—= Vco(ir).

In this paper, the transition rate for OPX is obtained
from perturbation theory using a Hamiltonian and
quantum conditions that are correct in the presence of
dispersion and anisotropy. The perturbation theory is
checked by verifying that it gives the correct second-
harmonic generation. It is shown that OPN is not
enhanced by focusing (unlike harmonic generation),
as one might expect from its independence of the co-
herence' of the pump beam. A compact expression is
obtained for the angular and spectral distribution of
OPN power for the case of a plane-wave pump and a
crystal slab of Gnite thickness but arbitrarily large area
(actually it is only required that the slab be larger than
the beam). The properties of phase-matched OPN are
described in considerable detail by means of the concept
of the matching surface. A detailed description is also

given of the mismatched background OPN. A system-
atic development of the theory of the group velocity
in anisotropic dispersive crystals, which does not seem
to be readily available in the literature, is given in
Appendix A. In Appendix 3 is given a treatment of
OP% based on the parametric interaction of "noise
waves" with the pump. This consistent treatment
reconciles and unifies the parametric ampliGcation and
mixing approaches to OPN. The correct (perturbation-
theory) result is obtained when the noise waves have
the zero-point energy —,'L& per mode. Appendix C shows
that the interaction used here gives the correct second-
harmonic generation. In Appendix D, an explicit
condition is obtained for the validity of treating a
Gnite pump beam as a plane wave.

2. FORMULATION OF THE THEORY

The system is an electromagnetic Geld in an arbi-
trarily large volume V=L' containing nonabsorptive
material. Within V is a smaller volume 8'= L'l in the
shape of a slab of thickness l in which there is a second-
order polarization P of the general form"

Ps(r) = 7t(—~s, —~i, ~&):Ei(r)*Es(r), (3)
'o J. A. Armstrong, N. Bloembergen, J. Ducuing, and P.

Pershan, Phys. Rev. 127, 2928 (2962).

The tensor commonly used to describe second-harmonic
generation" is d= sip( —2', co, cv). The contribution of
g to the energy of the medium is

P

dr E dP.
W 0

This, however, is not the interaction energy relevant
for OPN, since in the unperturbed field P(r) =0.There-
fore we must start at P= 0 and turn on P adiabatically
at constant E, then change E and P according to (3),
and finally reduce P adiabatically at constant E to
P= 0. The work done by the field in this process is

II'= — dr P dE,

which is the correct interaction energy for OPN. It is
convenient, though not essential to our treatment, to
assume that dispersion in g can be neglected; then g
possesses sufficient symmetry' that (5) can be written
in the simple form

H ———
3 drE g:EE,

where E=E(r,1) is the sum of all fields present. Intro-
ducing the field amplitudes denned by (4) and ne-
glecting the rapidly oscillating parts of H' gives

drLEs (r) ~ g:Ei(r)*Es(r)e+c.c.j

= ——,'X drLEs(r) Zi(r)*Es(r)*+c.c.j,

where the fields Z;(r) are now scalar amplitudes and
the polarization directions of the fields are taken into
account in the effective nonlinear coefficient g. More-
over, it is convenient to define E,(r) as the amplitude
of the transverse component of the field. Thus, if s is a
unit vector in the propagation direction and u is a unit
vector in the field direction, the vector field is

E(r)=uB(r) csc(u, s)

and the effective nonlinear coe%cient is

u3 ' g ulus csc(us, ss) csc(ui, si) csc(us s2) ~ (9)

If the dependence of y on cubi, cus is important, (7)
"D.A. Kleinman, Phys. Rev. 128, 2762 (2962)."D.A. Kleinman, Phys. Rev. 126, 1977 (1962).

where Ei(r) is the complex vector amplitude of the
field at ~~ defined by

E,(r, t) =ReLE, (r)e-'"~'j.
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(r) g E„cia.r

Es(r) =g, E,e'&',

E,(r) =E,f(r), (10)

~ f(r) ~sdr= V.

remains valid" although the more general derivation
Lnot using (6)j will not be given here.

We expand the 6elds at co~, co2 in plane waves but
allow the laser field to have a general form specified by
f(r). Thus we write

about f(r) in order to be able to relate the quantum
number S of the laser mode to the power (Ps incident
on the slab:

(Ps ——hoes(v, /L) cV .
This relation also holds if S is the average photon
number of the laser mode in a nonstationary state such
as the so-called coherent states. " For simplicity, we
shall assume that the laser mode is in a quantum state
E, since the transition rate for OPN is. independent of
the coherence of the Geld. '

The interaction Hamiltonian (7) can now be written

H'= ——,
' P P XLf(k+j)EsErtE;t+c. c.j, (16)

Is

The wave vectors k, j at coi, ios, respectively, satisfy
periodic boundary conditions in V. A, t each frequency
we shall quantize the field by imposing a commutation
condition of the form

where

f('K) — dr f(r)& iK r— (17)

U = («/Swv) I E
I' (12)

where v=—v s is the component of the Zrogp velocsty"

in the propagation direction, e is the refractive index,
and 8 is the transverse component of the field. We
therefore write, for the Hamiltonian of the noninter-
acting Geld at one frequency,

EI= V(ne/Sriv)E"E (13)

and choose C in (11) such that the eigenvalues of B
are EPuv, where Ã= 0, 1, 2, . In this way we are led
to the quantum conditions

[Es,Ei,."]= (Sm-hioiv i/cni V)h . ,ss

(E;,Ept j= (Srrhiosvs/cnsV)b, i',
LEs,Estj= (Sv h(osvs/cns V),

with all other commutators vanishing.
The only assumption we make at this time con-

cerning the laser field f(r) is that the surfaces of
constant phase should propagate in one direction
normal to the slab. This rules out standing waves such
as would result from reQecting surfaces that were not
perpendicular to the slab. It follows that, parallel to
the slab, f(r) does not propagate but describes some
stationary distribution such as a Gaussian beam, a
higher-order transverse mode of a laser cavity, or a
standing wave pattern produced by reQecting surfaces
perpendicular to the slab. A sperial case of great
theoretical interest is when f(r) is a plane wave normal
to the slab. We make the aforementioned assumption

» P. S. Pershan, Phys. Rev. 130, 919 (1963).
re L. Brillouin, Wave Propagaieon and Grolp Vdooely (Academic

Press Inc., New York, 1960).

PE,Et7= C,

where the E, Et are now operators and C is a constant.
The classical energy density in a lossless medium with
dispersion and anisotropy is )see Eq. (A27)j

may be considered as a Fourier amplitude of the laser
field (with respect to the slab volume W). The transition
~0,0,Ã) ~ ~k, j, E—1) creates photons in states k, j
and destroys a photon in state f(r). The rate for this
transition is'6

Z g= (2w)-'V gh dhdQ, . (19)

It follows from the definition of vi that dcoi= vidh (see
Appendix A). Thus the observed power D(Pr in hvi and
AQg is

6(Pi Q Q Rhombi= AvihQihcoi(2w) '
V( /h)vi

dj,dj„dj.R (20)

"R.J. Glauber, Phys. Rev. 131, 2'?66 (1963).See also Ref. 22.
~' See any text on quantum mechanics, for example, L. I. Schi8,

Quantum Mechanics (McGraw™Hill Book Co., New York, 1949),
Sec. 29."D. A. Kleinman, A. Ashkin, and G. D. Boyd, Phys. Rev.
145, 338 (1966}.

