
OVERLAPPING RESONANCES

As expected, when one of the channels is switched off,
Eq. (24) reduces to Eq. (8).

By integrating out e and one of the total widths in
Eq. (24) we find that the distribution of the single total
width i'= I"l/(I'2) is given by

P(r) = (psvr ')Lexp(yl)][V(2 —l') —p2] "'
X(8202 [f~2(P1)+It0(Pl)]
—2Ll'(2 —l') —p ]&o(p ))

Xexpl —2p [I'(2—I')—p ]}, (25)
where

121 (2r/8(S) ) (DCl DC2) y g2 —4DClDC2/(DCl+DC2)

222 ——(lr/8(S)') (DCl+DC2)'

This should be compared with the total dimensionless
width y of the E matrix which is given by

&(r)= (~ ')b(2 —r)—~2?"' (26)

To compare the distribution of the width I' given by
Eq. (25) with the one given by Eq. (26), we again
calculate the mean-square deviations of the quantities
I' and y. As in Sec. II B, we find that the distribution of
the width I' is always broader than the one given by
Eq. (26), except when the quantities Dcl/(S) and
Dcl/(S) are very small.

Iv. CONCLUDING REMARKS

The statistical study of the spacing and the widths of
the unitary collision matrix described in Secs. II and III
is somewhat like the statistical study of the eigenvalues
and eigenvector components of the random 2)(2 real-
synunetric Hamiltonian matrices, which was done by
Porter and Rosenzweig" in the early days of the
statistical model. We have shown that the spacing and
the widths of the unitary collision matrix can be
correlated, while the correlation between the eigenvalues
and eigenvector components of the real-symmetric
Hamiltonian matrices was strictly zero. We have shown

how the distribution of a single width of the unitary
collision matrix, depending on the ratio of the average
width to average spacing of the collision matrix, di6'ers

from the usual Porter-Thomas —type distributions.

The simple model has also been used to check which
of the relations between the various ensemble averages
of the parameters of the statistical collision matrix,
obtained using the ensemble of random complex orthog-
onal matrices, ' are consistent with the constraint of
unitarity.
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The spectroscopic factors S of bound neutron states are usually found from (d,p) stripping reactions. An
alternative method of finding S„for medium-to-heavy nuclei is to analyze isobaric analog resonances ob-
served in (p,p) scattering from these nuclei. The present analysis uses a modified R-matrix theory in which
boundary matching is done within the optical-model potential region rather than directly onto the Coulomb
potential region. A resonance mixing phase and an optical penetrability are introduced. Both single- and
multilevel resonances are treated. The sects of compound elastic scattering and the energy dependence of
the level shift are investigated. Formulas for the spreading width are obtained. The variation of S with
the value of the matching radius and the best choice of this radius are discussed. As examples of the method,
analyses of the s-wave resonance in 'Zr(p, p)"Zr near 6.0-MeV bombarding energy and of s- and d-wave
resonances in "Zr(p, p)"Zr near 5.8 and 6.8 MeV are presented. The values of S& obtained are compared
with those from (d,p) experiments, and the reliability of the two methods is discussed.

I. INTRODUCTION
' 'N the elastic scattering of protons from medium-to-
&- heavy nuclei it was found that large resonance
states, which are the isobaric analogs of the bound
neutron-plus-target states, are produced. ' Such reso-
nances may be described by an R-matrix theory in

* Research sponsored in part by the Air Force Once of Scientific
Research, OfBce of Aerospace Research, U. S. Air Force, under
AFOSR Grant No. AF-AFOSR-440-67, and the National Science
Foundation under Grant No. NSF-GP-5114.

t Present address: Ohio University, Athens, Ohio.
J. D. Fox, C. F. Moore, and D. Robson, Phys. Rev. Letters

12, 198 (1964).

which the neutron-plus-target states are simply related
to the analog states formed by the proton plus target. '

The parameters of the analog resonances can be
obtained by analyses of diGerential cross-section exci-
tation functions at energies near the resonances. Corres-
ponding polarization excitation functions also are useful
in 6nding the best resonance parameters. An optical-
model potential which describes the nonresonant (back-
ground, or T& states) scattering may be determined by
fitting angular distributions taken at energies off reso-
nance, but in the same energy region. The best situation

' D. Robson, Phys. Rev. 137, $535 (1965).
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is to have both the resonance and oG-resonance data.
If compound elastic scattering is negljgible, the total
(p,l) cross section is essentially the same as the com-
puted reaction cross section in many cases of interest.
Thus, measurements of the (p,e) cross section are
helpful in determining the absorptive part of the
optical-model potential. Also, such measurements help
to determine the resonance energy and total width.
When data are not available oG resonance, the optical-
model parameters may be estimated from a standard
set.' The resonance data are analyzed, using a modi6ed
R-matrix' formula. In the resonance term the eAects
arising from the background scattering are included.
Once the proton partial width of the resonance is
found, the neutron spectroscopic factor may be com-
puted by using the relation between the neutron bound-
state reduced width at the boundary matching radius
and the corresponding proton reduced width for the
isobaric analog state.

In Sec. II the usual R-matrix theory4 is modified so
that boundary value matching can occur inside the
nuclear-interaction region. This is necessary if the region
of charge independence is smaller than the region of
nuclear interaction. In these applications, "charge in-
dependence" means the approximate cancellation of
Coulomb effects in the internal region (Ref. 2, Fig. 1).
The choice of an R-matrix formulation of the analysis
is made on practical grounds, although several formally
equivalent approaches are possible. ' ' The modi6ed
R-matrix theory involves a resonance-mixing phase, '
and an optical penetrability. It is shown that the phase
P.~ is a result of the mixing between the resonances and
the absorptive part of the nonresonant scattering. The
estimation of this phase is discussed. The optical
penetrability E, is compared with the usual Coulomb
penetrability.

The formula for the elastic scattering elements of
the collision matrix which include both nonresonant
and resonant contributions is then derived for a single-
level resonance. It is shown that the energy dependence
of the level shift can be replaced by renormalization of
the analog neutron wave function.

The use of a single-level formula is valid for the
analysis of data which have been averaged over the
fine structure in the analog resonance, and the partial
width obtained is that for the averaged resonance.

For several overlapping resonances in the same
channel, a multilevel formula is derived. However, the
partial widths extracted are no longer simply related to
the proton wave function at the boundary. Hence the
extraction of spectroscopic factors is much more
difBcult.

3 L. Rosen, J. G. Berry, A. S. Goldhaber, and E. H. Auerbach,
Ann. Phys. (N. Y.) 34, 96 (1965).

4 A. M. Lane and R. G. Thomas, Rev. Mod. Phys. 30, 257
(1958).

' A. M. Lane and D. Robson, Phys. Rev. 151, 774 (1966).
6 D. Robson and A. M. Lane, Phys. Rev. 161, 982 (1967).

Compound elastic scattering contributions arise from
the energy-averaging over the Gne structure, and for-
mulas for these contributions are given in the important
case of elastic scattering below reaction thresholds. In
such cases, the spreading of the total width due to
background scattering can also be readily calculated,
as is done in Sec. II G.

In Sec. III the formula for the neutron spectroscopic
factor S is given. The calculated values of S„and P,a
vary with the matching radius, and methods for choos-
ing the best radius are discussed.

Examples of the application of the theory are given
in Secs. IV and V. The 6rst is an analysis of the s-wave
resonance in the elastic scattering reaction "Zr(p, p)"Zr
near 6.0-MeV bombarding energy. This resonance is
above the (p,e) threshold, and the measured (p,m)

total cross section is compared with the computed total
reaction cross section. Analyses of s- and d-wave reso-
nances near 5.8- and 6.8-MeV bombarding energies for
+Zr(p, p)"Zr, which are presented in Sec. V, show that
compound elastic scattering contributions are important
below the (p,e) threshold.

The (d,p) reaction on the same target nucleus as in
the proton resonance reaction preferentially populates
single-partical neutron states. Neutron spectroscopic
factors are usually determined from these (d,p) reac-
tions by zero-range distorted-wave Born-approximation
(DWBA) calculations. ~ A comparison of the results
from the two methods is made in Sec. VI. Some of
the problems encountered in both methods are also
discussed.

IL ANALYSIS OP RESONANCE PLUS
BACKGROUND SCATTERING

A. Boundary Matching in an Optical-Model Potential

The usual R-matrix theory of nuclear reactions4 splits
con6guration space into two regions separated at a
matching radius a., where the subscript c labels the
particular channel involved. (The concept of channels
is fully discussed in Ref. 4.) The purpose of this division
is to have all of the unknown details of the interaction
conhned to the internal region r& u, and to have known
quantities in the external region r& a,.The interior- and
exterior-region wave functions are then joined at the
matching radius. The radius a, is chosen to be large
enough that the speci6cally nuclear interaction in the
external region is negligible. Then, neglecting Coulomb
excitations, wave functions in diferent channels are
orthogonal over the hypersurface containing the interior
region.

