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The Brueckner-Goldstone many-body perturbation method, previously utilized
for calculations of atomic correlation energies and polarizabilities, has been extended to
the study of the hyperfine structure. The correlation energy as well as the hyperfine coupling
constant of the lithium atom are calculated and compared with the results of some earlier
methods. The present method makes use of Feynman-like diagrams which facilitate the
evaluation of the importance of various physical effects. Analysis of the hyperfine diagrams
shows that the difference between the experimental and the Hartree-Fock values is mainly
accounted for by spin polarization, although correlation effects are by no means negligible.
Our result of 2. 887 a. u. agrees very well with the experimental value of 2. 9096 a.u. The
excellent result for the total energy of -7.478 a. u. , comparing with the corresponding
experimental value of -7.47807 a. u. , shows that the wave function is good over-all, as well
as in the region near the nucleus.

I. INTRODUCTION

Theoretical investigations on the properties of
atoms are usually based on the Hartree-Fock ap-
proximation in which each electron is assumed to
move independently in the average potential of oth-
er electrons. In this approximation, the Pauli
principle is satisfied by choosing for the many-
electron wave function a determinantal form built
out of one-electron states characterized by quan-
tum numbers n, l, s, m~, and m~. In the restrict-
ed Hartree-Fock approximation (RHF), the addi-
tional assumption is made that the spatial part of
one-electron orbitals is independent of m~ —the so-
called spin equivalence restriction. The RHF pro-
cedure usually leads to energies within 1/o of ex-
periment. The difference is called correlation en-
ergy, and is associated with the instantaneous cor-
relation between the electrons as opposed to the
averaged correlation included in the Hartree-Fock
approximation. The RHF approximation is also
too restrictive in another aspect —it does not per-
mit the core electrons to make any contribution to
the magnetic hyperfine interaction.

In order to allow the core electrons to contribute
to the spin density at the nucleus, one uses the un-
restricted Hartree-Fock approximation'~' (UHF),
where the spin equivalence restriction is removed.
However, the UHF approximation leads to other
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problems in that the many-electron wave function
is no longer an eigenfunction of ~', a result that
contradicts a well-known consequence of the com-
mutation properties of the nonrelativistic Hamil-
tonian. Secondly, an uncertain amount of correla-
tion is inadvertently included' in the UHF theory.

The first difficulty may be resolved by restoring
the UHF functiontobe aneigenfunctionof S', by pro-
jecting out the desired spin component. In this re-
gard it is an important question whether the projec-
tion is done following or preceding the minimiza-
tion of energy. The former procedure, labeled
UHFP, has led to worse results for the hyperfine
constant of lithium atom than UHF. 4 It has been
pointed out by Marshall that it is physically more
reasonable to minimize the energy after projec-
tion. ' Such a procedure, labeled PUHF, leads to
a hyperfine result in closer agreement with exper-
iment. However, the PUHF approximation of ne-
cessity requires the use of multideterminantal
wave functions, which introduce severe computa-
tional difficulties. In addition, this multidetermi-
nantal nature of the PUHF function also leads to an
uncertain amount of correlation. l

Several attempts have been made to understand
the role of correlation effects in influencing wave
functions and energies of atoms. Most of the meth-
ods that have been employed can be classified
broadly into two categories. One, the Hylleraas-
1
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type procedure, '~' involves the explicit use of inter-
electronic coordinates in the atomic wave function
and the other, commonly called a configuration in-
teraction procedure, ' uses a variational function in-
volving a linear combination of determinantal func-
tions, each representing a particular configuration
of the electrons in the atom. Both procedures suf-
fer from certain common difficulties. First, there
is the question of the most suitable form of the
trial function for the best convergence. Since
there are no general ground rules for the best
choice of variational functions, there is a certain
element of chance involved in carrying out these
procedures successfully for any particular atom.
Second, both methods are computationally rather
difficult to extend to heavier atoms, because one
has too many interelectronic coordinates or too
many configurations to take into account. Third,
physical interpretation in both procedures is made
difficult because the wave function is no longer ex-
plicitly one-electron-like in nature. .

The Brueckner-Goldstone many-body theory has
recently been applied to the problem of correla-
tion energies and polarizabilities of atomic sys-
tems, ' This procedure has been developed in the
spirit of perturbation theory, using the Hartree-
Fock function as the zeroth order. Using the sec-
ond quantization formalism, one can associate
Feynman-like diagrams with various orders of per-
turbation analogous to quantum electrodynamics.
As with any perturbational method, the important
criterion here is the convergence in terms of or-
ders of perturbation. It has been shown' that for
the correlation energy the convergence of the per-
turbation series is good, and one obtains accurate
results from just a few lowest orders. The per-
turbational nature of the Brueckner-Goldstone (BG)
method has additional advantage in terms of nu-
merical accuracy, since one now handles small
quantities of the order of the difference between
the actual and Hartree-Fock Hamiltonians directly
rather than the difference of large numbers. For
instance, one calculates the correlation energy
directly in BG theory rather than as the small
difference of the total and Hartree-Pock energies
which are individually large. Perhaps the greatest
advantage of the BG procedure is that it provides
a good conceptual picture of the nature of correla-
tion effects. In particular, one can partition the
correlation diagrams into classes, one of which
represents purely intrashell correlations, another
pure intershell correlation, and, finally, one which
is a mixture of both.

In this paper the BG method is extended to the
calculation of the atomic hyperfine coupling con-
stant (hfs). This property is interesting as a sensi-
tive test of the goodness of the atomic wave function
near the nucleus, in contrast to the energy which
is an averaged property. When combined with po-
larizability and scattering studies" which depend
on the peripheral region of the atom, it allows for
a detailed mapping of the atomic wave function in
all regions. The BG method also allows for sepa-
rate calculation of contributions to the hfs from dif-
ferent physical effects such as correlation and spin
polarization, and so one can obtain a fair assess-
ment of their relative importance. In this method,

the wave function is an eigenfunction of 8' to each
order of perturbation; one can therefore examine
the effects of departure from an eigenfunction of
S' by an analysis of the pertinent diagrams. Fur-
thermore, the analysis of various diagrams and
their contributions can provide answers regarding
the nature of the approximations in RHF, UHF,
PUHF, and other methods. Finally, as in the case
of correlation energy, one can make formal spin
cancellations in diagrams prior to numerical eval-
uations, in common with the exchange perturba-
tion and the moment perturbation methods. "
Thus one again deals directly with small numbers
instead of taking the difference of large hfs asso-
ciated with each core spin state as in the UHF pro-
cedure.

While the techniques employed in this paper are
applicable to any general atom, we have special-
ized to the case of the lithium ground state for two
main reasons. First, it is the simplest represen-
tative example of an open-shell atom. Its study
provides an understanding of the interplay between
correlation and exchange effects in terms of their
influence on the hfs. Secondly, the lithium atom
is of interest in its own right, since it is the most
extensively investigated atom as regards both cor-
relation energy and hfs. Several papers on lithium
have dealt with the influence of correlation and ex-
change effects on hfs by different procedures. The
situation regarding the origin of the hfs is still not
completely understood. Some of the papers indi-
cate that correlation and spin polarization effects
are nearly independent and can be dealt with sepa-
rately. '~' Other investigations tend to show that
correlation effects alone can adequately explain
the experimental hfs without invoking the concept
of spin polarization. " The BG approach is particu-
larly suitable for the examination of this question,
because certain diagrams can be associated with
correlation effects, while others pertain to spin
polarization effects.