'8 J. E. Bjorkholm, Phys. Rev. 142, 126 (1966).
's D. A. Kleinman and R. C. Miller, Phys. Rev. 148, 302 (1966).

&= (2rr/h')b((os —~i—ios)
~ (X,O,O[H'(k, j, X—1) ~s

= (2'w'/c'nsL')(PgP
~ f(k+j) ~'(vivsioiios/nins) (1S)

)(8(ios—ioi —ios) .

Note that E. does not depend on the relative phases of
the Fourier amplitudes f(k+ j). Thus OPN can not be
enhanced by focusing, and for a focused beam it is
independent of the position of the focus. This sharply
distinguishes OPN from second-harmonic generation
which is sensitive to focusing. "—"We shall assume that
photon k is observed experimentally and j is not
observed. Therefore we must sum over all j for which
EWO. We also sum over certain values of k which fall
within some frequency band 5v& and solid-angle window
DQi. The sum over k of any quantity Q can be written
as an integral:
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Fio. 1. A general OPN process satisfying (1) and (23) bnt not
(2). The laser beam is in the direction z and the photons emitted
have frequencies co&, co2 and wave vectors k, j. In general, there
are two possible j if k is fixed. The curve co~ represents all possible
photons of frequency co2 which can propagate in the crystal, and
the allowed j are the intersections of this surface with z.

and k= tiring i/c. This treatment is valid only when
stimulated decay processes can be neglected. Thus we

require Et((1, where t is the transit time of a photon
across the slab. This is the case of small parametric gain
Also, losses have been neglected.

3. OPN FOR A PLANE-WAVE LASER BEAM

If the beam co3 is a plane wave in the z direction
normal to the slab, we have, from (17),

I f(k+j) I'= (2~1)'~(k.+j.)~(k.+j.)
)& Lsin'(-,'Akl)/(-, 'Ak)sg, (21)

with

~5'g= 2 vghQg.
Sir(Psh X Bivs&oi ois slil (—Dkl)

S3C (-', LN)'
(25)

Only the third and fourth factors depend on the par-
ticular k, j process being observed. For oii)oi'(8) we
have 66'~=0.

Equation (25) is the basic result of the theory, and
forms the starting point for our deductions about the
properties of OPN. Our derivation treats the optical
anisotropy and dispersion rigorously by means of the
concept of the group velocity v. Since the formal
properties of v are not readily available in the standard

We shall write expressions for the contribution to the
OPN from a single j and a single polarization (with due
care in the special case v„=0); all contributions have
the same general form, and it must be decided in each
application if several contributions need to be added
together. From (20), (21), and (24), it follows that the
power 6(Pi emitted into a spectrometer having arbi-
trarily small solid angle AQi and frequency (i =oi/2v)
bandwidth Api is (&ui«u')

It follows that
d,k =—e,oi,/c —k,—j,.

k,+j,=k„+j„=O,

(22)

(23)

which, together with (1), determines j as a continuous

function of k. Figure 1 shows k at angle 0 to the &

direction. Ilsing the end of k as center, a surface can
be constructed res(1) =ois —oui, which is the locus of all

j satisfying (1).This surface intersects z at two points
which satjsfy (23). Both of these are allowed processes,
but ordinarily it is permissible to retain only the one

with the smaller value of
I
Ak I. However, this is not the

case in the degenerate situation shown in Fig. 2. Here,
the co& surface just touches the z direction at a single

tangent point j.It is clear that if co~ were to be increased

no solution of (1) and (23) would exist. Therefore the
surface labelled ~' is the locus of maximum frequencies

observable in any direction 0. Also indicated in Fig. 2

is the group velocity vs ——v(j), where

v(j)—=Vto&(j) . (24)

Note that we do not define vs as Iv&I but vs=Bra/Bj
In general, v is normal to any surface ~=const and

therefore is normal to x in Fig. 2. A property of the
Emit surface &u' is that all processes on oi' have vs, ——0.

We assume that the photon ~~, k is observed in a
definite allowed polarization direction. For each j there

are two distinct processes corresponding to the two

polarization directions for the unobserved photon +2, j.
An exception is when g =0 for one of these polarizations.

FIG. 2. A typical process at the limiting frequency co =co'(0).
The limit surface co is the locus of those k for which the co2 surface
just touches z. All allowed processes must lie inside or on ~'. Also
shown is the group velocity v2, which, for a limit process, is normal
to z.

treatises on optics, we have given a brief discussion in
Appendix A..

4. PHASE-MATCHED OPN

The function of Dk in (25) is familiar from the
theory of harmonic generation, "where it is customary
to regard 2ir/Dk as the coherence length over which
the laser and harmonic fields remain in phase. Only a
limited number of nonlinear crystals permit phase
matching (6k=0) for harmonic generation. In the
present case, however, there will always be some com-
binations oui, ops satisfying (1) that permit Ak= 0. The
condition 6k=0 defines the matching surface Figure 3.
shows a typical matching surface for the case ~y&M2.
When v2, ——0, the matching surface is tangent to the
limit surface. YVe may regard Dk as a function of k; it
follows from (22)—(24) that an arbitrary variation 5k
produces the variation She given by

vs.8&k =bk. (v,—v,) . (26)

This shows that v~ —v2 is in the direction normal to the
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matching surface. Unless it is very small, the matching
surface will dominate the OPN, giving rise to a narrow-
band emission whose center frequency depends on the
direction of k. When co~)co2 as in Fig. 3, there will be
two narrow-band emissions corresponding to the two
intersections of the observation direction with the
surface; there will also be a third emission co1(co2
coming from a part of the matching surface (not shown)
enclosing k=0. Considering only one of these, we may
integrate (25) over» to obtain the iota/ power emitted
in 601..

8&+3~~ ~ +1&1&2~12
7

AQg N3c BgI sy' (vy —v2) I

(27)

which gives
IaaI &~/l, (29)

It is assumed here that 501 is sufficiently small that the
spread of center frequencies can be neglected. It follows
from (30) that (27) may be written

where sq=k/k denotes the observation direction. It is
not important whether we regard s1 or the direction of
v1 as the observation direction, since one direction can
always be determined if the other is known. The
integration over v1 was carried out by means of the
relation

8+~/8&1= (2'/'Vl'V2 )[Sl' (v], v2) j
which follows from (26).