For analog states it has been suggested' that there
exists a radius inside of which the interactions are
charge-independent (except for the diagonal elements of

'I N. Austern, in Selected ToPics in Ezccleur Theory, edited by
F. Janouch (International Atomic Energy Agency, Vienna, 1963);
R. H. Bassel, R. M. Drisko, and G. R. Satchler, Oak Ridge
National Laboratory Report No. ORNL-3240 (unpublished).
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i, (r) I((r) exp( —ib.),
o,(r) O((r) expib„

(5)

(6)

M. H. Hull and G. Sreit, in IIcndblch der Physik, edited by
S. Flugge (Springer-Verlag, Berlin, 1959), Vol. XLI/I, p. 408.

the Coulomb interaction which are necessary to account
for the observed Coulomb energy shifts). In an R-matrix
theory of analog states, this would be an appropriate
choice of the matching radius. If, homever, the nuclear
potential is not zero beyond this radius, the E-matrix
requirement of channel orthogonality is no longer
satis6ed. If excitation sects on the elastic scattering
can be represented by complex absorption terms in an
optical-model potential, the stipulation that channels
be orthogonal is approximately satis6ed. Thus the best
choice of matching radius may be complicated by the
conQicting requirements that it be small enough so that
charge independence holds in the internal region and
yet large enough that the channels are approximately
orthogonal in the external region. The advantage gained

by assuming charge independence in the internal region,
and using optical-model wave functions for the elastic
scattering wave functions in the external region, should
outweigh the error made from having channels which
are only approximately orthogonal.

In order to match the interior region onto the exterior
region, it is necessary to have the exterior-region wave
functions which are solutions of an optical-model
potential (including the Coulomb potential). Lane and
Thomas (Ref. 4, Sec. VII-4) suggested the use of such

optical mave functions although a detailed treatment
has not been given. In the following, the notation of
Lane and Thomas will be used, and corresponding
equations in their Coulomb wave-function treatment
will be referred to for algebraic detail. References to
equations in their article mill be pre6xed by LT.

For the external mave functions, the regular solution

f,(r) and the irregular solution g, (r) of the radial
Schrodinger equation for a given optical potential and
elastic channel designated c (labeled by partial wave/,
channel spin, and total angular momentum j) are de-
6ned as the two linearly independent solutions mith
the asymptotic behavior

f,(r)-F~(r) cosh.+Gg(r) sinb„ (1)

g, (r) F~(r) sin8, +G—g(r) cos8„(2)
where 5, is the (complex) optical-model phase shift, and
Fg(r) and G~(r) are the regular and irregular Coulomb
wave functions. Incoming i, and outgoing o, solutions
can be de6ned by

i,(r)=—Lg, (r)—if, (r)j exp@a~, (3)

o, (r)=—Lg, (r)+if, (r)$ exp( —™~), (4)

where so~ is the relative Coulomb phase shift for partial
wave l From Eqs. (.1) and (2), the asymptotic behavior
of i, and o, is given by

where U„ is the background amplitude given in Kq.
(22). The exp2ih, term comes about from the fact that
optical, rather than Coulomb, wave functions are being
used. In Eq. (7) the contributions of off-diagonal terms
in (I—R'Lo) 'yq to the resonance amplitude have been
neglected. The quantities Q„P„and Lo are given in
terms of the optical wave functions rather than the
Coulomb wave functions as follows:

where

0,= (i,/o. )'I , 2

P.=p./(i o.),
pc do. c

L,'=—— —8„
Oc dpc

pc —~~c p

(8)

(9)

(10)

k is the wave number, and u, is the matching radius.
The boundary condition B, of the elastic channel will

be discussed in more detail in Sec. III. The reduced
width' of the channel wave function is given as y) .. Its
relation to the partial width I'qq, , will be considered
shortly. The A zz (E) are elements of the level matrix'

(& "))v= (&~—&)&~v+~~~ —~ii'~x' (12)

The shift (4) and width (F) matrices are given by
the relation

—~~v+kil'v =Z v~ev~ S'L(I—R'~') 'j (13)

the summation over channels including all those with
nonzero values of L.'yq, yq, .The matrices 4 and I' are
usually assumed to be energy-independent.

In previous analyses' the term dividing the reduced
width has been neglected or only estimated, 0, and P,
were replaced by their values for the Coulomb wave
functions, and 8, mas set at zero. The expression dividing
the reduced width can be written as

L(l—R'L') 'j = (1—E '&'I. ')-' (14)

and R„'&' is approximated as Lace LT, Sec. IV,
Eq. (2.4)j

pc dc
g OP'5—

f, dp,

9 P. von Srentano, in Proceedings of the Conference on Isobaric
Spin in Nuclear Physics, edited by J. D. Fox and D. Robson
(Academic Press Inc., New York, 1966), paper C2.

where I~ and 0~ are incoming and outgoing waves for the
Coulomb potential ALT, Sec. III, Eq. (2.10)] so that
i, and o, are the corresponding waves for the optical
(including Coulomb) potential.

Following LT, Sec. IX-1, the E matrix is split into a
background term R' and resonance terms, and the
elastic scattering elements of the collision matrix can
be written

U„= U, ,o+2i(exp2ih, )O,'P,

X((1—R'L') ']„'Py,y.,A .(F), (7)
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P.o= p. (ds'+dr')

where d~ and dz are given by

(17)

Equation (14) arises when the collision amplitude is
averaged over a small energy interval F such that the
6ne structure is smoothed out. This procedure corre-
sponds to replacing U„(E)by U„(E+iE)which is here
denoted by (U„). If Eqs. (8)-(14) are inserted into
expression (7) for U... the following is obtained:

(U„)=(U„')+zexp[2i(8, +~E)$

&(exp(2ip, ")2P,' g y&„yq.,A&,q. (E). (16)
XX'

Here the optical penetrability P, is delned by

In the above equations, 8 is the scattering angle in the
center-of-mass system, p is the Coulomb parameter, and
k is the wave number. The channel c is labeled by/ and j.

3. Resonance-Mixing Phase

The resonance-mixing phase P,~, defined by Eq. (21),
vanishes for a real background potential for which the
wave function f, [Eq. (1)j is real. Thus g,s arises
from the eGect of the absorptive parts of the back-
ground scattering on the phase of the resonance scatter-
ing. Therefore $,s is expected to increase with the
absorptive terms in the optical-model potential. For
large a„pP depends on tanhi'„

tan2$, s (tanhi, )/tan(q, +$,), (3o)d~ Re[——(df,/dp). .. f,b,j-,
dr= Im[(df,/dn). .. f,b,l, —

b, =B./p. .

where

(19) tang, = (P/ —Fib,)/(Gi' —Gib, ) . (31)
where

(20)

The resonance mixing phase PP is dehned by

yP=-,' tan '(dz/d~). (21)

Note that the irregular solution g, [Eq. (2)j does not
appear in the anal formulas for P,o and &P,s.

The background scattering collision amplitude may
be written )— exp( —21,)—1— exp2t',

(Es—E)'+ (I'u/2)'

(32)

(U,,o)= exp[2i (8.+(og)j,
~e= to+&f0,

(22)

(23)

Since f, is only weakly energy-dependent, and b. is
constant, P,s may be taken as a constant across any
group of closely spaced resonances belonging to channel
c, since it is also independent of X.

The phase P, is also limited by unitarity,
I U„l &1.

For a single-level resonance (Sec. II D),

cos(2&,s+tan '[2(Es—E)/I'~q])

where both $. and f, are real. The phase shift 8, is
usually approximated by an optical-model phase shift.
Equation (16) can then be written

(U-) =(U-')+' -p[»(t.+ +e')j
XP (I'~,.1' ~,.)'"& (&), (24)

where

do'—= l~l'+ I&l',
dQ

P(8)=»m(o&*)(lol'+ Ibl') ',

(26)

(27)

a(8) = qexp( —ig ln[s—in'(-,'8)7}[2k sin'(-,'8)j '

+ P (j+-', )(U„—exp2uog)P~(cos8),
2zk ~, ~'

1
b(8) = P (—1)~' '"(U, exp2m~)PP(co—s8) . (29)

21k & i

where the partial width I'),~,„which determines the
magnitude of the resonance amplitude, is

I'gg, ,= 2P,' exp( 21,)ygP—
The relations between the di6erential cross section,

the polarization in the Basel convention, and the scat-
tering of a spin-~ projectile from a spin-0 target are
given by

together with the restriction on the background
absorption

2P ~
2-1/2

exp( —2t,))&2— —1. (33)

The unitarity condition Eq. (32) is thus energy-
dependent.