In Sec. II the BG theory will be briefly reviewed
with special emphasis on its application to the cal-
culation of the hfs and the correlation energy. De-
tailed consideration will be made of the potential
and the wave function specifically for the lithium
atom. Section III will deal with the evaluation of
the hfs. In Sec. IV the correlation energy will be
calculated and the implications of the results for
both properties in terms of their bearing on the
theory, and comparison with experiment will be
discussed. In Sec. V we will present a few con-
cluding remarks about the merits and shortcomings
of the BG method and its applicability to other sys-
tems.

II. THE BRUECKNERWOLDSTONE THEORY.
APPLICATION TO LITHIUM ATOM

A. Resume of the BG Theory

In atomic units (e =5= me = a 0
= I), the nonr ela-

tivistic Hamiltonian for a system of N electrons
and a heavy nucleus of charge Z, in the absence
of external fields, is

N N N
e= Q T.+ Q Qv. .

i=1 i= 1j &i
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B=Ho+H',

N N
Ho= Z T. + Z V. ,

i=1 (5)

N N N
and f/= Q Qg. .-Q V" (6)

i = 1

The single-particle potential V is chosen to be
Hermitian, and it generates a complete orthonor-
mal set of single-particle orbitals «)„satisfying

(T+ V)Q (7)

The BG perturbation theory utilizes the second-
quantization formalism, with these single-particle
orbitals as the basis states. In this case, Eqs. (5)
and (6) are replaced by

~n n"n "n
(8)

and H'= Q 2(pq lv!mn)&I fg ~q &i

P, q, m, n P q n m

- Z 0 I VI'&n~~n .
p (9)

The "unperturbed" ground state of the atom sat-
isfies

+o@0 Eo@o

and is a determinant formed from the N single-
particle orbitals lowest in energy. The single-
particle states are called unexcited if they are con-
tained in 4, and excited if they are not. An occu-
pied excited state is called a particle, and an un-
occupied unexcited state a hole. The g~ and g
operators in Eqs. (8) and (9) obey the usual Fermi-.
Dirac anticommutation relations. They have the
following physical meaning: g~~ is a particle cre-
ation operator if m is an excited state, but a hole
destruction operator if m is an unexcited state;
on the other hand, g~ is a hole creation operator
or a particle destruction operator.

In the BG perturbation theory, the exact ground
state of the atom is given by:

~ P'I 40,
n=o

where

T.= =,'V.'-2/r. and v. . =1/ir. -r. l.
i ' l i i2

Let the true ground-state wave function of the
atom be designated by +0, satisfying the Schrodin-
ger equation

H40 = E4'0. (3)

The Brueckner-Goldstone theory involves a per-
turbation approach in which the zeroth-order ap-
proximation has the two-body potentials v,& re-
placed by effective one-body potentials ~;. The
difference between the exact and approximated po-
tentials is treated as the perturbation. That is

where I- means that only linked diagrams are to
be included. The total energy E in Eq. (3) can
be expressed as

E =E

where &E =
&C DIP' I@/. (12)

It is convenient to use a diagrammatic representa-
tion of the perturbation expansion (11) in analogy
with problems in quantum electrodynamics. Then
the unperturbed ground state of the atom, 4 „ is
considered the "vacuum" state, and is represented
by no lines whatsoever. The perturbation interac-
tions v and ~ are represented by --- and ---x.
Particles and holes are drawn as solid lines direct-
ed, respectively, upward and downward. The
"time axis" is considered as directed upward, so
that a diagram for 40 never has any free lines at
the bottom. These diagrams carry an algebraic
sign defined by (-I)&+I+'~V where h is the num-
ber of internal hole lines, l the number of closed
loops, and ny the number of ~ interactions. Gold-
stone defines the unlinked part of a diagram as any
part without external lines, which is completely
disconnected from the rest. A diagram with no un-
linked part is called linked. "

The convenient rules for drawing diagrams are
summarized below:

1. Draw n horizontal interaction lines (dashed),
where n corresponds to the order of the perturba-
tion.

2. Each vertex is traversed by two (solid) lines,
where one is always directed towards and the oth-
er away from it.

3. Discard all unlinked diagrams.
4. Make sure that the number of external hole

lines equals the number of external particle lines.
5. In labeling graphs, include only all distinct

combinations, but ignore the exclusion principle.

B. Expectation Value of an Operator

In practice +, cannot be calculated to all orders,
and must be truncated at a particular order of per-
turbation. The expectation value of a Hermitian
operator Op is then given by

&0 )=&4 lople (13)
Q, 1&1,)

Since all higher orders of +, are orthogonal to the
unperturbed or zeroth-order function 4 0, which is
normalized, the normalization integral is given by

(4,1@/=1+&4,&~l@,&»)+&0 &~14 &»)

+ &+,&»14,&'&)+ ~ ~ ~, (14)

where &1&0&"=40, &10&", &10&», &I',("), represent
various orders of perturbation in the wave function
as given by (11). Similarly the numerator of (13)
can also be expanded in various orders,

&+, lop leg = &@0"&
I op 1@0&")

+ 2 &0,&'&
I Op I 4,&n) + ~ ~ ~

+ &0'0 10p14' ) + ' ' '

where each term is composed of a number of dia-
grams. All diagrams belonging to &40( & IOp 1

&I'0( ))
are referred to as (m, n) diagrams.
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x

FIG. 1. Diagrammatic definitionof W 1 for Li. P is
an unexcited state and k an excited state.

%'hen Op is the total Hamiltonian, there is an al-
ternative procedure because of Eq. (3). On multi-
plying this equation on the left by 4p and integrat-
ing over all coordinates, one obtains

E = (C, IPIC,), (15)

which is equivalent to (12), since

(C, IeIe,&=E(C,Ie,)=E.

C. Choice of the Single-Particle Potential V

In making use of the BG perturbation theory, it
is first necessary to obtain a complete set of sin-
gle-particle states determined by the potential V
in Eq. (7). The choice of V is not unique. Howev-
er, convergence considerations indicate the desir-
ability that the basis states generated with this po-
tential resemble closely the one-eLectron ground
and excited states of the X-electron system.

A particularly convenient choice designated
—1 will be utilized here. Its definition,

in terms of matrix elements, is

N-].
(i I V Ij) = Q ((in lv Ijn)-(in lv Inj)).

n=1
(16)

ln the summation, the (K-1) lowest HF orbitals
are used. The potential t/'+-& thus chosen gener-
ates a complete set of bound and continuum states
which closely resemble the occupied and excited
HF states of the system. In particular, the Nth oc-
cupied state of the complete set is identical to the
highest occupied HF state. The difference between
the actual and calculated lower occupied HF states
does not lead to any serious difficulty because
there are diagrams which correct these orbitals
back to the HF orbitals.