The effective bandwidth of the emission may be defined
as the frequency band for which

the details here, (26) can be continued to include
second-order terms in bkbk and bjbj, where bj= bk-
—zbhk (z a unit vector). When v2, ——0, it can easily be
shown that

~»Izz:Vv2I

4Is~ (v~—v2)Il'

Thus the bandwidth (although nonvanishing) becomes
so narrow that the integrated line strength is inde-
pendent of / when v2, ——0. This case is best regarded as
part of the Ak/0 background which will be discussed
in Sec. 6. Generally speaking, we expect that only
processes giving an integrated line strength propor-
tional to l will be readily observable experimentally.

An interesting feature of the 6k=0 process occurs
when s just glances the edge of the surface; there is
then only one emission co1&co2 corresponding to the
point of tangency. As this condition is approached we
have s~ (v~—v2) —+0; it follows from (27) and (30)
that both power and bandwidth should greatly increase.
By supplementing (26) with terms in bkbk it can be
shown that

85k/8» ——(2z/»v „)I
2v2, s~s~.V (v&+ v2) I

'~'(Dk)'~2

[s~ (v~ —v2) =0j. (32)

By means of this relation (25) can be integrated over
vq to obtain the edge power (coq) co2):

5(P] 87r6'3M~ I X S1$]82C01 M2

(33)
AQ~ e~c' m2

I
v2, s~s~.V (v~+ v2) I

"'

where I is the integral

dz
~5 1 8&+3~~ +1&21 ~2

=dv )2

Q2S3C 82
(31)

—scn2s =0.8.
~g5/2

(34)

We note from (25) that the emission becomes very
intense at the line center as v2, —+0; however, (30)
shows that the bandwidth becomes very small as
e2, —+ 0; the result is that the integrated line strength
(27) does not depend on v2, . Although we shall not give

V)-Vg

Fxo. 3. A typical phase-matched process in which k lies on the
matching surface 6k=0. Also shown is v~ —v2, which is normal to
the matching surface. In the case drawn coI)co2, there are two
combinations h, j which could give emission in the direction t3,

only one of which is shown. There is also one emission with co~(co2.

The effective bandwidth of the emission from the edge
1S

hv= I2v„»'/nlI'~'I s~s~.V(v~+v2) I

'" (35)

Equating (27) and (33) gives the criterion

I s~ (v~—v2) I &I 'I (v2,/l)s~s~. V(v~+v2) I'~' (36)

68=2I 'Iv~ —v2I 'I (v2,/l)s~s~. V(v~+v, ) I'". (37)

Since h8 l '~2 while d(Pq/AQq P~', it follows that the
total edge power integrated over 601 varies as I. The

for the validity of (33) and (35). We see in (33) that
the peak power reached at the edge varies as P" com-
pared with / for the normal processes (27). Thus the
magnitude of the eehaecemeet as the edge is approached
depends on l. In a suKciently long crystal there would
be a pronounced enhancement at the edge accompanied
by a broader effective bandwidth (35) varying as f '"
compared with l ' for normal processes. From (26) and
(36) it follows that the angular width 68 of the edge
peak is
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edge power (33) can be written in the form (31) with
Dv the effective band (35).

Another special case of enhancement and line broad-
ening formally identical with the edge process just
treated is the degenerate process when vi ——v~. If k and

j have the same polarization direction, this would
imply cv»

——co2 and 0=0. There is an enhancement as
the degenerate case is approached, since

Is, (v,—v,)l ~0.
The degenerate peak power is given by (33) with

vi ——v2 and hv is given by (35). The angular width of
the degenerate peak is

a8= (2c/eia)i) I (vv2g/l) I'"Itt:Vvl ' 2~ (3g)

where t is a unit vector transverse to x in the plane in
which 8 is measured. Again we see that the enhanced
region contributes an integrated power (over 60i)
which varies as l.

Up to this point, we have made no approximations
concerning the dispersion or anisotropy of the crystal.
The computation of the matching surface requires an
exact treatment of these optical properties. However,
this rigor may be unnecessary in the computation of
the various factors containing v and Vv that have
appeared in the theory. In the approximation of an
isotropic medium with dispersion, we have

v = B~/ak =c/ jn+cu (an/aoi) 7,

satisfying ni) e3, ni) n2. The integral (40) is dominated
by the forward region 82 0 because of the factor co2'.

Therefore, g2 and co»2 can be assigned values appropriate
to 82 ——0. The integral can be evaluated to give (&ui))~2)

$6~2(P jgg2(g ~(g 3

3'0'»C
(42)

where cu2 ——&o2(0); the integration also gives a second
term containing co2(v)' which can be neglected.

~2e2 + I(~——sea)'+(mini)' 2~3—na(mini) cos87"'. (43)

Processes with 8=0 (or v) are called collinear; collinear
processes may be further classified as forward wave

(FW) satisfying

ni(oi+e2cu2 ——ea(og (FW)

and backward wave (BW) satisfying

S. TYPES OF MATCHING SURFACE

The matching surface (MS) shown in Fig. 3 is only
one of several possible types. It is convenient to refer
to the ends of the pump wave vector n&3o /3c as foci,
which are indicated as heavy dots in Fig. 3. Assume
for simplicity that co» and co2 are both ordinary waves
in a uniaxial crystal and or& is an extraordinary wave.
The vector diagram for the matching case (2) shown in
Fig. 3 requires

V—= Vcv ='AS,

Vv = (c'/n'cv) L(l—ss) —(2&v/e) (Be/Bcu) ss7,
ei(ui —e2(o2= eaco3 (BW) .

Another BW process has 0=x'.
(45)

where» is the unit dyadic.
The total power (P» of phase-matched OPN is of

interest in the case ~»)&~2, where the emission is con-
fined to a rather small solid angle and a bandwidth of
order co2. Under these conditions, (P» is apt to reach the
detector. In (27) we may interchange subscripts 1,2
to obtain A(P2/&&2. If co2&oii, there is no edge enhance-

ment to contend with, and (27) is valid at all angles.
Each increment 6(P& corresponds to a detected incre-
ment of power A(Pi ——(cubi/~2)66'2. Thus the total phase
matched power is

Sx(P3At ~»
(P»=

SSC R» S2 V2—V»

(40)

where we have recognized that vi/ei can be considered
constant when the matching surface is very small. It
is reasonable to suppose that (P» is not sensitive to the
detailed optical properties of the crystal. Therefore we

neglect both anisotropy and dispersion; it can then be
shown that when 6k=0,

u, (8,)= co3(ei—n3)/(ei —e2 cosa'),
(41)

I s, (v,—vi) I
= (c/eie2) (ei—n 2 cos8~),

where e», e2, and e3 are constant refractive indices

e2(o2 —ni(ui = e3M3 (BW) . (46)

noncollieear processes are possible satisfying (43). The
range of ~i over which (47) can be satisfied is indicated
by shading for each choice of n»3. The topology of
the MS and foci is indicated by symbols on the left
together with arrows showing the range in e»3 which
each symbol applies. In these symbols the foci are
heavy dots, the MS is one or two closed curves, and
the collinear processes are indicated as crosses corre-
sponding to the crosses on the dashed lines.