In previous analyses of resonances p," has usually
been set to zero. For a single-level resonance, such an
analysis would shift the resonance energy to roughly
I'zzPP (P,s in radians) below the resonance energy
determined when p,s is taken into account. (I'qq is the
total width of the resonance. ) This displacement is
typically about 10 keV. An example of the effect of p,"
on the shape of the excitation function is given in Fig. 2,
and the dependence of @.~ on the matching radius is
shown in Figs. 4, 9, and 10.

Previous work (Ref. 10, Fig. g) has shown that the
elastic scattering polarization should be sensitive to p.~.

C. Oytical Penetrability

The optical penetrability P,o dined in Eq (17), .
depends both on the optical-model wave functions f,(r)
and on the choice of boundary conditions b,. As is seen
from Eq. (25), the effective penetrability, relating the

'0 J. L. Adams, %.J. Thompson, and D. Robson, Nucl. Phys.
89, 377 (1966).
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observed partial width to the reduced width, is

P;r'= P.o exp( —2l'.) . (34)

The Coulomb penetrability P, is usually employed in

Eq. (25). The quantity P. is de6ned in terms of the
Coulomb wave functions by'

P.=u./Lpi'(o. )+«'(o )] (35)

The reduced width p)„2 can usually be directly related
to nuclear-structure calculations, but accurate deter-
mination of p)„2 from experimental data requires
accurate values of the penetrability. Moreover, the
radius chosen for the estimation of y),.2 is often small

enough that the nuclear potential is still significant.
Then P;I" rather than P, should be used to obtain

yq, 2 from I'qq, ,
Comparisons of the effective penetrability in the

optical-model potential P;&', with the Coulomb pene-

trability P„show' that for protons the two quantities
often differ by &30%, and cannot be brought into
agreement merely by using the reQection coefFicient

exp( —2f,). It is therefore important for the accurate
estimation of reduced widths using R-matrix theory
that Eq. (34) rather than Eq. (35) be used even if the
matching radius is beyond the nuclear potential. The
dependence of the penetrabilities P, p' and P, on the
matching radius a, can be compared in Figs. 4, 9, and 10.

D. Single-Level Resonance with Level Shift

For a single isolated resonance level, Eq. (12) gives

~u =Ãi+~), i(&)—E—k~rii] ' (36)

At the resonance energy Eg,

E+&)i(Er) Pz=0. —(37)

The energy dependence of the level shift dz), is
usually ignored, but it can be treated approximately
as follows: An expansion of the level shift Aq), in a
Taylor series about Eii gives, to 6rst order (which is

suKciently accurate away from thresholds),

Pi+~ii(P) E= (EB—E)L1—(B~—XX/BP)E E,] (3g=)

It can be shown (Ref. 4, p. 351) that, neglecting the
background terms in Eq. (13), the effect of the first-

order energy dependence of the shift corresponds to
taking the normalization of bound states to unity over
all space, rather than to unity within the internal

region, i.e.,

r) = L1—(B~~i/BE)s=z,] 'ru„
ri.=2p:"(v),.')',
Vi.'= Ll —(B~ix/B&)z=z,] "'V~'

(40)

All of the formulas in earlier sections should be modified

according to Eqs. (39) and (40), although ratios of
widths are of course unaltered.

Equations (39) and (40) are appropriate for iso-
baric analog resonances since the (bound) charge-
exchange neutron channels dominate Bhi,&,/BE to order

(%+1—Z) '. Hence the effect of the first-order energy
dependence of the shift corresponds to the use of a wave
function with a normalization region which extends to
infinity in the radial separation in all closed channels.

The normalization of the bound-state wave functions
is now the same for both the R-matrix analysis of single-

level (p,p) analog resonances and the DWBA analysis
of (d,p) stripping reactions. Hence the values of the
neutron spectroscopic factors obtained from the two
methods may be directly compared.

In Eq. (39) the second term is the resonance term,
and there can only be one such term for each spin and

parity (J ). (For elastic scattering of a spin--, projectile
from a spin-0 target there is only one elastic channel c
for each value of J .) However, the differential cross
section and polarization result from contributions of
several U.„each of which can have at most one reso-
nance. Thus the cross section and polarization may be
analyzed with such a "many-level" formula even if
several resonances overlap, as long as no two overlap-

ping resonances have the same J . For two or more

overlapping resonances with the same J a multilevel

resonance formula, described in Sec. II E, must be used.

E. Multilevel Resonance Formulas

In the situation where resonances with the same J
are close together, the multilevel resonance formula

given by Eq. (16) must be used. The two- and three-
level formulas are given in Ref. 4, Sec. IX-1(b), and

give the energy dependence of the resonance amplitude
explicitly.

An alternative form of Eq. (16) which is somewhat

simpler is obtained by use of a complex orthogonal
transformation T, which diagonalizes the level matrix

isolated resonance level

(U„)=&U,,o)+i exp[2i ($.+&oi+P.s)]
&&r,./(Z, —Z——',zr, ), (39)

where

[+f'dr, TA-iI'= F—I——,'ir'. (41)
with

defining the normalization of the total wave function N.
If the energy dependence of the total width F),), is

negligible, ag vqg. ofteg. bq the gase, then for a single

The collision-matrix elastic scattering elements take
the form

&~-&=&&-'&+i emL2i(6 +~~+4 ")]
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with

where
g„.2= 2P,' exp ( —2f,)8„,',

8yc=p Tpxvxc ~

(43)

F. Comyound Elastic Scattering

The requirements for a single isolated resonance
level can seldom be met except for very light nuclei.

"G. Temmer (private communication); L. Veeser (private
communication).

I2 W. M. MacDonald, in Nuclear Spectroscopy, edited by
F. Ajzenberg-Selove (Academic Press Inc. , New York, 1960),
Part 3, p. 932.

The advantage of Eq. (42) over Eq. (16) is that it
usually involves fewer parameters to describe the
elastic scattering resonances. Note that this may not
be the case when one attempts to analyze overlapping
levels in all open channels. The restriction to elastic
scattering analyses makes Eq. (42) attractive in the
present work.

An empirical analysis for Ã overlapping levels using
Eq. (16) requires X(X+2) real parameters to describe
the elastic resonances, whereas Eq. (42) needs only 4X
real parameters. For %=2, both methods involve eight
real parameters, but for E)3, Eq. (42) involves con-
siderably fewer parameters than Eq. (16), and is there-
fore to be preferred in such cases. Even for Ã= 2, Eq.
(42) is simpler computationally. The disadvantage of
Eq. (42), however, is that "reduced widths" 8„$ are
not easily related to the conventional neutron reduced
widths which are to be extracted. Moreover, the reso-
nance parameters in Kq. (42) could be strongly energy-
dependent. In the case E=2, therefore, it may be more
convenient to use Eq. (16) for the empirical analysis.
Some efforts to analyze data via Eq. (42) are being
made elsewhere. "

For isobaric analog states the coefficients T„~ arise
from the admixtures of analog states amongst them-
selves due to the Coulomb mixing from boundary-
condition changes alone, assuming charge independence
in the internal region. It is questionable whether
Coulomb mixing betw'een analog states from the
internal region can be neglected, even though it appears
a reasonable approximation to neglect internal mixing
between states of difFerent isobaric spin. It is not hard
to formally include internal mixing between analog
states; the only change is that the matrix A ' is replaced
by the matrix 3 ', where 8 ' has elements

(B t)gy = (E E)8 );+6 iF—.+H' „., (—45-)

where H' is the internal Coulomb mixing operator as
discussed by Robson and Lane. ' The matrix F—R—2iF'
is then obtained from TS ',T so that the coefficients
T», in Kq. (44) still play the role of describing dynamic
distortion between analog states, as discussed by Mac-
Donald, "and Eqs. (16) and (42) remain valid with A

replaced by S.

The exact treatment of multilevel formulas becomes
intractable when the ratio of level widths to level
spacing becomes large, as is the case for high excitation
of the compound nucleus formed in elastic scattering
through isobaric analog states. However, in most experi-
ments the energy spread of the incident projectiles is
much greater than the level spacing, so that the
observed cross section is an energy average over many
levels in the compound nucleus. In the analysis of
isobaric analog states with a few-level resonance
formula, the scattering matrix used is an energy-
averaged matrix. Therefore, allowance must be made
for the efFects on the average cross section of using an
averaged scattering matrix.