A typical matrix element in (16) is given by

(in Iv Ijn) = fdr, fdr, P.*(r,)P *(r,)

&& (1/r„)4.(r, )y (r,). (17)

For the ground state of the lithium atom, the ~
potential is defined by

(i I V . Ij) =2(ilsolv Ijls )-(ils'Iv I lsoj) (18)Ll

for all angular momenta ~. The 18' orbital used in

(18) was taken from Roothaan, Sachs, and Weiss. "
Equation (18) is represented diagrammatically in

Fig, 1.
O. The Wave Functions

With the potential for the .lithium atom thus cho-
sen, the single-particle state P. (r ) can be written
as Rk, f(r)/ref (&, Q)ys(ms), where Rkf is the radi-
al function, F& the spherical harmonic, and g~
the spin function. The radial function satisfies

d' l(l+ 1) z 1
dr' x~ 7 7' p ls

— +—-4 — R '(r ')dr '

"R1,,'(r')

2 1
l+ 1 Rl (r')Rk, l(r')r' dr'

2i+1 ~

~R,(r ')
+r

& 1 Rk f(r')dr' Rl, (r)-0. (19)

This is an integrodifferential equation, where for
&y ~ &0, it has the additional difficulty of being an
eigenvalue equation. The technical details of solv-
ing this equation are given in the appendix. Brief-
ly, for &y ~&0, it is solved by combining the non-
iterative&~ and Numerov's methods"; for ey ~(0,
an iterative method based on a program by Cooley'8
was used. The basis states thus generated include
the 1s orbital (different from ls'), the 2s (identi-
cal with the HF 2so), the ns, nP, etc. , and con-
tinuum states for all l and k.

The eigenvalues for the basis states calculated
by us are compared with those of the self-consis-
tent HF orbitals in Table I. The two energies are
virtually identical for the highest occupied HF
state 2s; small differences in the fifth significant
figure are due to differences in computational ac-
curacy. The 1s energies, on the other hand, are
significantly different as expected. The 2P ener-
gies are presented to show the closeness of our
calculated and the actual HF excited states.

The bound state orbitals are square-integrable
and are normalized to unity in the usual manner.
The continuum states have to be "normalized" in
a different way, and we have chosen them to have
the usual asymptotic form for Coulombic functions
(charge unity),

Rk &(r) = cos[kr+ (1/k) ln(2kr)

-(&/2)(i+1)-o'k f] (2o)

TABLE I. Eigenvalues of V compared with the
Hartree-Pock values (in a.u. ).

Orbitals Our basis states SCFHF"

-2.793 03
-0.19631
-0.128 66

-2.477 75a

-0.19632
-0.128 67

a
This value is taken from Clementi, because the

II'oothaan-Sachs-Weiss value is believed erroneous.
D. A. Qoodings, Ph. D. thesis, Cambridge University,

England, 1961 (unpublished) .

Oy ~ being a phase factor. In our calculation of ma-
trix elements involved in the diagrams, a cutoff ra-
dius Fi',p= 50ap was used. We have found, in common
with earlier work, ' that for different choices of cut-
off radius in this range, the final results for a dia-
gram are the same even though individual matrix
elements may show slight variations.
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The zero-order wave function 4 o of Eq. (10) is
taken to be a determinant built out of the lowest
three occupied states 1s+, 1s, and 28+. The high-
er-order wave functions are obtained from (11) us-
ing various values of n. The evaluation of these
higher-order functions from (11) requires the in-
troduction of the complete set of states just calcu-
lated and having Xo in the denominator operate on
them. Thus for the first-order function we have

N
Ijk)(jk I v I mn)

j,k=1m, n=1 n m j k

Ik)(k I V I m)

k =N+1 m=1 m k
(21)

---- -X
(&)

2s 2s
1S-

(c)

1S 2s
2s , 1s

1s 1s 1s
ill

is
111

2s , 1s

2S +
1s 1s 2S

ill ill
1

) II

m' m 2s

1s m ill S 1s m' 2s 1s
1s

)

s m

(Ll1)

FIG. 2. First-order wave-function diagrams for Li.
m and m' are excited states which do not include the 28

state.

The prime in the first summation signifies that at
least one of j and k should be an excited state (N
+ 1-~). This procedure involves summations
over the quantum numbers l, m~, and m+. The dis-
crete states require, in addition, a sum over their
princioal quantum numbers, while the continuum
stat~, s invc tve an integration over k,

i,k - (2/v) f dk (22)

The diagrams corresponding to the first-order
wave function (21) are presented in Fig. 2. Using
the definition (18) for V+ 1, Fig. 2(a) can be sche-
matically expanded out in terms of the fictitious
diagrams illustrated in Fig. 1. Since the ls orbit-
al differs only slightly from ls, Figs. 2(a), 2(b),
and 2(c) very nearly cancel.

In the calculation of spin-dependent properties,
there is further cancellation between spin-up and
spin-down 1s~ states. The unpaired single-excita-
tion diagram, Fig. 2(j), represents the spin-polar-

ization of the ls core orbitals. It shows the virtu-
al excitation of the 1s state to a higher s state
through exchange interaction with the 2s state.

A single-excitation diagram can represent only
one-body effects. Double -excitation diagrams,
Figs. 2(k) through 2(o), describe two-body corre-
lation effects, with 2(m) and 2(n) representing inter-
shell effects and2(k), 2(l), and 2(o) representing intra. -
shell effects. As is well-known, the spin-polar-
ized wave function by itself is not an eigenfunction
of 8'. It will now be shown that the inclusion of
Figs. 2(k) through 2(o) in the first-order wave func-
tion leads to an eigenfunction of 8'.

E. Eigenfunction of 52

The zeroth-order wave function is, of course,
an eigenfunction of S'. It is well known that 8'
commutes with the total Hamiltonian H. Since ~
is spin-independent, Po and H' commute with 82.
Now the perturbed wave function @, in (11) is a
sum of terms of all orders, each order involving
products of ratios [1j(e,-EJ,)]H' operating on 4,.
Since [O', S']= 0 and 4o is an eigenfunction of S',
the perturbed wave function to each order is also
an eigenfunction of 8',

It is instructive to prove explicitly that the first-
order wave function is indeed an eigenfunction of

For this purpose one refers to the diagrams
in Fig. 2. One only needs to group them in such a
way that each group is an eigenfunction of 82. Us-
ing a compact notation

o (&s &s 2s) ( )

it can easily be seen that the following functions
are also eigenfunctions of ~' with the same set of
quantum numbers L, Ml. , 8, and Mg:

A= (~ p ~), (24)

=(.':)'(::) (25)

It is noted that with the ground state as described
in (23), a spin-up excited state cannot be a 2s state
whereas a spin-down excited state can. In the lat-
ter case one can have two diagrams, namely when
the excited state is the 28 state and when it is not.
This has been done in Fig. 2. The diagrams (a),
(b), (c), (d), (i), and (m) can be seen to be of the
form A in (24), while the others combine in airs
to give form B, namely [(e) (f)], [(g), (h)], (k),
(1)), [(j), (o)], and [(n), (n')I, where (n') is the dia-
gram obtained by a symmetric interchange of ex-
cited states m and m' in diagram (n). This com-
pletes the proof. The most significant pair of dia-
grams is [(j), (o)], representing a combination of
single- and double-excitation diagrams. We inter-
pret this as indicating that one has to admix some
correlation to a spin-polarized wave function to ob-
tain an eigenfunetion of S .