Figure 4(a) shows a schematic plot of nisi and
n2+2 Ln(~& Mi)7(~8 —~i) with the curvature some-
what exaggerated to represent dispersion. Curves
representing eia&i+e2~2, nisei —e2o&2, and e2~2 —nisi
are shown in Figs. 4(b) and 4(c).Two types of behavior
are shown for ngoi+n2&u2, which produce different
types of MS. More complicated dispersion than that
shown in Fig. 4 could occur near absorption bands. The
horizontal dashed lines represent possible values of
e8a&8. The intersections of the curves with ego3 (shown
as crosses) correspond to collinear processes. Whenever
m3or3 satisfies

IniMi n2M2I (n8M3(ni(0i+n2(02 (47)
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Three types of MS are indicated. in Fig. 4: (A) having
one sheet between the foci with the foci excluded;
(B) having one sheet with the foci included; and (C)
having two sheets with a focus included in each sheet.
These are the types of MS expected in highly trans-
parent crystals. Normal dispersion is the case shown in
Fig. 4(c); the case shown in Fig. 4(b) requires anoma-
lous dispersion, but for suKciently small co~ this is
always present in polar crystals due to the strong
lattice absorption in the infrared. Thus, both types of
dispersion shown in Fig. 4 can be expected in the same
crystal, that of Fig. 4(b) for relatively low pump
frequency cos and that of Fig. 4(c) for relatively high
ce3. If the dispersion is more complicated and e&~&+jss~s
has more than one extremum (maximum or minimum),
the MS will have more sheets, the topology of which
can easily be deduced in any particular case.

For an analytical description of these cases it is
convenient to write

A

~ O+

novae&

--n&u,

M g
= cop+ A(4 q cps =Gl p AM )

where 2coo=co3, and Ace satis6es the condition

(48)
QJp

0& (Ace)'&(oo'. (49)

For moderate dispersion e(co) can be expanded:

N(&o) =Np+ ((o—&op)e'+-,' (o&
—&os)'m"

+ s ((o—as)'e"'+ . . (50)
It follows that

C

QJ( Oo

Itarr+Ns(os =egos+ 2 (rt'+-,'.~sN") (A(g)

+(s"'+ t's~o~"") (A~)'+ (51)
and

Nr~r —Ns~s ——2(Np+(opN') (Ace)+ (I"+s~sN'") (A(g)'

+ (52)

For
I

A(u I«esp, the solution of (51) and (44) is

(A~)'= ~o(~s—No)/(e'+ so oe")
(FW, I

A~
I &&~a). (53)

C3
~o 0 ~o

I'xo. 4. Deduction of the possible types of matching surface from
consideration of collinear processes. (a) Schematic plots of yj~a&~

and egos. (b) Plots of ewi+e2cos and (Nicoi+e~co~I with the
collinear processes (44)—(46) indicated by crosses. Corresponding
matching surfaces are shown by symbols A, B. (c) Similar to (b)
~ith a different dispersive behavior leading to another type C of
matching surface. Shaded regions denote the range in Acr of non-
collinear processes.

&oo(N'+stool")(es —Ns(0 (I A&uI«~o) (56)

It,s not expected that (52) and (45) or (46) would have The conditions for the tyPes of MS in Fig. 4 can now
be written in the following forms:

mate solution of (44) and (51) is (A)

(A(u)s=ce s(e —Io)/LN((o )—noj
(FW, I

Ace I ~arp) (54)

obtained by the use of (50) after replacing (A~)'~
ress(A~)s in (51). Similarly, the solution of (45) and
(52) can be written

AM =~pcs/n(&os) (BW, I
As)

I aro),

vrhich is expected to hold whenever the 8% solution
exists.

or .(-)«. ~ (IA-I--.),
(8) Ns(1$(c03) p

03('sp ( I
Ace

I ~(op), (58)

(C) 0(n —eo( (I +-',case )oto (I AcvswI«ceo) (59)

or
0&N3 Np(N((es) rip ( I A(upw

I
(up) . (60)

Here, Aa&sw denotes a solution of (44). Note that in
(A) the BW solution does not exist, in (B) the FW
does not exist, but in (C) both FW and BW exist.
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s3 Rp Eventually, in the limit e3——ep, each of the
curves C and B becomes a figure eight on its side with
a focus in each loop. When ID&el«coo, (43) can be solved
for 0 as follows:

1—cosg= (&u~mq+cu2m2 —&uysa)/2~~m~ (I A(o
I
&&ciao) . (62)

When e3——eo, (62) and (51) lead to the relation

tt= +L(2~'+~o~")/~o~o7"'(~~) (I ~~I &&~o) (63)

which specifies the shape of the MS at the degenerate
crossover. This shape may also be expressed in terms
of the angle n between the MS and the s (pump beam)
direction

AR

8R

CR

FIG. 5. Effects of a strong absorption on the matching surface.
Polariton dispersion curves are shown for ggo1 and g2cy2. Resonance
in co& is indicated by arrow; the forbidden frequency gap is shaded.
Dashed circles centered on the foci in the symbol for type A
represent the resonance. The actual matching surface taking the
resonance into account is shown by symbols AR, BR, CR.
Collinear processes present without resonance are shown by
crosses.

(A,B) cosa= m~/no (Aa&= 0), (61)

which requires the MS to pinch off completely when

The MS for the degenerate case e3 ——np can be either
a single point at 8=0, her=0 or else a continuous
curve crossing itself like a figure eight on its side with
each loop enclosing one focus. Consider an MS of type
A in Fig. 4(b), and let e3 increase until m, =eo. The
single sheet of type A shrinks to a point as n3~ mp,

.
for n3&np matching is impossible. Now consider types
C and B in Fig. 4(c); as na —+ eo the two sheets of C
touch each other and the single sheet of B narrows down
at the waist. In the symmetry plane Am=0, it follows
from (43) that

tann = +
I

cocoa(2N'+coom") 7'"/(co+co,e')
=+ (co,n'/mp)'".

The width of the MS in Fig. 3 and the symbols of
Fig. 4 have been greatly exaggerated for pictorial
purposes. It is difficult to present a realistic plot of the
MS because 0 in practice is limited to a few degrees.
The value of the MS is to aid in understanding the
nature of phase-matched processes. The information
of interest in experiments is most convenient1y pre-
sented in the coQimear tgeieg cgree, ' '' a plot of d~
for the FW process (44) versus n3, and the eomcollieear
/greg characteristic, ' ' which is a plot of des versus 0.
In the collinear tuning curve, it is customary to present
the crystal orientation or crystal temperature as the
independent variable, but these parameters enter the
theory through es. Collinear and nonco1linear tuning
have been extensively studied in ADP by Magde,
Scarlet, and Mahr' and by Giallorenzi and Tang'; the
latter have also made extensive calculations for LiNb03.
All three types of MS shown in Fig. 4 have been found
in these studies.