The elastic scattering differential cross section for
a spin-0 target and a spin-~ projectile can be con-
veniently written for the present purpose~:

do 80
+ g BrPz(cos8)

dQ d~ coul 2k

+ (interference terms), (46)

where (do/dQ)c, „~ is the scattering cross section for the
Coulomb potential, k is the wave number of the relative
motion, and BI.is given by

Bz,=a Q Z'(ljl'j'2L)T, T;*,
cc'

with

(50)

The direct-interaction elastic cross section is dehned to
be that obtained by using the matrix elements (U„) of
Eq. (24) as the energy-averaged matrix elements'(U„),
with a background matrix (U,,e) from the optical
model, and a few-level formula for the resonance terms.
The energy-averaged compound elastic cross section
(do/dQ)oz is then readily obtained from Eqs. (46) and
(50). The result is

da) 1
P Z'(l jl'j', raL)T„.Pz(cos8), (51)

dQjos Rs ee

where
T."=(U-U'"*)—(U-)(U""*) (52)

Z(ljl'j', sL) =L(21+1)(2P+1)(2j+1)(2j'+1)j'~s

&& (ll'00
~
LO) W'(l jl'j'; sL) (48)

and
T,= (exp2m() —U„. (49)

In the above equation c=(l,j) and c'=(i',j'). In
Eq. (48) appear the Clebsch-Gordan coeflicient and
Racah's 8' coefficient.

The measured energy-averaged difFerential cross sec-
tion (do/dQ) is obtained by averaging Eq. (46). It can
be written
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Since isobaric analog resonances with protons are
often observed below the Coulomb barrier, the reaction
channels are dominated by neutron emission for proton
bombarding energies above the (p,e) threshold. . How-
ever, then the compound elastic scattering itself usually
becomes negligible. This will be discussed. further in
Sec. IV.

If only the elastic scattering channels are open, as is
often a good approximation below the (p,e) threshold,
the (unaveraged) scattering matrix is diagonal, so that

contributions. Therefore, it may be calculated from
the {U„)given by Kq. (24). However, as discussed
above, (do./dQ) may have large compound. -nucleus con-
tributions; then so has E . In such cases E may be
much diferent from the polarization E calculated,
using Eq. (27) at the average energy. Note also that

~
&E. In Fig. 8 a comparison of E and P is mad. e

for the polarization excitation function near the 6.8-McV
resonance in "Zr(p,p)~'Zr. It is seen, as expected, that
J' (solid line) gives a better fit to the data than does
P (dashed. line).

&&(1—[{U„)) )EJ„(cose). (53)

That is, 1'„ofEq. (52) is just the transmission coefllcient

(54)

where (U„) is given by the right-hand side of Kq. (24).
If a single-level resonance d.ominates the elastic

scattering and if background scattering is ignored, then
a simple example of compound elastic scattering is
obtained. For then Eq. (39) has (U,,o)=exp2iIOI and

f,=g,s=0, so that

~CC (55)

p ~p (56)

where E is the polarization at each energy. It is readily
shown. " that if the compound-nucleus reduced widths
have random signs, or if only elastic scattering channels
are open, then (( o/d)de) has no compound-nucleus

The term I'~—1'~, can be interpreted as the partial
width for the decay back into the elastic channel
through the compound nucleus. However, absorption,
and thus compound elastic scattering, is also important
for the background terms. This is illustrated in Fig. 6 for
'"Zr(p, p)"Zr at an o6-resonance energy below the

(p,e) threshold. When the resonance mixing phase
$,s is nonzero the transmission coefficient is asynunetric
about the resonance energy, as discussed in more detail
by Robson and Lane. ~

Fl'0111 Kqs. (48) alld (51) 1't follows tllat 'tile COIllpolllld

elastic contribution is symmetric about 90'. Each
channel contributes even at angles where the corre-
sponding direct contribution vanishes, as at the zeros of
EI(cose). An example is shown in Fig. 7 for a d-wave
resonance excitation function at j.25'measured near
6.8 MCV.

The angle-integrated compound clastic cross section
below thresholds is equal to the total reaction cross
section defined by Kq. (70).

The measured energy-averaged polarization is

I') =Z (I'I.+W),.), (57)

where the sum over c includes only isobaric-spin-allowed
channels. Above thresholds 8'q, is nonzero because of
the decay widths into other open channels. The widths
are often dificult to measure or calculate. However-,
when only elastic scattering is signidcant 5"q, is still
nonzero because of absorptive terms in the background.
scattering (or, in isobaric-analog language, by external
mixing with T& states). An elastic channel c contributes
to the total width, by Eqs. (13) and (14),

I' ll, ,+Wl)„,——2 ImLJ, '(1—R„'"L,o) 'fyl, m, (58)

where
B~x)

I'w, =p(1'll..+Wu„.)= 1— I'1 (59)
BEI Q—Qg

The ratio WI,/I'1, ——W&,I,,/I' ll„ is independent of the
choice of wave-function normalization, which Rejects
only the reduced widths, so that formulas without the
energy shift correction (Sec. II D) may be used. Some
manipulation then gives, for the elastic-channel con-
tribution to the spreading width, the calculated value

=exp2, Im exp2, ~ i
ca10 f' b.f. —

%hen the optical-model potential, which describes the
background scattering, is real, f, and g, are real, and f,
Rnd qhc arc zc10. Hence) slncc thc boundary condltlon
b, is real, the elastic-channel spreading width 8"q, is
zero when there are no absorptive terms in the back-
ground. scattering.

Comparison of the value of the spreading width
obtained from the Gtted, resonance parameters Fq and.
I'1, with the values calculated from Eq. (60) can be
made )

6. Syreading Width

An interpretation, alternative to that made from
Eq. (55), of the spreading of the observed total width.

Fq from the observed partial width Fq, can be made.
Define the spreading width in channel g, 8'g„by

'8%, J.Thompson, Phys. Letters 258, 454 (196'l). (I'x/I') .—1),a= WI./I'I. , (61)
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orbit term):

dmg„(r) 2m I„(l„+1))
Pe +V„(r)]+ ~e (r)=0. (63)

dt' h'

~

~

Here e„ is the (positive) neutron binding energy, m is
the reduced mass of the neutron and target, and l„and
j„are the orbital and total angular momentum quan-
tum numbers of the neutron in the potential V„(r).
These quantum numbers are the same as those for the
proton resonance.

The neutron single-particle spectroscopic factor S„,
for a given nuclear state (X) and channel c, is now
defined as the ratio of the actual neutron probability
density in channel c integrated over the surface at the
matching radius u, to the corresponding quantity for a
single-particle neutron state in the same (bound)
channel. It is also required that the neutron wave
functions in diRerent channels be orthogonal. Thus,

I I

5.8 5.9 6.0 6,I 6.2 6.5
PROTON ENERGY (Mev) where

5'-= 5~-'(a.)7/v-'(a. ), (64)

FIG, 1. Excitation function for Zr(p, ~) 'Nb total cross section.
Relative errors are 5%, normalization error (shown dashed) 30 j&.
Excitation function for "Zr(p,p)"Zr at 80' and 90', plotted as
ratio-to-Rutherford. Absolute errors are 5 jz. Curves use param-
eters in Table I.

y '(a,)= (h'/2ma, )N '(a,), (65)

and I '(r) is normalized to unit integral over all space,
as discussed in Sec. II D, i.e.,

provided that the inelastic reduced widths are negli-
gible, and internal-mixing eBects are ignored. Such
comparisons are shown in Figs. 4, 9, and 10.

In concluding Sec. II it should be noted that most
of the equations thus far derived are not restricted to
isobaric analog resonances. The formulas depend on
the assumptions that E„'&' is well approximated as
given in Eq. (13), that a diagonal background plus
resonance term is a good description of the elastic scat-
tering, and that the matching radius chosen is large
enough so that the channel-orthogonality requirement
is approximately satisfied. The use of the modified
E-matrix treatment given here should therefore lead
to more accurate estimates of nuclear-resonance param-
eters than have been previously obtained.

III. NEUTRON SPECTROSCOPIC FACTORS

Because of the assumption of charge independence in
the interior region, the logarithmic derivative of the
proton wave function of the analog state at the matching
radius should be the same as that for the parent analog
state neutron wave function if the boundary conditions
are suitably chosen. ' Thus, the b, of Eq. (20) is chosen as

u '(r)dr=1. (66)

It should be emphasized that (yq„')' is the "observed"
reduced width Lcf. Eq. (40)j and also corresponds to
a wave function normalized to unity over all space.