III. THE HYPERFINE COUPLING CONSTANT

A. Experimental hfs

We shall first briefly review the experimental
situation for the hfs in the ground state of the lith-
ium atom. The only contribution to the splitting of
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&s
I,

k ls

16

1s

ls'
j

1s

(g)

2s

(h)

ls-+

2s

FIG. 3. hfs diagrams classified as (0, 1). Here k
stands for spip-up excited states and does not include
2s. k' stands for spin-down excited states and includes 2s.

the hyperfine levels comes from the Fermi contact
term given in frequency units by':

»= —w I p y(f)/4v,8 21+1
(26)

B. Analysis of Diagrams

The hyperfine coupling constant can be calculat-
ed from Eq. (13), where the operator is now f. ln
general it is practicable to calculate 4', only to
second order in the perturbation series. To this
accuracy,

'(0+1+2 If I 0+ 1+2)
(0+ 1+210+ 1+2)

(2 l)

where 0, 1, and 2 stand for the zeroth-, first-,
and second-order wave functions, respectively.
Using (OIO)=1 and (Oln) =0(n&0), Eq. (27) reduces
to

N 25(r.)
where y'= Q

~

1
f 0*

jL(,e is the electronic magnetic moment which is
1.001 1.6 pg, 'o g is the nuclear moment, and (f)
is the spin density of the electrons at the nuclear
site. &v has been measured accurately by molec-
ular-beam magnetic-resonance methods to be
803.512+0.015 Mc/sec. " The most recent value
of the nuclear moment of Li' from molecular-beam
measurements after applying diamagnetic correc-
tions is (3.256310+0. 000085)p,&." The quantity

(f) is sometimes loosely referred to as the hfs,
and is evaluated from Eq. (24) to be 2. 909 60 a. u.
We will use this value as the experimental result"
for comparison with theory.

TABLE II. Contributions to the hfs from (0, 1) dia-
grams (in a.u. ). See Fig. 3.

Diagram Contribution

(g) k = continuum

(g) k=3-8

(g) g bounda
k=9

(e)+(f) k =2
(a)+(d) k' =2s
(h) —(j) k = continuum
(h) —(j) k =bound

0.475 972
0.011320

0.000 926

0.028 350
-0.003 464
-0.000 180
-0.000 180

where (n If lm) = (m If ln) because f is Hermitean.
The numerator of Eq. (28) can be expressed as a

sum of diagrams, after introducing the symbol
for the Fermi contact operator. The dia-

grams are classified as (0, 0), (0, 1), (1, 1), (0, 2)
and so on, for the first four terms.

Because of the orthogonality of the single-parti-
cle states, the expectation value of a sum of one-
electron operators over determinantal wave func-
tions is just the sum of expectation values of the
operators over single-particle states. The (0, 0)
hfs diagrams are composed of the sum of the spin
densities of the ls orbitals which exactly cancel,
and the 2s orbital which gives 2.065. This result
so far is identical to the ordinary RHF calculation
using numerical procedures.

ln the next order, the (0, 1) diagrams are drawn
in Fig. 3. To make a proper distinction, k+ is
used to denote a spin-up excited state and k a
spin-down excited state. Therefore, k includes
2s whereas k+ does not. Because the spins in the
diagrams are opposite, diagrams (a)-(f) cancel in
pairs except whenever k =2s . Even then, the
residue diagrams k = 2s in (b) and (d) almost can-
cel because of the definition of ~. These cancella-
tions represent the special merit of the diagram-
matic technique which allows us to deal with small
quantities directly rather than obtaining them as
differences of larger ones. The diagrams (h), (i),
and (j) also cancel except for the slight difference
between 1s and 1s'. This difference would vanish
if V+ had been used instead of V+ 1 utilized in
this work. Typically matrix elements involving
the difference between 1s and 18 differ by only a
few party per thousand, and are ignored in all or-
ders beyond (0, 1).

The only important diagram then is Fig. 3(g). It
shows the ls state interacting with the 2&+ state
through the exchange potential and becoming an ex-
cited state which interacts with the hfs operator
and then returns to the 1s+ state. Clearly this has
the physical significance of being the spin-polariza-
tion mechanism. The rest of the diagrams in Fig.
3 give very small contributions as expected. The
results from the diagrams of Fig. 3 are displayed
in Table II. The results for Zk 9 bound are ob--
tained as explained in the appendix.

hfs=((Olf IO)+2(OIf Il)+ (11fI1)+2(0 If I2)

+2(11f12)+(2 If 12))(1+(111)
+2(1I2)+ (2 I2))-~ (28)

Total 0.512 744

a
Estimated from the n / rule, as explained in the

appendix.
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ls

(+1)

(-2)

2+

Group (a)

(-2)

(+1)

2s

ls

2s

c

(-2)

+ls
2S

ls 1» ls ls

(+1) (+2) (-2)

2s ls
+ls- 2s ls 2s

Group (b)

(+4) (-2) (-2)

+ls
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FIG. 4. hfs diagrams classified as (1, 1). Group (a)
consists of one-body diagrams, group (b) two-body, and
group (c) hybridization of the bvo. (-2) (-2)

are shown in Fig. 4. Group (a) diagrams represent
second-order effects of core polarization. Group
(b} diagrams are associated with the effects of in-
out correlation of both the intershell and intrashell
types. Group (c) shows the interplay of core polar-
ization and correlation effects. The (1, 1) diagrams
add up to 0.020 a.u. and are composed of contribu-
tions -0.00088, -0.000805, and +0.021150 from
(a), (b), and (c).

The (0, 2) diagrams are of the same order in
number of interactions (vertices) as the (1, 1) dia-
grams, but can only arise out of the second-order
wave function. They can again be classified into
three groups according to the number of particles.
Figure 5 shows the strictly two-particle ones.
The excited states j and k must have the same l,
but l can have any value. This can be understood
because the two-electron matrix elements all in-
volve two unexcited s states, and would therefore
vanish over angular, integrations unless the two ex-
cited states had the same /. Figure 5 represents
a specific many-body effect which can be visual-
ized as follows. The intershell correlation pro-
duces an instantaneous polarization of the 1s' core,
which in turn attracts the 2& electron, increasing
its spin density at the nuclear site. Diagram 5 is
the corresponding effect of the exchange part of
this potential. The contributions from continuum
states only are displayed in Table III. From this
table, it is seen that the contributions from exci-
tations to d, f, and higher-f states are much small-
er than from s andP. Between the latter two, the
P-type contributions are somewhat larger, show-
ing the dominance of dipole polarization. Contri-
butions from diagrams involving bound excited
states are expected to be relatively small from ex-

A conservative estimate of the accuracy of these
numbers is about 5 parts per thousand. Small er-
rors can arise from the numerical integration pro-
cedure and the fact that we integrate up to only k'

=20 a.u. From Table II, the bound states are seen
to contribute only 8% of the total spin polarization.
This is in agreement with a previous calculation of
Cohen, Goodings, and Heine, "where they expand-
ed the exchange perturbed function in terms of
bound Hartree-Fock states, and found only 10% of
the expected spin-polarization effect. The prepon-
derance of the contribution from the continuum
states can be understood from the facts that both
Coulomb and hfs matrix elements are larger for
continuum than for bound excited states, and the
continuum excited states span a larger volume of
phase space than bound ones. Another useful ob-
servation is that in these diagrams involving just
the first-order wave function, the particle state is
always connected to a hfs vertex, and so only s
states need to be included.

This last observation is particularly useful for
the (1, 1) diagrams and makes their number trac-
table. They form three groups: (a) strictly one-
particle, (b) strictly two-particle, and (c) dia-
grams involving both one and two particles. These

as'
I, + 2s

(c)

(+2) (-2) (-2)

1s

2s

(e)

(+2) (-2)

1s 1s

(g)

FIG. 5. hfs diagrams classified as (0, 2): two-parti-
cle type. s and s' stand for s states only, but j and k in-
clude all values of l.
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TABLE III. Contributions to the hfs from certain (0, 2)
diagrams (in a.u. ).