A weak absorption within the frequency range of
the MS (shaded regions of Fig. 4) causes a resonance-

type wiggle in the MS if the resonance frequency falls
in the noncollinear part of the MS (between the crosses
in the shaded regions). When the resonance falls close
to a FW or BW process, a small extra-closed loop may
be split off from the MS at this point (and also at the
reflected point in the reflection plane A&v=0). More
interesting effects are produced by a strong absorption.
Figure 5 shows e~co~ and e2co2 with a strong sharp
resonance. The shaded regions represent forbidden
regions of frequency in the polariton dispersion~ asso-
ciated with the resonance. If damping is neg1ected, e~co~

can become arbitrarily large as the resonance (indicated
by vertical arrow on co~ abscissa) is approached from
below. The MS can be deduced by plotting e&coj&e2co2
as in Fig. 4. These plots will not be shown, but the
resulting MS are sketched in Fig. 5. The top symbol A
is a MS of type A with dashed circles centered on the
foci to represent the position of the resonance. The
effect of the resonance is shown in AR. The FW points
(crosses) are little affected by the resonance; the pro-
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found effect is to produce three sheets of one sheet by
splitting off the ends of the original MS and stretching
the main body around each focus. The part encircling
the focus is approximately a circle. A.iso shown are MS
of types 8 and C and the corresponding resonance types
BR, CR.

s((,e)

sj =sg= Q= const

BWR3.
(65)

With this assumption, all collinear processes (8=0)
have the same Ak= (222

—22)oi2/c. More generally, for 14

at angle 8, we have

6. BACKGROUND OPN

There is always present a background radiation in
all directions due to processes for which Ah&0. This
emission is spread over a very broad band 0&oit&oi'(8),
where oi'(8) is the limit frequency, which depends on
direction as shown in Fig. 2. We see from (25), however,
that the spectrum of the background is strongly
weighted toward the high-frequency limit by the
factor oii4,. additional weighting is provided by ~

a2,
~

since ti2, ——0 at the limit oi=oi'. The factor sin2(2hkl)
may be replaced by its average value ~. The general
nature of the background spectrum can be illustrated
with the aid of the rather drastic assumption,

0
0.2 0.4 0.6 0.8 1.0

Fzo. 6. The function S(),8), defined in (48) with t=cai/r44, gives
the spectrum of the nonmatched background radiation. Shown
are curves for 8=0', 15', and 30'. The curves for 15' and 30
show the singularity with vertical edge at the limit frequency.

equal. Thus, in (69), g2 should be chosen for the (—)
process. Note that (69) does not contain the crystal
length /.

The interesting properties of the background are
contained in Sg', 8). Figure 6 shows S(f,g) as a function
of i for 8=0', 15', and 30'. Only the curve for 0'
depends much on the value chosen for N2/22; the curves
were computed for 222/6= 1.1. For 8/0 there is a sharp
peak with a vertical edge at /=i' This p. eak is due to
D ' in (70) and represents the effect of

~
v2,

t

' in (25).
If the background spectrum can be observed, it may

be of interest to have an expression for the integrated
power under the peak. We may obtain the power by
integrating (69) over f'

~k, = (~~,/c) LA g, g) ~D(f-,g)],
t= Oit/Oi2i

A (f,g) =n2/22 —f cos8—,
D(t. g) =—51 21+ t' cos'gj'I'.

(66)

ao» 16''s»A, '
~(8),

(71)

The (&) in (66) corresponds to the two allowed j
processes satisfying (1) and (23). The limit surface is
given by

oi'(8) =oi2/(1+ sin8) .

It can be shown that

From (66)

(dD
S(f,g)

i
dD.

& di.

dD
D = —1+t' cos'8.

I".I

= (/ )Du, g)/(I-f),
D(f', 8) =0,

f'(8) =~'(8)/~2.

The background OPN can now be written

6(Pi ——Ai i&Qi(322rX'(P2hoi2'/222n'C')S(f, g),

where
(A'+D')(1 i-)'i-'-

sa, g) =-—
(A' —D')'D

(70)

This includes both (&) processes of (66) under the
assumption that the same g' can be used for both.
This is a reasonable assumption since the (+) process
is unimportant except when the two j vectors are nearly

(1 g&)2(t &)4 i—r' A2+.D2
j(g) = dD

1—f' cos'g 2 (A' —D')'

(1—~')'8')'

(1—i' c.os28) LA2 —(1 i')'j—
(74)

We now replace the true D($,8) with the stepwise linear
approximation

for 0&D& 1—i'
i = 1 D, for 1—i'&—D&1.

We may identify the peak with the first region. In
S(f,g), we consider A a constant and D a variable.
Thus the power of the peak is given by (71) with
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This does not include the broad shoulder on which the
peak sits, which can readily be subtracted from the
measured spectra if they have the shape predicted in
Fig. 6.

APPENDIX A: GROUP VELOCITY

In the standard treatments of crystal optics' it is
customary to consider complex plane waves of inhnite
extent,

7. SUMMARY E(r t) =uf(r t)e'"' (A1)

We have obtained the interaction energy (5) which
couples three photons in an optically nonlinear medium.
We have then formulated quantized fields at frequencies
oui, ccs, and ccs= oti+cos, and obtained the transition rate
(18) for the decay of ot& into cci and ot2. This transition
rate does not depend on the Geld distribution at ~3, it
can not be enhanced by focusing, and is independent
of the position of the focus for a focused beam at or3.

We then assume a p/arte wave at ccs and obtained the
power (25) emitted into band 0t i and solid angle AQi.
For any direction of emission there is a maximum limit
frequency co' sketched in Fig. 2. Phase-matched pro-
cesses giv'e narrow-band emissions with the power (27)
and bandwidth (30). Emission tangential to the edge
of the matching surface sketched in Fig. 3 gives greatly
increased power (33) and a greatly broadened emission
band (35). We have computed the total power (40) of
phase-matched processes for the case co~&)co2.

The nature of the matching surface and the different
types to be expected have been discussed by considering
the forward wave (44) and backward wave (45), (46)
collinear processes. The types are indicated schemati-
cally for moderate dispersion in Fig. 4 and for resonance
dispersion in Fig. 5.

Finally, we have sketched the spectrum of the back-
ground due to nonmatched processes in Fig. 6. Except
in the forward direction, this spectrum has a singularity
and an abrupt drop to zero at co~= co'. The background
is independent of crystal length /, whereas phase-
matched processes give peaks proportional to P and
integrated powers proportional to /. A,n expression
(74) has been given for the integrated power in the
peak of the background spectrum. The expressions
given for OPN apply only to the case of low parametric
gain.