According to the theory of isobaric analog resonance
states, ' if nuclear forces are charge-independent in the
interior region, the ratio of the neutron reduced width
for a state X to the reduced width for the proton analog
state in the channel with the same angular momentum
quantum numbers is given by

v~.'(a,)/7~ .'(a.)=&+1—~,
and to order (&V+1—Z) '

(67)

L~ -'( .) j'/I:v .'( .)j'=&+1—~ (68)

Equation (68) would follow exactly from Kq. (67) if
the proton and neutron shift functions had the same
energy derivatives. Here E and Z are the neutron and
proton numbers of the target nucleus. The ratio of
neutron-to-proton reduced widths is just the neutron
excess in the parent analog state. Combining Kqs. (25),
(40), (64), and (68) gives

(62)

Here I„ is the bound-state neutron radial wave func-
tion. It may be conveniently calculated by solving the
radial w'ave equation for a neutron in a central potential
V„(r) (which may depend on l„and j„through a spin-

If the partial width of the proton resonance F)„has
been determined from an experimental analysis, the
spectroscopic factor can be computed using Eq. (69).
The actual spectroscopic factor should. be independent
of the radius a,. However, the value of S„computed
from Eq. (69) will be dependent on the radius, since
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Eq. (67) may be true only for a particular u, . Thus a
decision as how to best choose the radius must be made.
The region of charge independence is believed to extend
to about the nuclear surface. Thus by examining the
radial dependence of S„near the nuclear radius (e.g.,
rpA'"), an idea as to the best values of S„and a, may
be obtained. If S is found to be approximately constant
over much of this region, the choice of u, will have
little efI'ect and a good estimate of S„can be made.
Another possibility is that S„will go through a mini-
mum. If this occurs, the best value of the matching
radius may be chosen to be the one where S„has its
minimum value, since at this radius S is most nearly
a constant. If neither of the above-mentioned cases
held, the calculation of S would be unreliable.

For any choice of radius, a calculation of the reso-
nance mixing phase p,s can be made from Eq. (21).
If @,~ is very radius-dependent, its correct value will
be uncertain. However, @,~ can also be determined

by an analysis of the experimental data, since it is a
fitting parameter for differential cross-section and
polarization data near a resonance. Very good experi-
mental data and careful analyses are needed to deter-
mine the best value for PP. In previous analyses, P.s
has been ignored. Examples of the dependence of S
and @, on the matching radius a, are given in Figs. 4,
9, and 10.

IV. ANALYSIS OF "Zr(p, p)9'Zr AND "Zr(p, n)92Nb

A. Oytical-Model and Single-Level
Resonance Parameters

The computer code xwsrEc" was written to analyze
isobaric analog single-level resonances in proton elastic
scattering from spin-0 nuclei, including finite-target
energy-loss effects.

Data at laboratory angles 81, of 80', 90', 100', 110',
125', 137.5', 150', and 165' were available for
"Zr(p,p)NZr differential cross-section excitation func-
tions near the laboratory resonance energy of 6.00 MeV.
These data, shown in Figs. 1-3 plotted as ratio-to-
Rutherford, have over-all errors of about 5%. The
parent analog state of this resonance is the 0.96-MeV
—,'+ level in "Zr."

In addition, the total cross section of the
"Zr(p,n)'"Nb reaction had been measured near this
energy using the same target. "The 92Zr(p, n) "Nb data
were also analyzed because they were sensitive to the
optical-model and resonance parameters. However the
absolute error in the (p,n) cross section was 30%."At
6-MeV proton energy the inelastic scattering cross
section should be much less than the (p,n) cross section

'4W. J. Thompson and J. L. Adams, Tandem Accelerator
Laboratory, Florida State University, Technical Report No. 10,
1967 (unpublished)."B.L. Cohen and O. V. Chubinsky, Phys. Rev. 131, 2184
(1963)."D. Robson, J. D. Fox, P. Richard, and C. F. Moore, Phys.
Letters 18, 86 (1965).
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of about 200mb, since the Coulomb penetrability in
the inelastic proton channel is less than 1% of the
neutron penetrability. Compound elastic scattering is
also small (see below). It was assumed, therefore, that
the total (p,n) cross section approximated the total
reaction cross section (o „) as computed from the optical
model. For a spin-0 target nucleus a„ is

(70)

where (U&;,&;) is given by Eq. (24). This quantity is
calculated in ANspEc.

Previous analysis" of the (p,p) excitation functions
at 125' and 165' allowed an arbitrary angle-dependent
normalization between yield and cross section. In the
present analysis, data were normalized by elastic
scattering measurements at 4 MeV, where the cross
section is Rutherford to within 2%. A systematic error
in the normalization procedure does not a6ect the
relative cross sections between diGerent angles.

Preliminary its to the (p,p) and (p,n) data using
previously extracted resonance parameters from the

(p,p) data, " and the optical-model parameters of
Rosen et al.' gave poor results. However, good fits to
the eight (p,p) differential cross-section excitation func-
tions could be obtained with the resonance and optical-
model parameters given in Table I. The optical-model
potential used was

V (r)= —(V+iW) f(r) i W'g(r)—
—Vsh(r)e I+ Vc(r), (71)

5.8 5.9 6.0 6.1 6.2 6.5
PROTON ENERGY(MeV)

FIG. 2. Excitation function for '~Zr(p, p)9'Zr at 100', 110', and
125, plotted as ratio-to-Rutherford. Absolute errors are 5%.
Curves use parameters in Table I. Dashed curve is for pP =0'.
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FrG. 3. Excitation function for»Zr(p, p)9'Zr at 137.5', 150', and
165', plotted as ratio-to-Rutherford. Absolute errors are 5%.
Curves use parameters in Table I.

The resonance mixing phase p," changes the shape
of the resonance. This is seen in Fig. 2, where the
shapes for P,a=0', and 11' are compared for the (P,P)
excitation function at 110'. The displacement of the
resonance energy discussed in Sec. II B is also observed.
The value of p,s is limited by unitarity [Eq. (32)7 to
be less than 35'.

In the above analyses compound elastic scattering
contributions were ignored, since a Hauser-Feshbach
estimate of these contributions, using the level density
calculated from the composite formula of Gilbert and
Cameron, " and the level widths in nearby "Zr mea-
sured by Fessenden et al. ,' always gave much less than
1 mb/sr, which is smaller than the experimental error.

The extraction of the neutron spectroscopic factor
S for the 0.96-MeV -,'+ state in "Zr from the proton
resonance partial width I')„will now be described.

where

r—E)
f(r)= 1+exp

a
(72)

(r—If (r R—
g(r) =4 exp~ 1+exp~, (73)

5 a' k a'

2 df(r)
h(r) = ——rdr' (74)

Z,Zre'- ( r y'-
Vc(r) = 3—

I

—
I

r&g (75)

=Z,Zre'/r,

E=rQ»',

r&E,

(76)

where Z„and Zp are projectile and target charge
numbers, and A is the atomic number of the target.
The single-level resonance parameters (in c.m. ) Eg,
I'q, I'q„and PP are also given in Table I. The target
energy loss was taken as 3 keV, but this has a negligible
effect on a resonance of total width I'),——80 keV. The
resonance quantum numbers were (=0, j=—,'.

The simultaneous fits to the eight (p,p) differential
cross-section excitation functions and to the (p,n) total
cross section are shown in Figs. 1—3. When 6tting the
data, correct shapes to the excitation functions were
sought. That is, if the off-resonance cross section was
too low (high) on both sides of the resonance, the best
Gt was taken to be the one which gave a consistently
lower (higher) cross section while going through the
resonance.

B. Neutron Spectroscopic Factor for the
~+ State at 0.96 MeV in 93Zx

The neutron spectroscopic factor 5„ for the lowest
~+ state in "Zr has been obtained previously by zero-
range DWBA analysis of "Zr(d,p)"Zr measurements. "
The value S„=0.91 has an absolute error of at least 15%
due to errors in the measurement of absolute cross
sections.

The theory presented in Secs. II and III enables S
and the resonance mixing phase @,~ to be calculated
from the resonance partial width I'),„the optical-model
wave functions f, (obtained from the optical-model
parameters), and the neutron single-particle bound-
state parameters.

Elastic scattering parameters are given in Table I.
The bound-state parameters in Eq. (63) were chosen as
3s&~2(l„=0, j„=-', ), e„=5.75 MeV (the separation
energy of a neutron from the 0.96-MeV state"), with
rp= 1.25 F 8=0.65 F as in the proton scattering. The
radial dependence of V„(r) is given in Eq. (72). If the
well depth V is chosen to produce an eigenstate, one
gets V=50.0 MeV, which is 4 MeV less than the
proton-scattering value. This value is insensitive to the
diGuseness. These bound-state parameters together
with the (p,p) and (p,e) parameters in Table I will be
referred to as the standard set.