E/diagram (a): direct (b): exchange (a) + (b) 1s 1s

+0.079 608
+0.059 344
+0.009 736
+0.002 540

-0.038 386
-0.005.746
—0.000 354
-0.000 142

+0.041 222
+0.053 598
+0.009 382
+0.002 398

Total +0.151228 -0.044 628 +0.106 600

Note: (a) + (b) including bound states (add 10%) =+ 0. 1.17.

0-,-
1s

(a)

1s i

(b)

(e)

2s
1s

2s +

(+2) (+2) (+2)

1s
1s

2s 2s.-0

(a) (b) (c)

(+2) (-2) (+2)

ls 1s

1s 2s
2s

2s s
2s,

(-2) (-2)

, 2s

ls

(g)

2s 2s

1st 1s

(j) {k)

FIG. 6. hfs diagrams classified as (0, 2): hybridiza-'
tion and single-particle.

perience with the (0, 1) contribution. In fact, they
were found to produce a 10'%%uo increase over the
pure continuum results leading to a total of 0.117
from diagrams 5(a) and (b). Diagrams 5(c)-(f) rep-
resent the parallels of 5(a) and (b) in that they
deal with the contributions to the hfs from the 1s
states which have reacted to the polarization of
the 2s orbital. Diagrams 5(c) and (d) nearly can-
cel each other in contribution. Diagrams 5(e) and
(f) are really residual ones after account has been
taken of spin-cancellation. They also make negli-
giMe contributions relative to 5(a) and (b) since
they involve bound excited states. Together, dia-
grams 5(c) to (f) lead to only about 1'%%uo of the effect
of 5(a) and (b).

+
1s

(g)

1s

(k)

1s

1s

(m)

FIG. 7. EPV diagrams contributing to the hfs.

The mutual polarization of the ls orbitals is
shown in Figs. 5(g), (h), and (i); here again only
the residues after spin-cancellations are displayed.
These diagrams again involve at least one bound
excited state and lead to negligible contribution
compared to 5(a) and (b).

In the second group the hybridization of spin po-
larization and correlation results in the diagrams
in Fig. 6(a), (b), and (c). The third group consists
of various single-particle diagrams: Fig. 6(d)-(k).
In all the diagrams [6(a)- (i)], only excited s states
contribute. Diagrams 6(a)-(c) add up to 0. 013
while 6(d)-(k) add up to only -0. 0028.

In Sec. II, it was remarked that the ls orbital ob-
tained from the ~+-1 potential would be somewhat
different from the HF ls' orbital, but would be
automatically corrected by the perturbation expan-
sion. This "correction" can be seen to arise nat-
urally from the perturbation series. Thus, in all
diagrams considered, the hole or the particle
could interact with a passive unexcited state in the
next order of perturbation leading to hole-hole (h-
h) or hole-particle (h-P) ladder diagrams. Kelly
termed these exclusion-principle-violating (EPV)
diagrams.

The results of this ladder effect on the core po-
larization diagram are shown in Fig. 7. Diagrams
7(a), (b), and (c) cancel because of the definition
of V&-1. The diagrams (d) and (e) can be summed
to all orders following Kelly's technique of shifted
energy denominator as follows. The unmodified
diagram Fig. 3(g) differs from 7(d), and 7(d) in
turn from 7(f) by the factor x = (Is2s lv I is2s)/
(~Is -&h). Using the exPansion,

I/(I-x) = 1 +x +x2+ ~ ~, (29)

the combined effect of the ladder made up of d, f
and higher orders and the corresponding exchange
ladder involving e, etc. , is to replace the denomi-
nator (&Is-&h) of the unmodified diagram 3(g) by
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(E1'& Ek + (1s2s Iv I ls2s)-(1s2s Iv I 2s ls)). The in-
terpretation of this result is that the 1s state in
the V+ 1 potential does not "see" the 2s state, as
does the RHF ls'. With the above modification,
the ls state now effectively sees the 2s electron
so that &1~ is changed to &1+0 within one part per
thousand. This changes the core polarizatization
contribution from 0.511 to 0.545 a.u. , and it is the
latter. that should be compared with the results
from EP and MP methods.

The diagrams V(g}-(m) are (h-P) diagrams. Dia-
grams (g}, (h), and (i) cancel as before Di.agram
(j) allows for the fact that the particle state excit-
ed from the ls now no longer sees two 1s states,
but only one. Diagrams (k) and (1) are analogous
to (d) and (e), only here it is the particle and not
the hole that interacts with the 2s state. Adding
another "rung" to (j) gives (m). interestingly, af-
ter integrating over the continuu. .i states, the ra-
tio of (m) to (j), and (j) to the unmodified diagram
is again practically a constant (within 2'). An ap-
proximation similar to the (h-h) diagrams where
it was exact could then be made to sum these dia-
grams to all orders. Bound states in the unmodi-
fied diagram only contribute 0.05 a.u. , and so lad-
der modifications to them can be ignored. The
modified core polarization result is finally 0.675
a.u.

Laddering also affects (1, 1) and (0, 2) diagrams,
but since their original contributions are already
quite small, the modifications are negligible.
Higher-order diagrams of the type (1, 2), (2, 2),
and (0, 3) are expected to be small, both because
each order of interaction brings in a matrix ele-
ment divided by an energy denominator, a factor
lying between 0.01 and O. l, and also since there
is a large amount of cancellation. To verify this
point, two of these higher-order diagrams [Figs.
8(a) and (b)] were evaluated. The contribution of
Fig. 8(a) was calculated to be +0.001961 using con-
tinuum excited s states. Figure 8(b) is a three-
body diagram, and was estimated to be less than
+0.001. Since Fig. 8(b) appears to be the largest
three-body hfs diagram, three-body effects on the
hfs of the lithium atom appear to be negligible.

C. Normalization

Before summarizing the contributions of the var-
ious classes of diagrams, it is appropriate to dis-
cuss the normalization constant in the denomina-
tor of (28). The contributions to the normalization
constant can a1so be handled by diagrammatic tech-
niques. The lowest-order nontrivial normalization
diagrams are classified as (1, 1}and are given in

+
S

(a) (b)

1s 2S

(c)

1S

2S

1s 1S

2S
2S

FIG. 9. Normalization diagrams. The particle and
hole lines are bent to convey the additionaldenominators
which distinguish these from energy diagrams.

To summarize the hfs results, the contributions
from various diagrams are listed in Table IV. It
appeated from these results that the hfs for the
lithium atom arises from three main sources:

TABLE IV. Analysis of contributions to the hfs.

Diagrams Description
Contribution

(a.u. }

Fig. 9. For example, the algebraic expression of
diagram 8(a) is

(1s 1s I v I kk ')
(30)

k k &'ls "ls 'k 'k'&~

The results from diagrams 9(a), (b), and (c) add
up to 0.0028. One-body diagrams such as 9(d) and
higher-order diagrams such as 9(e) are estimated
to be 0.00001 and hence negligible. The net effect
of normalization on the hfs calculation according
to Eq. (28) is then to divide all the contributions
already calculated by 1.0028.

D. hfs Results

1s

1s

2s +

(0, 0)
Fig. 3+Fig. 7

Fig. 5
Fig. 4
Fig. 6(a}, (b), and (c)
Fig. 6{d)-6(k)

2s' intrinsic
core polarization

all orders
correlation
82 onsiderationS
hybridization
others

2.065
0.685

0.117
0.020
0.013

-0.003
(a) (b)

FIG. 8, Higher-order hfs diagrams not included in
the final result.