It must also be emphasized that theoretical results
derived under the assumption of a plane-wave pump
apply only when digractiort due to the finite size of the
beam or the crystal can be neglected. It is the neglect
of diffraction that leads to (23), upon which so much
depends in the theory given here. The condition for
the validity of treating the pump as a plane wave is
derived in A,ppendix D. This condition can readily be
met in practice.

with f(r, t) = const. One finds that the unit polarization
vector u satisfies

(rt'Ll —ssj—e(tc)} u=G,

where e(c0) is the dielectric dyadic and rt is the refractive
index deGned by

k= (rue/c)s, isi =1. (A3)

The locus of points ns deGnes the index surface, and it
can be shown" that the normal to this surface is in the
direction of energy Bow. This is the ray direction, and
the speed of energy Row in this direction is the ray
velocity. The ray velocity considered as a vector is not
identical with the group velocity

v= vic0(k)

unless the medium is nondispersive e (to) = e= const.
The standard treatments' of the group velocity do not
take into account the anisotropy of a general real
symmetric tensor e(a&).

The problem is approached most directly by con-
sidering the propagation of a field. (A1) with f(r, t) a
slowly varying function of space and time compared
with exp(ik r—iotf). Let the electric displacement

D(r, t) be given by

D(r, t) = R(r) E(r, t r)dr, —

R(0) =R(~)=0,
(A5)

( e)c=cR(r)e'"dr,

and it easily follows that

R (r)e*"'dr =—R (0)—cc'e (to)

(A7)

where R(r) is the dielectric response function of the
medium. In general,
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where R=ctR/Br. It follows from Maxwell's equations

so See, for example, M. Born and E. Wolf, Principles of Optics
(Pergamon Press, London, 1959)."G. D. Boyd, A. Ashkin, J. M. Dziedzic, and D. A. Kleinman,
Phys. Rev. 131, A1305 {1965);see especially the Appendix.
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and (AS) that E(r, t) satisfies the wave equation

VXVXE+c ' R(r) E(t r)—dr

We write the real field in the form (4)

E(r,t) =e"Re[E(r)e '—"j (A19)

2R(0) F 0 (A8) with a) 0 arbitrarily small to allow the field to be turned
on adiabatically. The time-averaged electric energy

We now substitute for E(r,t) from (A1). In the integral, density U(r), is obtained by dropping terms in (A18)
we expand f(r, t) in powers of 7 .. which vary as exp(&2uet):

f(r, t—r) = f(r, t) rf(r—,t)+ t

U(r), = (8n.) ' dt e'~' dr E* R(r)
dropping terms containing f and higher time derivatives
of f. In the first term of (A8) we drop space derivatives
of f higher than Vf. We also assume that u satisfies
(A2). This leads to the following equation for f(r,t):

[(k u)1+ku —2uk] Vf

2' t' 8
=—

i
s+sico—s

i
u f=0 (A1.0)

c' E a~)

E(a cosvr+u sinter)e ". (A20)

The integral exists in the limit a ~ 0 only if e(co) is
real, which implies that

R(r) cos&ordr = e(~),

VVe seek a solution in the form

f(r, t) = f(r—vt), (A11)

R(r) sincordr =0, (A21)

where the group velocity v is to be determined by (A10).
According to (A11),

QO

R(r) sin~re "dr= a -e(au). —
0 BM

f= vV f, —

so that (A10) becomes

2'�( 8
(k u)1+ku —2uk+ —

i
s+-', ce—v. i uv

c' I a~ i

(A12) Thus, (A20) becomes

l9

U(r), = (16m) 'E(r)* s(co)+co—e(o)) E(r). (A22)
80)

The magnetic energy density is from (A16) and (A2),

&f=0. (A13) U(r)„= (16m.)-'( H(r) ('
= (16m)

—'E(r)* e(co) E(r). (A23)
Since f is an arbitrary function, this requires that the
dyadic in [ 7 must vanish; it then follows immediately The total time-averaged energy density is, therefore,
that

k—u(k u) c'
V=-

u (e+-,'o)(Bs/8(o)) u (o

The time-averaged Poynting vector is

S= (c/8')EXH*,

(A14)

(A15)
S= Uv. (A25)

U(r) = U(r),+U(r)
A24= (8s.)

—'E(r)* (e+-,'&o(8e/Ba&)) E(r).

It follows from (A17) and (A24) that the Poynting
vector for a plane wave may be written

where E and H are time-independent amplitudes defined
as in (4). For a plane wave,

H=nsXE,

and S may be written

S= (8w)
—'[E(r)* (e+-,'or(Be/Ba&)) E(r)jv, (A17)

where v is given by (A14). The instantaneous electric
energy density is U= (nc/8+v) i

Ei' (A27)

For a wave packet (A1) with f(r vt) a slowly varying—
function (A25) is still a very good approximation.

It follows from (A14) that

u (e+,'cv(Be/Ba&))-u=(nc/v)[1 —(u s)'j, (A26)

where e=—v s. Thus, (A24) can be written for a plane
wave

U(r, t),=(4s.) ' E dD=(4s. ) ' BD
E dt. (A18)

8t

where E is the transverse component of E:
E=

) E) [1—(u. s)'j""'. (A28)
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It remains to be shown that (A4) and (A14) are
equivalent. It follows from (A2) that

((o/c)9u e u= ((o/c)'u e 5u

= —(u k)(k bu)
(A29)

for any variation bu satisfying bu u= 0. Also, from

(A2),

2k. bk —2(k u) (u 8k+k 8u) = (2a)/c')Rou e u

+(co/c)'[u be u+2bu e u] (A30)

for an arbitrary variation 6k which produces variations
8u, R&, and 8e. Combining (A29) and (A30) gives

(
[k—(k u)ug Sk=ko—u

I
e+-,'a)—e I'u, (A31)

c — k BM

which can be written

the polarization (3) at frequency co. With E', E;, E3
the transverse amplitudes and X the effective nonlinear
coeKcient (9), the equation for E&(z) (considered a
slowly varying function of z) becomes

vXvX( E. '"')—( '/')( . )E.
= (4m(oP/c')XE3E, *[1—(ui si)'$e''". (82)

Here, Dk is defined in (22) and use has been made of
(23). By neglecting second derivatives of E"(z) and
using (A2) this can be reduced to the form

[ui(k u, )—k] ~E„=—2~i(~,/c)2

X[1—(ui. si)'iXE3E;*. (83)

It follows from (A14) and (A26) that

u(k u) —k= (&um/cv)[1 —(s u)'jv.

Therefore the coupled equations for Ei(z), E,(z) are'4

Ro=v 8k, (A32)

APPENDIX B: OPN FROM NOISE WAVES

with v given by (A14). Since 8k is an arbitrary variation,
(A32) is identical with (A4).

dE,

2' 1M''vy

gE EP~ihEcs
3 j )

Cagily~

27' %02'V2

gE E +~id, kz

(83)

As mentioned in the Introduction, OPN has been
ascribed' ' ' to the parametric arnplification of fictitious
"noise waves" having a power hv~dv~ in bandwidth de~,

and also to mixing' of the pump &u3 with noise waves

kv2dv2 (one photon per mode at a&2). These treatments
are inconsistent in that no explanation has been (or
can be) given why one mechanism should be invoked
while neglecting the other. The answer obtained is in
doubt because we may ask why both mechanisms should

not operate simultaneously. A further inconsistency in

the parametric amplification approach is that the
parametric gain familiar from the paper of Louisell,
Yariv, and Siegman" applies to the case of perfect
phase matching; more generally it applies if the wave
vector mismatch is less than the parametric gain. At
low gain such as we are considering here, the band-
width Dv for such perfect phase matching would be
negligibly small and not at all related to the actual
bandwidth (30). Tien" has shown that, when the
mismatch is larger than the gain parameter, the solu-

tions for two waves coupled to a pump are periodic
(sines and cosines) rather than exponential (hyperbolic
sines and cosines). In this Appendix, a consistent
description will be given of the parametric interaction
of two "noise waves" E~, ~~ and E;, co2 with a pump
wave E3, &vs which satisfy (1) and (23).