By use of the formulas of Secs. II and III, the
resonance-mixing phase and the neutron spectroscopic

7A. Gilbert and A. G. %. Cameron, Can. J. Phys. 43., 1446
(1965).

P. Fessenden, W. R. Gibbs, and R. B.Leachman, Phys. Rev.
Letters 15, 796 (1965).

'9 Ngcl'ear Data Sheets, compiled by K. Way et al. (U. S. Govern-
ment Printing Ofhce, National Academy of Sciences —National
Research Council, Washington 25, D. C., 1961).
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TmLE II. KGects of parameter variation on S, E, and @P for
@Zr. Standard values are S = 1.16, R~= 7.52 F, qb,= 12.0'. 0.96MeV y
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factor were calculated at E=E~=5.938 MeV for the
matching radius, e„between 6.8 and. 8.0 F. The results
are plotted in Fig. 4. The maximum value of @,~ for
which unitarity is satisfied Lsee Eq. (32)j is 35', while

R, the radius at which 5„ is a minimum, is 7.52 F.
Here S =1.16, and &,~=12.0'. Within a 1-F interval
centered on E the value of S„varies by less than 10%
from 1.16 so that the E.-matrix requirement of inde-
pendence of results from matching radius is nearly
satis6ed. The nuclear-well radius E of Eq. (76) is 5.64 F.
The value of g,s obtained from fitting the (P,P) and

(p,n) data was 11' (Table I). If the matching radius
a, is chosen so that the calculated and Gtted resonance-
IM2Qng phases ale equal) then from F1g 4p cc= 7 7 F but
5„is unchanged.

The values of S„obtained by using the Coulomb
penetrability of Eq. (35) rather than the optical pene-
trability of Eq. (34) are shdwn dashed in Fig. 4. The
importance of boundary matching onto the optical-
model potential region, rather than onto the Coulomb
potential region, is evident.

In the present analysis the spectroscopic factor 5„
changes by less than 10% for a, between 7.0 and 8.0 F.
Thus, the best choice of matching radius is not of great
importance in this analysis. In general two criteria for
the best value of a, might be used: (1) The value of S„
is stationary with respect to e„ thus satisfying the
E.-matrix condition of boundary-radius independence.
(2) The calculated and fitted values of qh,

tt agree. )How-
ever~ the unttarlty hnllt~ Eq. (32)~ on $~ must not be
violated. ) In a good analysis both criteria should yield
similar values for 5„.

The spreading width 8"q, due to the elastic channel
alone can be calculated from Eq. (60), using the optical-
model parameters given in Table I, and the neutron
bound-state pa,rameters given above. The calculated
value of W&„/I'q, is plotted against a, in Fig. 4. Satis-
factory agreement with the value obtained from Eq.
(61) and the resonance parameters in Table I, I'q/I'q, —1
=1.2&0.2, is observed for u, near E . The calculated
value may be increased by increasing the surface
absorption potential 8"' to about 5 MeV to optimize
the 6t to the (p, ts) cross section. However, this results in

I.2

0.8"

~ 04-0

6.8 7.0
)Rm

7.6 7.8 8,0

FIG. 4; Neutron spectroscopic factor S, resonance-mixing
phase p,n, and spreading width ratio W'q, /I'q, as a function oi
matching radius u„ for 0.96-MeV $+ state in 93Zr. Radius @&here
S is minimum, E . Dashed line showers S~ calculated using
Coulomb penetrability. The cross-hatched area gives the mea-
sured value of F)tjF7„—1.

poorer fits to the (p,p) cross sections, especially at the
back.ward angles.

C. EBects of Parameter Variations

Since in some cases thc available data are not as
complete as in the present analysis, or, as for the
neutron bound state, cannot bc obtained directly, it is
of interest to vary the parameters of this analysis to
see the eHects on 5„,E, and p,~.

A measure of the sensitivity of the quantity q on the
parameter p is the term

«= (~~/~)/(~p/p), (77)

where Ag is the change in q for a small change hp in p.
For example, if V'q= 2, then q changes by 2% for a 1%
change in P. The V'q for g= 5„,E, and 4,a are given in
Table II for variations of single parameters from the
standard set values. The eGect of these variations on the
fits to the (p,p) and (p,l) data was not investigated
since such variations typically arise when data are
unavailable.

However, some of the parameters can be estimated
much more accurately than others. Rough estimates are
for rs, rs', and V, 2%,' for a, a', W, W', and Vs, 10%.
Each of VS„, VE, and Vg, a should be appropriately
weighted. .

For the bound neutron parameters the single-particle
binding energy ~„may di6er from the neutron separation
energy since other conlgurations contribute to the
binding. But a 10% change in c affects S„only about
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1.2 . TAsLz III. Parameters for OZr{p,p)90Zr.
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Fzo. S. OfF-resonance diG'erential cross sections ~Zr(p, p)90Zr,
plotted as ratio-to-Rutherford, as a function of c.m. angle 8.
Absolute errors are 5%. Curves use parameters of Table III.

as much as a 2% change in ro, or a 5% change in the
diffuseness (to which S„and g,a are the most sensitive).

Of the proton optical-model parameters which
determine S and p,~ for a given F),„Vand ro appear
to produce the largest variations. However, these varia-
tions have the same sign and their effects would tend to
cancel in cases of Vro' ambiguities in analysis of (p,p)
data. The absorption potential H/" seems, in the present
analysis, to produce relatively small sects on S and

p,", although this may not be so in general. The spec-
troscopic factor is directly proportional to the partial
width I'&„so that this quantity should be found as
accurately as possible. Over all, the diBusenesses seem
to produce the largest variations of S„.Whether these
results are generally valid for the extraction of neutron
spectroscopic factors from isobaric analog states re-
mains to be investigated.

From the above analysis and discussion, a fair esti-
mate of the probable error in the determination of S„
from I'q, is 10%, with I'q, having an error of about 12%.
Thus the 3s1~2 neutron spectroscopic factor for the
0.96-MeV state in "Zr is S„=1.20&0.2, whereas the
(d,p) value"' of $„=0.91. A qualitative comparison of
the relative accuracy of the two methods will be given
in Sec. VI.

V. ANALYSIS OF 'OZr(p, p)' Zr BELOW
NEUTRON THRESHOLD

A. Oytical-Model Parameters

Although isobaric analog resonances in the elastic
scattering of protons by "Zr have been investigated

previously, ' no detailed analysis for the extraction of
neutron spectroscopic factors has yet been made.

Differential cross-section excitation functions were
available ' for "Zr(p,p)"Zr at lab angles of 90', 125',
and 165', for the lab bombarding energy range 5.7—7.0
MeV in about 20-keV steps. In this energy range occur
a resonance near 5.9 MeU of which the parent analog
is the 1.21-MeV —,'+ state in "Zr, and another large
resonance near 6.8 MeV with the 2.06-MeV ~+ state in
"Zr as parent analog. In the "Zr(d,p)9'Zr reaction, two
other levels in 9'Zr at 1.48 and 1.89 MeV are weakly
populated, "but these are not observed (within counting
statistics of about 1%) in the elastic scattering. The
excitation functions are plotted as ratio-to-Rutherford
in Fig. 7. The target energy loss of protons was about
18 keV near 5.9 MeV, and 17 keV near 6.8 MeV, which
is much larger than the level spacing, so that the mea-
sured cross section is the quantity (do/dQ) of Eq. (50).

Angular distributions of the differential cross section
were measured at 5.680-, 6.350-, and 7.112-MeV lab
energies over the angle range 60'—165' in 5' intervals.
These data are shown as ratio-to-Rutherford in Fig. 5.
(Visual comparison is much more sensitive when 4/Oa
rather than 4 is used. ) Over-all errors of 5% were esti-
mated for all the differential cross-section measurements.

The 'Zr(p, rs)"Nb threshold is at 6 97 MeV la.b-
energy. '9 Below this energy only (p,p') and (p,a)
channels are open. However the cross sections through
these channels may be negligible, since the penetrabili-
ties are much smaller. LThe Coulomb penetrability at

90gi(p p)
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FIG. 6. Compound elastic fraction of the diGerential cross sec-
tion for "Zr(p, p)~Zr at lab energy 6.350 MeV, as a function of
c.m. angle 8.

' C. F. Moore, Ph.D. dissertation, Florida State University,
1964 (unpublished)."J.D. Fox (private communication).
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5.8 MeV for (p,p~) with a,=7 F is a factor of 30 smaller
than that for (p,po), but is almost equal to that for

(p,p,) at 6.8 MeV.j Therefore, compound elastic scat-
tering can be estimated from Eq. (53).