Total
'Total, including

normalization effect

2.897

2.89 + 0.02
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1s

(c)

1s

(e)

1s

1s-+

2s

(d)

ls

m

B. Calculation of Energy Diagrams-Correlation Energy

The prescription for calculating the energy has
been given in (15). On expanding in orders of per-
turbation, for convenience,

E =ED++ (COIN'([1 j(EO-Ho)]H'p 4,).
n

(31)

considered to be accurate to one per billion from
a comparison of his theoretical helium-atom ener-
gy with experiment. To obtain the energy of the
Li atom one has to add to the energy of the Li ion
the first ionization potential (2s) of the lithium
atom. From this sum one has to subtract off a rel-
ativistic correction to the 2s energy to obtain the
total nonrelativistic energy of the atom, which is
what we will calculate. Using an estimate of
0.0000018 a.u. for this relativistic effect, Scherr,
Silverman, and Matsen" obtained for the nonrela-
tivistic "experimental" energy of the lithium atom,
Eexp= -7.47807+0.0001 a.u. (1 a.u. =27.206 eV).

FIG. 10. First-order energy diagrams. The dia-
grammatic equation (f) is the equivalent of the equation
in Fig. (1). mstands for 1s+ or 2s .

the intrinsic contribution of the 2s orbital, spin
polarization, and intershell correlation. The in-
trinsic contribution is necessarily the same as
from the RHF method. Spin-polarization contrib-
utes about 80% of the difference between the exper-
imental and the RHF values, in excellent agree-
ment with 78% obtained by Marshall using a PUHF
procedure. ' The intershell correlation effect con-
tributes another 15'%%uo. The (1, 1) diagrams in Fig.
4 which restore the eigenfunction of S' contribute
about 2'%%uo, while diagrams combining one-particle
and two-particle effects, referred to as hybridiza-
tion, contribute another 1%%uo. We have examined
the contributions from several higher-order dia-
grams and found them insignificant. The neglect
of the higher-order diagrams and possible errors
in estimating diagrams which make very small
contributions leads us to a conservative estimate
of overall errors as 0.02 a.u. On including the
normalization factor, our total calculated hfs
comes out at 2.89+0.02 as compared to the exper-
imental value of 2.909 60 a.u. A comparison with
results of other calculations and the over-all im-
plications of our results will be discussed in
Sec. V.

It must be emphasized that the restriction "linked"
for energy diagrams differs from the one for wave-
function diagrams. A linked energy diagram is
constructed from corresponding linked wave-func-
tion diagrams by closing the free lines with H' 4,).

The order of an energy diagram can be defined
as the number of interaction lines in the diagram.
The zeroth-order Eo is just the sum of the one-
electron energies.

s+'1s+'2 (32)

The first order is obtained from Eq. (31) with n = 0,
and the diagrams are given in Fig. 10. As men-
tioned in Sec, II we have made use of the ~&-1 sin-
gle-particle potential. As indicated in Fig. 10,
this potential can be expanded in terms of two-par-
ticle matrix elements, which leads to some cancel-
lation of the first-order energy diagrams.

Had we chosen the V potential, as in the con-
ventional Hartree-Fock approximation, the first-
order diagrams remaining after cancellation would
represent the usual subtraction of the Coulomb
and exchange interactions between electrons which
were counted twice in Eq. (32) for E,. Hence

EHF(& )=E, +E, = -7.43273 a.u.HF HF

with the V+ 1 potential

IV. ENERGY OF THE LITHIUM ATOM
EHF( v ) =E,+E, = -7.432 23 a.u. ,

JV-].
(34)

A. Experimental Energy

Before. discussing the calculation of the energy,
we would like to comment on the experimental to-
tal energy for the lithium atom. The determina-
tion of the experimental energy is more indirect
and therefore less precise than the hfs. Usually
the total energy is estimated from successive ion-
ization potentials, which are difficult to measure
accurately. Fortunately, for the lithium atom one
can obtain a reasonably precise value of the ener-
gy as follows. Pekeris has carried out an accu-
rate variational calculation of the Li+ ion using
1078 determinants. '4 His energy for the Li ion is

which is very slightly (0.0005 a.u. ) higher than
EHF(V&). Since the experimental energy is
-7.478 05 a.u. , the conventional correlation ener-
gy from EHF (V+) is -0. 04532 a. u. With our choice
of V™1potential, the corresponding "correlation"
energy that one should obtain from the perturbation
series is -0.04582 a.u.

The second-order energy diagrams divide natu-
rally into two groups: one-particle, Fig. 11(a), (b)

and (c); and two-particle, Fig. 11(d, (e), and (f).
The former would vanish for the V' potential. In
the present treatment, they sum up to -0.0000971
a.u. , a negligible contribution to the correlation
energy.
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FIG. 11. Second-order energy diagrams. (a), (b),
and (c) are one-body diagrams, and (d), (e), and (f)
two-body.

Before analyzing the diagrams [11(d), (e), and
(f)], it is convenient to decompose v in partial
waves

l

v = vl =~ Pl cos6
l l l yl+1l (35)

With this expansion, diagrams ll(d) and (e) lead
to second-order energy terms

(Pq lvf lkk')(kk' Iv IPq)
~ '(f p e)=

pr E' + 6' -6~ -6~,
g

, (36)

where P and q are the particular unexcited states.
The exchange diagram 11(f) has k and k' inter-
changed in the second matrix element in (36).
These diagrams represent the main bulk of the
correlation energy. The contributions from vari-
ous orbital angular momenta and pairs of states
are displayed in Table V.

From Table V one notices that the second-order
energy accounts for more than 90% of the correla-
tion energy indicating that the first-order wave
function is quite adequate for this purpose. Fur-
thermore, as in the case of hfs, the convergence
in l is very rapid, the s and p excited states being
the most important.

FIG. 12. Third-order energy diagrams showing
various. laddering of the pair (1s, 1s).

j 2s"

~
28+

2s+

, 2s+

%e shall next consider higher-order diagrams.
As in the case of hfs, the most important higher-
order diagrams are those shown in Fig. 12. The
hole-hole ladders, as in (a) and (d), can be
summed exactly to all orders. On the other hand,
the hole-particle diagrams (b), (f), and particle-
particle diagrams (m) can only be summed approx-
imately for continuum states and exactly for the
bound excited states. The bound states are, how-
ever, not very-important because they contribute
only 2% to the second-order energy.

The laddering of the 1s-2s correlation diagrams
is not considered because the diagrams 11(e) and
11(f) are themselves rather small in magnitude as
seen from Table V. Further, there is partial can-
cellations of diagrams, exemplified by Figs. 13(a)
and 13(b), which have opposite signs since (b) has
an extra internal hole line.

The process of calculation of the laddering for
the 1s -1s pair in lithium can be carried out as in
the case of oxygen studied by Kelly. The effects

TABLE U. Second-order energy contributions (the
main part of the correlation energy).

(a) (b)

1s+-1s 1s -2s+

0
1
2
3
3

l=o
Total

-0 ~ 013446
-0.021 595
-0.003 426
-0.000 946

-0.000 456
-0.001 032
-0.000 124
-0.000 030

-0.000 077
-0.000 687
-0.000 042
-0.000 006

-0.039413 -0.001 642 -0.000 812

-0.041 867 a.u.

a.
Includes Pigs. 11(a), (b), and (c); all second-order

sum to —0.41958 a. u.