The vector field (8) satisfies the vector wave equation

p'X ~XE—(aP/c') e. (&o) E=4m (aP/c') P (81)

~here e(a&) is the dielectric constant tensor and P is

22~. H. I ouisell, A. Yariv, and A. E. Siegman, Phys. Rev.
124, 1646 (1961).

'3 P. K. Tien, J. Appl. Phys. 29, 1347 (1958).

It will simplify notation slightly to assume that v,)0.
These equations take crystal anisotropy and dispersion
properly into account through the components v=v s
and v,= Bra/Bk, of the group velocity v.

The solution of (85) for given initial values E"(0),
E;(0) is

E'(z)e 't"'"'=E"(0)[cosyz —(id,k/2p) sinyz)

+E;(0)*[—2~v(rivi/cyeivi, )XE3 sinyz$, (86)
where

y'= (—,'~k)' —n'&0,
(87)

u =(4' X MiM2vivn/c s]tl2vi v9) ~E3~

If Eq(0), E;(0) represent noise amplitudes, there will
be no interference (cross term) between these fields in
the average intensity proportional to ~E&(z) ~'. Further-
more, the observable OPN at co~ will be proportional to
~Eg(z) ~' —~Ep(0) ~'. From (86) and (87), OPN will
be proportional to

IE~(~) I'—IE"(0) I'= [IE"(0) I'
+ (Miv]vg, tip/M pv, v2,B,) (E,(0) ['j

X(n/y)'sin'yt, (88)

where now s= $, the crystal thickness. The first term of
(88) comes from the first term of (86) which may be
interpreted as the parametric amptificatioe term. The
second term of (BS) comes from the second term of
(86), which may be interpreted as the miximg term.

Assume that the noise energy in mode k is gik"i and
that in mode j is g2A~2. The zero-point energy corre-

"(35) differs slightly from Kq (49) of Ref 10 the latter are
obtained by making the approximations vI/vI, =&/pz, p2/p& ——j/ j,.
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sponds to
gi ——

g2 ———', (zero-point energy) . (89)
rate (18) give the correct second harmonic generation.
Let

Rather than invoke (89) immediately, it is instructive
to retain g& and g2 temporarily as independent param-
eters. Since the number of modes k in an interval
Avis&1 is Avichi(L'npcoi'/42r'c 21), it follows from (12)
that

I E&(0) I

2 may be written

I
E2(0) I

'= Av1601(2gi&1'ni/2rc'),

and a similar relation exists for IE, (0) I'. To express
Av2602 in terms of Av~hQ~, consider elements of volume
dk, dj in k and j space, respectively, with k, j satisfying
(1) and (23). It can easily be shown that

dj= dkl ~j/»
I

= dk
I (» /»*) I,

where
I Bj/Bkl is the Jacobian between the j and k

spaces. Thus,

+v2~112 ~vl~fll(n1 ~1 ~2»r/n2 id2»»r) (812)

E1(r)=Eif(r)

(C1)

be the laser transverse-field amplitude according to (4)
and (8). The laser power, according to (15), is

(Pi ——ha&1(»/1. )1V,

where A is the average photon number. Let

E,(r) =QE2e~'

Ikl =n2~2/c

C02= 2GOy
&

(C2)

(C3)

be the harmonic field. The field commutation relations
(14) in this notation become

and

I E,(0) I'= Av1601(2g2hcoi'id2ni'82»r/2rc'n2»»r) . (813)
f81,)E2 )= (Sn.hid2»/Cn2V)522 r

LE1,E1 $= (82rkui»/cniV) . (C4)

From (A25), (A27), and the assumption that k2 has
only a s component,

IE2I'= I-2(8~/«2) &2. (814) P2(r) = d Ei(r)E1(r), (C5)

The nonlinear polarization (3) specialized to harmonic
generation is

The OPN power ~(P~ in ~~~~0~ is

h6'1 ——L2(nic/82r21)vi, (IE2(l) I'—IEg. (0) I'). (815)

From (88), (810), (813), and (814), this reduces to

and the interaction (5) reduces to

II'= ——,'d dr I Ei(r) E,(r) E.(r)*+cc.j..
(C6)

Sm(Pqk X Sy82My (V2 sin2yl
A6 1=6V 1601 (g1+g2)

S3C S2'V2g 7'
(816) dl f2(k)E,E,E.t+c.c.j,

gi+g2= 1 ~ (817)

In particular, the zero-point energy (89) satisfies this
condition and has the property that the amplification
and mixing contributions are equal.

Although quite arbitrary, the procedure of setting
gi ——1, g2 ——0 will give the correct OPN in (816). OPN
then appears as the parametric amplification of noise
waves having one photon (hindi) per mode. Similarly,
one may arbitrarily set g&=0, g2

——1 and ascribe OPN
to mixing with noise waves having one photon (ha02)

per mode. It would seem more meaningful physically
to use (89) and treat the modes k and j symmetrically
with zero-point energy in each.

APPENDIX C: HARMONIC GENERATION

The assumption v2, &0 could be removed by considering
solutions of (85) in which the initial value is regarded
as E,(l) instead of E;(0).The result is simply to replace
m» by l»rl in (816). For i22«(26k)2, (87) gives
y2= (-'Dk)2 Thus, (816) agrees with (25) if

where d is the effective (harmonic) nonlinear coeKcient,
and

f2(K)= drL f(r) )2e—ix.r (C-)

For a plane-wave pump in the 2' direction,

I
f'(k) I'= (22rl)25(k, )5(kv)l sin2-'Dkl/(26k)2j (C9)

where
Dk = nii02/c —k, .

The harmonic power is

(C10)

The transition
I X,O) ~ I

1t7 2, 1) creates a phot—on in
state k and destroys two photons from the state f(r)
The rate (18) for this transition is

R= (22r/h )B((u2—2coi)
I (OEI H'I E 2, 1)I—

2'm4 82G02

6'1'd'I f'(k) I' -~(2~1—»).
pe 21'7 e2

The purpose of this appendix is to verify that the
interaction (5), field quantization (14), and transition

(p2= (22r) 'V dk, dk„dk, h(o2R, (C11)
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i f(K) i'= 2xwo'L' expL ——,'w02(E, '+E ')]
Xsinm~giVi/( —'»')2 (D7)32x~coqV sin2 —Akl

$' 2

c'nPeg (-'»)'
(C12) where

»'=—ka —E,—(E,2+E ')/2k3.