The three angular distributions shown in Fig. 5 were
analyzed using the code zNspEc, with the inclusion of
the compound elastic scattering. The tails of nearby
resonances contribute a few percent to the cross sec-
tions, so that previous estimates" of the resonance
parameters were used to allow for resonance contribu-
tions. The optical-model potential used is given by
Eq. (71) with the geometry parameters of Rosen
et al. ,

' except that u= 0.60 F rather than a= 0.65 F was
found to give better fits, as is consistent with the closed-
shell nature of "Zr. The best-fit potentials, obtained by
grid searches, are given in Table III and the fits are
displayed in Fig. 5.

The importance of compound elastic scattering at
backward angles is emphasized in Fig. 6, where the
compound elastic fraction of the cross section is plotted
for 6.350-MeV bombarding energy. The fraction is
large even though the surface absorption potential
W= 1.25 MeV only. Note that the potentials V= 57.5
MeV and 8"=1.25 MeV are significantly different
from standard values' for which V=51.7 MeV and
8"'= 7.5 MeV. This emphasizes the importance of mea-
suring and analyzing o6-resonance angular distributions
if accurate optical-model parameters are to be used.
The spreading width is very sensitive to W, but 8" is
not well determined below the (p,e) threshold.
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B. Resonance Parameters

The differential cross-section excitation functions at
90', 125', and 165' are shown in Fig. 7 plotted as ratio-
to-Rutherford. Previous analyses, "in which background
scattering was ignored, and in which an arbitrary
normalization between experimental yield and calcu-
lated cross section was allowed to each angle, indicated
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FIG. 8. Polarization excitation function for "Zr (p,p)"Zr at
140'. Absolute errors as shovrn. Solid curve is I' of Eq. (56),
vrhile dashed curve is I' of Eq. (27).

that the resonance near 5.9 MeV has l=0, Eg=5.800
MeV, F),= 72 keV, Fq, =32 keV, and that the 6.8-MeV
resonance has l=2, j= ~3, E&——6.700 MeV, F&,=55 keV,
and I')„=15 keV. These estimates were used as starting
values for grid searches over the resonance parameters
Es, 1"q, and Fq, . The resonance mixing phase p,s
should be small since the absorption potential W is
small. Therefore the value P.s=2.5', calculated from
the optical-model parameters and Eq. (21), was used
for both resonances. At each angle of both resonances
about 20 points were used for each excitation function.
If points far off resonance are used, the values of the
resonance parameters may become incorrect through
trying to compensate fitting discrepancies in the back-
ground-scattering estimates.

Best-fit resonance parameters are given in Table III,
and the corresponding fits are shown in Fig. 7. The
s-wave resonance at a lab energy of 5.918 MeV is well
fitted at the three angles. However, the d-wave reso-
nance at a lab energy of 6.796 MeV is over-all calcu-
lated too large, but this is mostly due to the overestima-
tion of the background scattering (see Fig. 5). The
large anomaly in the 125' excitation function (at this
angle the non-spin-flip cross section vanishes) is due to
the spin-Qip cross section which includes a contribution
from compound elastic scattering. Similar results have
recently been reported by Gaarde et al.22
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FIG. 7. Excitation function for ~'Zr(p, p)Zr at 90', 125', and
165', plotted as ratio-to-Rutherford. Absolute errors are 5%.
Curves gee parameters in Table III,

C. Polarization

Polarization data in the neighborhood of the 6.8-MeV
resonance have been reported by Moore and Terrell, "
and analyzed to extract the j value of the resonance. "
The excitation function at a lab angle of 140' is shown
in Fig. 8. The energy spread of beam and target was
about 20 keV, so that the measured polarization is the
quantity P defined by Eq. (56). With the optical-
model and resonance parameters from Table III, I'
is shown as the solid curve. The polarization I', that is,

22 C. Gaarde, K. Kemp, and P. Wilhjelm, Nucl. Phys. A102, 1
(1967)."Q. F. Moore and G. Terrell, Phys. Rev, I.etters 17, 804 ($966},
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TABLE IV. EGects of parameter variation on S„,R, and QP'
for O'Zr. Standard values are 5 =0.96, 8 =7.08 I", @+=3.0'
(~~+ state), 5„=0.50, E =6.59 I', @P=2.6' {$+state).

Parameter
varied

$+ state
&&n ~~~ &pc~

$+ state
~5'e ~~m ~pc"

Neutron
&e

V8

5.7—3.3—1.1

0.0 5.8
0.0 —1.3
0.0 —0.7

0.4
3y2—0.8
0.1

0.0 0,4—0.1 —1.5
0.0 —0.6
0.0 0.0

G.S

„0.4

I t l I

' 6.2 6 4 6.6 6.S 7.0 7.2 7.4 7.6 7.5
0c(F)

Proton
V
W
V8
f{}

~l

—6.5 —1.3 —4.0—0.5 0.0 0.7

—9.3 —1.8 —2.2
-0.3 -0.3 1.8

0.0 0.0 1.2

—$.7
0.0
0.2—8.4—0.4
0.1

—1.4 0.0
0.0 1.0
0.0 0.0—1.5 4.9
0.1 0.4
0.0 1.7

FxG. 9. Neutron spectroscopic factor S„, resonance-mixing
phase @,", and spreading width ratio 8')t /I'g, as a function of
matching radius a„ for 1;21-MeV. &+ state in "Zr. Radius where
5 ls a minimum E . Dashed line shows 5 calculated using
Coulomb penetrability. The cross-hatched area gives the mea-
sured value of j.')t/F)t, —1.

the polarization calculated according to Eq. (O'I), is
shown as the dashed curve, and it is seen to be in poorer
agreement with the data than is E .It is clear, therefore,
that the polarization must be carefully de6ned when
compound clRstlc scattcI'lng ls slgI116CRIlt.

From the data and 6t in Fig. 8 it appears that the
absolute energy calibrations of the two accelerators used
for the cross-section and polarization measurements may
diGer by about 10 keV, since the resonance energies
which best 6t the cross-section and polarization data
diBer by about this amount. Because of this, and be-
cause the polarization errors are rather large, the
polarization data were not included in the parameter
fitting.

D. Neutron Spectroscopic Factors for 1.21-
and 2.06-MeV States in 9'Zr

The neutron spectroscopic factors 5„ for low-lying
excited states in "Zr have been obtained. by DKBA,
analysis of "Zr(d, p)"Zr measurements by Cohen and
Chubinsky. "They obtained for the 2+ state at 1.21
MeV, of which the s-wave resonance in "Zr(p p)"Zr is
the analog, 5„=0.72. For the —,'+ state at 2.06 MeV,
whose analog is the d-wave resonance, they deter-
mined. 5„=0.45.

Elastic scattering parameters for the present analysis
are given in Table III. The bound-state parameters in
Eq. (63) were taken as 3st~2, e„=6.000 MeV, and 2di~2,
e„=5.145 MeV (the neutron separation energies"),
with the same geometry as in the elastic scattering
analysis. The well depths were then found to be V= 51.j.
and V=50.3 MCV, respectively, compared with 57.5
MeU for the proton scattering. Such differences might
arise from isospin-dependent terms in thc nuclear
potential.

The formulas of Secs. II Rnd III give the values of
S„displayed in Figs. 9 and 10 for the matching radius
u, between 6.2 and 7.8 F. The dashed line is 5 calcu-
lated using the Coulomb penetrability, Eq. (35), rather
the penetrability in the optical-model potential, Eq.
(34). It is seen again that for reliable spectroscopic
factor estimates optical penetrabilities must be used.
The minimum value of 5„is 0.96 at 2 = 7.08 F for the
~~+ state, and 5~=0.50 at E =6,59 F for the 3+ state.
In both cases 5 varies by less than 10% within 1 F
centered on E, and the values are in good agreement
with those from the (d,p) analyses (0.'I2 and 0.45,
respectively). The nuclear-well radius is 5.60 F.

The resonance-mixing phase P,s was not used as a
6tting parameter in this analysis, but was 6xed at
2.5 . It is seen in Figs. 9 and 10 that it varies slowly
with 1adius. Thc uQltallty llmlts OQ Qo RI'c 30.5
RQd 33.5

The total spreading width I'i —P, I'i, should arise

only from the elastic channel if the inelastic reduced
widths are negligible. For the 2+ resonance Eq. (61) and
the data of Table III result in the experimental value
I'i/I'q, —1=1.0&0.2. The calculated value from Eq.
(60), using the optical-model parameters of Table III,
and the neutron parameters given above, is plotted
versus a, in Fig. 9. It is seen that in the neighborhood
of E the calculated values are about half the mea-
sured values. Some of this difference is due to the
inelastic channels. However lV' can be increased from
1.25 to 2.0 McV without changing S„or the background
cross section by more than a few percent, but Wq,/I'i„
increases proportionately to 8"' in this case. Such an
increase in 8" is expected if inelastic scattering is
non-negligible.