1s ),

FIG. 13. Cancelling energy ladder diagrams. Dia-
grams (a) and (b) cancel because they are opposite in

sign, since (b) has an extra internal hole line. (c) is a
three-body diagram estimated to contribute negligibly
to the correlation energy.
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TABLE VI. Analysis of the
coefficient of enhancement.

Number of
Values of equivalent Total values

Diagram type a and t diagramsa of a and t

ay
a
ay
a&
ai

t (I,' =- 0)bl" =I
t

Ett

Total

-0 ~ 105
-0.105
+0.042
-0.001
+0.011
+0.105

+0.050

-0.210
-0.210
+0.084
-0.001
+0.022
+0.105

+0.050

-0.160

a
The equivalent diagrams arise from interchanging

the designations of 1s and 1& in Figs. 12(b), {c), (f),
(g, and {i).

Using Kelly's result for oxygen that it equals a~.

Ce&(ls, ls) =

1 Q+.a.+P .f. (39)

of k-k laddering [Figs. 12(a), (d), (e), and (h)] can
be carried out exactly, and can be accounted for
by a shifted energy denominator'

2e -~ -e, D(k, k')' (37)
ls k k'

where D(k k') = 2e e-e, -(l-sls Iv I lsls)ls k k'

+2(ls2s iv I ls2s)-(ls2s Iv I2sls). (38)

This leads to a modified ls-ls correlation energy
of -0.037018 a.u. instead of the unmodified value
of -0.039413 in Table V. The effects of h-P and
P -P laddering will be handled by multiplying the
modified ls-ls diagrams by a "coefficient of en-
hancement"9

In Eq. (39), a& is the ratio of diagrams involving
one rung of the h-P ladder to the modified ls-ls
second-order diagram for a particular value of l.
The suffix i refers to the particular type of ladder
as exemplified by the diagrams (b), (c), (f), (g),
and (i) in Fig. 12. The f, s refer to a similar ra-
tio for the P-P ladder, in this case Fig. 12(j). Ta-
ble VI lists the contributions from these various
types of ladders. Kelly' found Ce to be practical-
ly independent of ~ and we have assumed this in
our calculation. On evaluating a& and I'& for the
pertinent diagrams in Fig. 12 and combining as in
Eq. (31), we find the coefficient of enhancement to
be 1.19 leading to the total ls-ls correlation ener-
gy

E,(ls, ls) = —0.037018x1.19= -0.044 a.u. (40)

Classifying diagrams according to the bound or
continuum excited states, the second-order cor-
relation energy calculation can be separated into
three types, the continuum-continuum type, con-
tinuum-bound type, and bound-bound type. In this
sense, the ls-ls intrashell calculation showed
continuum-continuum contribution to be dominant
(96%) while the bound-bound contribution is negli-
gible ((0.1%). Similar behavior was found for ls-
2s intershell correlation where the continuum-
type supplies over 90'%%uo and the bound-bound gives
less than 1%.

As regards other higher-order diagrams, one
of the important third-order diagrams is indicat-

ed in Fig. 13(c) and represents a three-particle
correlation effect. Its value has been found to be
0.0002 a.u. , an order of magnitude smaller than
the ls-2s correlation diagrams in 11(e) a'nd (f). In
the third-order, one can also get diagrams which
represent hybrids between one-particle and two-
particle interactions. Their contributions are ex-
pected to be even smaller than the diagram 13(c),
since single-particle interactions in second-order
[Figs. 11(a), (b), (c)] were already found to be
rather small.

TABLE VII. Previous and the present calculations of the hfs and the energy of Li.

Group Reference Method
-E

(a.u. )

hfs
(a.u. )

V

Present
experiment

15
1

46
11
12
48

5
13
26

8
27
28
28

RHF (Roothaan) variational
RHF (Goodings) numerical
UHF
Exchange perturbation
Moment perturbation
UHFP
PUHF
Correlated core valence
Correlated core valence
Configuration interaction (45 configurations)
Configuration interaction (6 configurations)
Bethe-Goldstone equations (HF)
Bethe-Goldstone equations (SPHF)

Brueckner-Goldstone perturbation

7.432 727
7.432 59
7.432 75

~ ~ ~

7.432 75
7.432 75
7.476 31
7.477 8
7.477 10
7.431 85
7.446 54
7.476 68

7.478+ 0.002
7.478 07

2.095
2.067
2.825
2.70
2.66
2.337
2.72
2.883
2.826
2.595
2.'872

2.858 090
2.895 679

2.89 + 0.02
2.9096
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Summarizing our energy results, we find that
the main features of our diagrams agree with earli-
er work on other atoms. Thus the main part of the
correlation energy (92/o) arises from the second-
order two-particle diagrams, Fig. 11(d), (e), and
(f). Of these about 95'fo comes from intrashell cor-
relation (Is+-Is ), and the remainder from inter-
shell. Except for the ladder diagrams, all higher-
order diagrams are effectively negligible. Among
the ladder diagrams, the hole-hole and the particle-
particle types are comparable and opposite in sign
to the hole-particle type. The net effect of ladder-
ing is to alter the (is+-Is ) correlation from
-0.0394 (Table V) to -0.044 a.u. Our final corre-
lation energy result is then —0.046+ 0.002 a.u. as
compared to -0.045 82 a.u. anticipated from the ex-
perimental energy. The estimated error in our re-
sult arises mainly from the approximation proce-
dure in calculating ladder corrections. In terms
of the total energy, our calculated energy is
-7.478+0.002 a.u. in good agreement with the ex-
perimental value of -7.47805 a.u.

V. DISCUSSION

In order to fully appreciate the scope and merits
of the BG method, we now compare our results for
both the hfs and the energy with those obtained
from earlier methods. Rather than discussing all
the earlier results, we choose only the ones which
provide the most meaningful comparisons with the
present procedure. These are listed in Table VII
along with our results and experiment.

The RHF results, of course, represent only the
intrinsic 2s contribution to the hfs. We notice that
both the hfs and the energy depend somewhat on the
procedure for solving the Hartree-Fock equations.
For comparison the intrinsic contribution from our
zeroth-order wave function is 2.065 a.u. , the close-
ness to Goodings's result being a consequence of
the similarity of the procedures employed. The
UHF, UHFP, and PUHF results for the hfs are
best considered together. The UHF method allows
for spin polarization, and naturally leads to a sub-
stantially better result than RHF. However, its
close agreement with experiment may be deceptive,
since as has been pointed out the UHF wave func-
tion is not an eigenfunction of S'. This objection is
removed by the PUHF procedure which restores
the eigenbehavior with respect to S~ before energy
minimization. The difference of about 0.1 a.u. may
be interpreted as indicative of the importance of
having an eigenfunction of S'. In our analysis, this
effect is measured by the results of the (1, 1) dia-
grams which contribute only 0.02 a.u. Therefore
we surmise that the relatively large difference of
0.1 a.u. is due to some other causes. One possibil-
ity is that the PUHF method uses a variation proce-
dure and the result may depend sensitively on the
form of the variational function. These various
Hartree-Fock procedures do not explicitly include
correlation, and therefore lead to essentially the
same energy. Correlation effects have been ex-
plicitly included through the use of interelectronic
coordinates wq~ and configuration interaction.