The result is most conveniently written in terms of the with the result
intensities Sq ——(P~/L' and S2= (P2/L:

2X'ZM 28'
dg 2eihkz

cn28oz
(C13)

with» as in (C10). Since (23) requires k to have only
a z component, we have e2= v2„e~= v~„and

) Eg
~

'= (gs/n&c)S&, ( E2 (
'= (8s'/m2c)S2 ~ (C14)

which is known" to be the correct result for plane waves
normal to the crystal surface.

This result can also be obtained quickly from (BS),
which in the present notation is

The transition rate (18) for OPN depends upon
~ f(k+j) ~', obtained by setting K=k+j in (D7) and
(D8). It is easily verified that (D7) approaches (21)
in the limit wo —+ ~. Note that (D7) is independent of
the position f of the focus.

The OPN power D(P~ in Au~hQ~ is obtained by sub-
stituting (D7) into (20) with K=k+j. If it be assumed
that X, n~, e2, etc., have the values appropriate for a
plane-wave pump, the result can be written

8&+3~ ~ nl&&1 2 Sln yak l
d(Pg= hvghQg —,(D9)

lac' l2
~
w2,

~

(-', »')'
(C12) now follows immediately from (C13) and (C14).

where ( ) denotes the average

APPENDIX D: FINITE BEAMS

In practice, the laser beam is not a plane wave but
has a 6nite cross section. The most convenient repre-
sentation for such a beam is the Gaussian beam'~ "2'

(or focused beam)

(F(g))=—e &' dg I0(2pg'")e &F(q),

y=2u2(e2 2+$2 2)&&2/~7J2 ~bo (D10)

~3(x,y, s) =&0
1+it

where

e 8 eXP
g2+ y2

(D1)
wo'(1+ i&)

Io(s)—= (2~) '

»'(g) is the function

e zaossdg —I

5=2(s—f)/b

b= ma'k3.
(D2)

For convenience, we have assumed that the pump is an
ordinary mare in a uniaxial crystal. The focus is at
x=y=0, z= f, the minimum beam radius is mo, the
confocal parameter is b, and the far-6eld di6raction
half-angle is

dg e &ID(2yg'") =e&' (D12)

»'(g) =»+ fk3($2g +v2„')/2eg, ']—(g/bp) ) (D11)

and» is the mismatch (22) for a plane-wave pump.
From the power-series expansion of Io(s) (Bessel func-
tion of imaginary argument of order zero), it can easily
be shown that

bp= 2wo/b= 2/wpkg= Xs/awe, (D3)

with ) 3 being the wavelength in the medium. The power From this, by differentiation with respect to y, it can
in the beam is be shown that

I.
f(r)= (2/vr)"' — e'"'* exp

wp 1+1'

g'+y'

wp'(1+ it)
(D6)

The Fourier components (17) can easily be evaluated

"G. D. Boyd and J. P. Gordon, Bell System Tech. J. 40, 489
(1961).

if the variation of n3 over the angle spread 80 can be
neglected. In the notation of (10), the field operator for
the beam can be taken to be

(D3)

and the normalized beam function f(r) is then

(D13)

Thus the rms deviation of »'(g) about its mean value
1s

The mean mismatch is

The criterion for the validity of the plane-wave approxi-
mation is that the rms deviation of d,k'(g) should be
small compared to the effective band of emission given
in terms of LB by (29). Thus we obtain the criterion

vrbo))i(1+27')'".
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For nearly collistetsr processes, we can go a step further

by noting that

(» +»w')'"/
I es I

=«nps =ps

v= 2"sps/bo,

where p2 is the double-refraction angle for the j photon.
The criterion (D16) is then equivalent to the two
criteria

wb~&l,

srb p»2lps/6 p.

in this case (pump an ordinary wave) the relevant value
of p is that of the unobserved photon j.

When the pump is an extraordinary maw in a uniaxial
crystal, the relevant double-refraction angle is

I ps —ps I
.

Let the optic axis be in the xs plane. Then x in (D6)
becomes x ps—(s f)—, and E, in (D8) becomes
E;,+psE, . The anal result has the form (D10), with

v=2'"L(»*—psl»*I)s+e»'jt"/l»*lbo (D19)

For nearly collineur processes, »v=0 and» =psl»el,
so that (D19) reduces to

For noncollinear processes, y is nonvanishing even if
ps=0. As les, l

~ 0, y becomes large but (D10) breaks
down in this limit. The criteria (D18) are readily
satisfied in practice. Note that the second criterion is
essentially equivalent to

y=2"'I (ps —ps) I/bp

and (D18) is replaced by

~&o&)t,

wbp»2l
I ps —ps I/bo,

(D20)

(D21)

l« l. ,

where l, =m'" p/st»is the aperture length Lsee Eq.
(3.41) of Ref. 21$ of the pump (with the pump con-
sidered to have double-refraction angle ps). Note that

which includes (D18) as a special case. Thus we see
that the relative double-refraction angle between the
pump and j photon is significant in the plane-wave
approximation.
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Debye-Wailer Factors in Rare-Gas Solids*

VxcTOR V. GOLDMAN
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Mean-square amplitudes for inert-gas solids neon, argon, krypton, and xenon have been calculated as a
function of temperature. The results are presented for the cases of zero pressure and constant volume. A
nearest-neighbor (m-6) Mie-Lennard-Jones potential was used, and lowest-order anharmonic contributions
were taken into account by the frequency-shift method.

I. INTRODUCTION

ECENT experiments on the Mossbauer effect in
solid krypton" in addition to measurements of the

elastic neutron scattering in solid neon' have yielded
measurements of the Debye-%aller factor as a function
of temperature. In this paper the mean-square nuclear
displacement is calculated as a function of temperature
for the rare-gas crystals neon, argon, krypton, and
xenon. Anharmonic effects are included by using the
approximate frequency-shift method. ' ' The calculations
are based on an (stt-6) Mie-Lennard-Jones central force

*Work supported by U. S. Air Force OKce of Scientific Re-
search under Grant No. AFOSR 68-1372.
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potential, with interactions between nearest neighbors
only. This model has been successful in accounting for
other properties of rare-gas crystals. 6

II. THEORY

The substances we are considering assume an fcc
Bravais lattice and for these the Debye-Wailer factor,
which in the Mossbauer effect describes the tempera-
ture dependence of the fraction of recoilless transitions,
can be expressed as'

~—g
—ke(u~)/3

where k is the wave number of the emitted p ray and

G K Horton, Am J Phys 36 93 (1968)
A. Abragam, L'eeet Mossbauer (Gordon and Breach Science

Publishers Inc. , ¹wYork, 1964). We have neglected "anom-
alous" terms due to anharmonicity which lead to anisotropy in
the Debye-Wailer factor. These have been shown to be quite
small in general (see Ref. 8).