The calculated. spreading width ratio for the ~~+

resonance at the higher energy near 6.8 MeV is shown

in Fig. 10. It is even smaller compared with the mea-
sured value (1.6&0.2) than at the 2+ resonance. This
is to be expected since the inelastic (p,p,) penetrability
has increased from 1/30th the elastic penetrability at
5,8 McV to nearly equal the clastic value ot, 6,8 McV,
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Again the value of W&„/I'z, can be proportionately in-
creased with T/t/' without affecting S„signi6cantly,

The effects of parameter variations on the values of
S„,E„, and P,s can be investigated. as in Sec. IV C.
The quantities VS„, VE, Vp, s, defmed as in Eq. (77),
are tabulated in Table IV for variations of single
parameters from the standard set values given in
Table III. Very similar sects are noticed. for both the
—,'+ and -',+ states, with the latter being less sensitive to
parameter variations. The similarity with Table II
for the "Zr ~~+ state should also be noted. When I'q, or
I'q, /I'q is small, errors in 6tting the resonance excitation
function are signidcant. Usually Fq, can be determined
to within 2 keV. This would lead. to an error of 12% for
the +~+ state which has I')„=16 keV.

The value of the neutron spectroscopic factor for the
1.21-MeV ~~+ state in O'Zr is estimated as S„=0.95&0.15,
and for the 2.06-MeV ~3+ state in "Zr, S„=0.50&0.08.

VL COMPARISON OF (p,p) ANALOG RESO-
NANCE AND (d,p) STRIPPING METHODS

A comparison of the reliability of the analog state
(p,p) resonance method with that for the (d,p) stripping
reaction method for the extraction of neutron spectro-
scopic factors is difhcult to make because of the very
diGerent techniques employed. However, the compari-
son may be broadly grouped according to the data
required, the validity of the reaction model, the sensi-
tivity of the results to ill-determined parameters, and
the dependence of the measurements on the spectro-
scopic factor.

The data needed for the (p,p) method are elastic
scattering excitation functions near the analog reso-
nance measured at each of a few angles, and oG-reso-
nance (p,p) differential cross sections. Also, total (p,n)
cross sections are often very helpful in determining the
optical-model parameters. The proton. energy for excita-
tion of analogs of low-lying states can be reliably
estimated from Coulomb energy systematics, and is
seldom far above the Coulomb barrier, Therefore only
the resonant scattering in a single proton channel
produces a large anomaly and the l value of this
channel (and hence of the parent analog neutron) is
readily determined from the angular dependence of the
anomaly. The j value can then be determined from
analysis of a rough polarization measurement. ' Data
on the (p,e) absolute cross sections for the same
resonance are helpful for estimates of the resonance
parameters. This is especially important since below
the Coulomb barrier the elastic scattering angular dis-
tributions may have little structure and, therefore, be
insensitive to the nuclear potential parameters.

The (d,p) method requires angular-distribution data
on (d,d) from the target and (p,p) from the residual
nucleus (which is unstable for excited neutron states,
and often also for the ground state), in addition to data
on the (d,p) reaction itself. The neutron l value is
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readily determined from the angular dependence of
(d,p) only when entrance- and exit-channel scattering
eGects are small. There is no clear way of determining
the j value, although small but systematic j-dependent
effects have been revealed in differential cross-section
measurements. '4" These effects become much more
pronounced in (d,p) when polarization measurements
are performed. ,"as in the (p,p) situation.

The reaction model employed in. the (p,p) analysis is
model-dependent primarily in that the background
scattering is calculated using an optical-model poten-
tial to account for the effects of the nonelastic channels
on the elastic channel. In calculating the effect of the
background scattering on the resonance amplitude,
Eqs. (7) and (15) ignore some of the off-diagonal ele-
ments of the background R matrix, R', above thresholds.
The splitting of the R matrix into background and
resonance terms may not be unique, but this may be
accounted for by the optical penetrability, Eq. (34),
which modiles the resonance partial width appropri-
ately. In the extraction of the neutron spectroscopic
factor, the choice of a charge-independence matching
radius a, may be ambiguous. The (p,p) analysis places
major emphasis on the resonance effects in the
interaction.

For the (d,p) method a zero-range DWBA calcula-
tion is usually made. The inclusion of 6nite-range
effects, antisylnmetrization, channel coupling in the

'4 L. L. Lee, Jr., and J. P. SchiBer, Phys. Rev. Letters 12, 108
(1964).

'

~' J. P. Schiffer, L. L. Lee, Jr., A. Marinov, and C. Mayer-
Soricke, Phys. Rev. 147, 829 (1966)."T.J.Yule and %.Haeberli, Phys. Rev. Letters 19, 756 (1967).
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FIG. 10. ¹utron spectroscopic factor S, resonance-mixing
phase p,~, and spreading width ratio 8'),./F), . as a function of
matching radius u„ for 2.06-MeV —,'+ state in "Zr. Radius where
S~ is a minimum, R . Dashed line shows S calculated using
Coulomb penetrability. The cross-hatched area gives the mea-
sured value of 1'q/Fq, —1.
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entrance and exit channels, or compound-nucleus e6'ects
is seldom attempted. Both the (d,d) and (p,p) scatter-
ing use an optical-model potential, and the contributions
of o6-diagonal terms in these scatterings are ignored in
calculating (d,p). A measurement and analysis of
»Zr(d p)"Zr proton polarization with 11-MeV deu-
terons" 6nds reasonable agreement between D%BA
predictions of the cross section and the measured cross
section, but considerable disagreement for the polariza-
tions. The use of D'tpttBA for contributions from the
nuclear interior may be a poor approximation, so that
the interior contributions are often conveniently ignored
by use of an arbitrary radial cutoff Las in the
»Zr(d, p)"Zr analysis'5 which is compared with the

(p,p) method here). Thus, in contrast to the (p,p)
analysis, emphasis is placed on a nonresonance mecha-
nism, rather than a resonance mechanism.

It is important for the extraction of nuclear-structure
information that the method of analysis, vrhen applied
to a particular case, yields results which are insensitive
to ill-determined parameters, and to approximations
made in the reaction model, but very sensitive to the
quantities to be extracted. For the (p,p) isobaric analog
resonance analysis presented here, it was found that
the its frere sensitive to the potential parameters.
Thus for reliable results, the optical-model parameters
should be determined from the (p,p) and (p,ri) data,
rather than estimated from a standard set. The diGuse-
ness (both in the optical-model potential and in the
neutron bound state) probably contributes the largest
uncertainty in the value of the spectroscopic factor S .

The sensitivity of the (d,p) analyses to the parameter
uncertainties and to the reaction-model approximations
have been investigated by Smith" for "Zr(d,p)"Zr,

'~L. S. Michelman, E. J. Ludwig, S. Fiarman, and A. 3.
Robbins, Bull. Arn. Phys. Soe. 12, 527 (196'?).

'8%'. R. Smith, Phys. Rev. 137, 8913 (1965).

and by Lee ef ul.» for»Ca(d, p)4'Ca. Since, unlike the
analog-state method, the spectroscopic factor is a
normalization factor between the experimental cross
section (typically 5 mb/sr) and the calculated angular
distribution, it is very sensitive to magnitude changes
induced by parameter variations, as well as the large
over-all normalization errors in the experimental data.
The deuteron wave function overlap is also part of the
normalization and may be uncertain by 30jz or more. '
These effects have been discussed in detail in Refs.
28 and 29. Moreover, the (d,p) cross sections may be
much more sensitive to the optical-model parameters
than are those for (d,d) and (p,p) separately. Smith('
in a detailed study of "Zr(d, p)9'Zr using DWBA, found
factors of 2 between spectroscopic factors for diferent
deuteron and proton parameter sets which Gt the
elastic scattering data.

In conclusion, the simplicity of the isobaric analog
resonance elastic scattering measurement and the
E-matrix analysis for the extraction of neutron spec-
troscopic factors of low-lying bound states in medium
to heavy nuclei should be realized. Compared with the
(d,p) methods, the data requirements are less, the reac-
tion model is more exact (yet easy to calculate), and.

the number of parameters is fewer. Therefore systematic
analyses of (p,p) analog resonances by the experimental
and analytic techniques suggested here should con-
tribute greatly to precise nuclear-structure information.
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