First we cdnsider the Hylleraas-type functions.
The results of two separate calculations"~" with

different choices of variational functions are listed
in Table VII. Both are in reasonable agreement
with experiment. However, their hfs results are
significantly different from each other, an effect
which is symptomatic of variational calculations of
this type. Berggren and Wood' have interpreted
their hfs results to indicate that the entire differ-
ence between RHF and experiment can be explained
by correlation effects alone without requiring the
concept of spin polarization. Our results do not
support this contention. As emphasized in Sec. III,
the BG method permits a physical separation of
one- and two-body effects, since these are associ-
ated with different diagrams. From Table IV, we
find that about 80% of the difference between RHF
and experiment arises from purely one-body dia-
grams which can be specifically interpreted as spin
polarization effects. In fact only 15' is contribut-
ed by two-body diagrams representing correlation
effects. Our conclusion about the relative impor-
tance of spin polarization effects is in agreement
with the predictions of Marshall' and Heine. 3 Fur-
ther, the validity of Heine's argument concerning
the near independence of spin polarization and cor-
relation effects is also supported by our results as
indicated by the smallness of the contribution from
hybrid diagrams shown in Fig. 4.

The configuration interaction results in Table
VII again reflect the sensitive dependence of the
hfs on the choice of variational functions. In par-
ticular, one calculation based on configurations
biased towards hfs gives the expected good hfs re-
sult but a poor energy, while the reverse is true
of the other calculation. '~" These results have
been interpreted by Nesbetn' to indicate again the
near independence of spin polarization and corre-
lation effects.

The method using Bethe-Goldstone equations
gives results in excellent agreement with experi-
ment. " Analysis of the contributions to the energy
reveals excellent agreement between this and the
present methods. The intrashell correlation ener-
gy is -0.041601 a.u. (Nesbet) and -0.044 (ours),
and the intershell correlation energy is -0.002 481
(Nesbet) and -0.002388 (ours). Also, if the corre-
lation energy is separated into contributions from
excited s and non-s states, the two methods show
good agreement in the individual contributions.

Three-body effects are concluded in both meth-
ods to be relatively unimportant for lithium hfs
calculations. Both methods start with the RHF ap-
proximation and naturally have the same uncorre-
lated energy and intrinsic hfs. The contribution
from spin polarization also agrees well, 0.6322
(Nesbet) and 0.675 a.u. (ours). However, there
are significant differences in the other contribu-
tions to hfs. Nesbet obtains a contribution of
0.2789 a.u, to the hfs from two-particle effects,
whereas we obtain 0.15. Three-particle contribu-
tion to the hfs is calculated by Nesbet to be -0.0824
a.u. , which we find to be less than 0.01 and hence
negligible. Further work on additional atoms
should help to resolve some of these differences
in detail between the two methods.

Before concluding this discussion of the relation-
ship between the BG method and earlier ones, we
would like to comment on two other perturbation
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procedures, referred to as the exchange perturba-
tion (EP) and the moment perturbation (MP) meth-
ods. These two methods are equivalent, and dif-
fer only in the order in which the exchange and the
hyperfine perturbations are applied. These meth-
ods lead to contributions of 0.64 and 0.60 a.u. re-
spectively for the spin polarization correction to
hfs. These numbers compare favorably with our
result 0.685 a.u. from the (0, 1) diagrams includ-
ing ladders which describe the same effect.

VI. CONCLUSION

The Brueckner-Goldstone theory has been ap-
plied to the correlation energy of the lithium atom
and successfully extended to the calculation of the
hyperfine structure. Our results for both the hfs
and the correlation energy are in very satisfactory

agreement with experiment. This indicates that
the BG wave function is sufficiently accurate near
the nucleus as well as in the over-all volume of
the atom. The one- and two-body diagrams for
hfs have been separately considered to analyze
their physical content. It is concluded that spin
polarization accounts for the major part of the dif-
ference between RHF and experiment, while corre-
lation effects play a smaller but significant role.
Three-body effects are found to have negligible in-
fluence on the hfs as well as energy.

The present worg leads. us to believe that while
the BG procedure would necessarily increase in
complexity for heavier atoms, it would not be in-
tractable. Since this procedure provides clear -cut
answers regarding the relative importance of spin
polarization and correlation effects, its extension
to heavier atoms should be fruitful.

APPENDIX

Numerical Methods for Solving the Integrodifferential Equation

The equation we want to solve can be written as

+ +2m 4 f-I—R,(r') I'dr'+ f IR,(r') I'dr' R (r)

2 1,,/, l
R iso(r ')RI f(r ')

+ f R o(r')R& i(r')r' dr'+r
&

' dr'

(A. 1)Ch' R1

where in the exchange term, the integral @dr' has been rewritten as [f, dr' f, dr']-We w. ill solve the

equation for the two cases separately: A. &)0 and B. «0.

Case A. &=&'/2. The Noniterative Method

(A.2)

(A.3)

(A.4)

(A. 5)

(A.6)

(A.V)

(A.8)

(A.9)

This method is based on the fact that Eq. (A.l) can be written in the form

Lpi &(r)+f(r)f, R& &(r')g(r')dr'= 0,
7

where f(r) = 2/(2l+ 1)r Rlso(r) and g(r') =R iso(r')/r' + are known functions, and L, is effectively just a
local operator. As the name implies, the noniterative method is a means of solving Eq. (A.2) without re-
sorting to a time-consuming iterative procedure by the following steps:

1. Solve 1-,4,= 0.
2. Use Po from step 1 to solve

Lo4' +f(r)f Qo(r )g (r )« =0. '

3. The solution of Eq. (A.2) can be shown to be a linear combination of Po and 0,:
R, „(r)=&.(r)+BC,(r).

The mitching constant B can be found by substituting Eq. (A. 5) into Eq. (A.2)

Lo($0+BQ,)+f(r)f g(r')[$0(r')+BP, (r')]dr'=0,
which can be rewritten as

L,P, +f(r)f g(r')P, (r')dr'+B[L, P, +f(r)f g(r')P, (r')dr']=0.

Now using Eqs. (A.3) and (A.4),

f(r )f g(r')Q, (r')dr'+B[ f(r)f Q, (r'-)g(r')dr'+f(r) f g(r')P, (r')dr'] = 0,

f„g(r ')@,(r ')dr '

f g(r ')&0(r ')dr ' fg (r ')p, (r ')dr'-
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The Brueckner-Goldstone perturbation method has been applied to the calculation of the di-
pole polarizability (nd) and antishielding factor (pd) for lithium-atom ground state. The com-
plete set of states utilized is the same as those employed in earlier calculations of the hyper-
fine constant and correlation energy. Our results are ud =24.84 A, and yd = 0.988, as com-

O

pared to a recent experimental value for nd = 22 + 2 As and yd = 1.000 from the Hellmann-Feyn-
man theorem. The relationship between the Brueckner-Goldstone and the Hartree-Fock per-
turbation procedures is discussed with reference to specific physical effects.

I. INTRODUCTION

In an earlier paper, ' referred to as I, we have
applied the Brueckner-Goldstonea (BG) formalism
to the study of the hyperfine constant and the ener-
gy of lithium as a test of the atomic ground-state
wave function. In the present work, we shall in-
vestigate the atomic dipole polarizability (od) and
the induced electric field at the nucleus which is
characterized by the shielding factor (yd), both of

which have been studied earlier for beryllium and
oxygen atoms by Kelly. sy~ These properties re-
quire the ground-state wave function as well as the
perturbed wave function in an external field, and
therefore provide additional test of the unperturbed
wave function. Our aim in the present work is two-
fold; first, to utilize the diagrammatic technique
to study the relative importance of various physi-
cal effects that contribute to the polarizability,
similar to our earlier analysis of the hyperfine in-


