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ground state. The number-conserving PQTD and
PQSTD excitation operators are then applied to PBCS
and orthonormalized by a Schmidt procedure. The
Anal exactly spurion-free solution of the secular problem
represents mixing of shell-model configurations of
seniority m=0, 2, and 4 in a Hilbert space spanned on
QTD and QSTD modes, thus of dimensions reduced
enormously with respect to the original "exact" shell
model. The dimensions are, in fact, independent of the
number of nucleons; only the matrix elements depend
on a given isotope (or isotone). The PQSTD model
should clear up the question of the role played by the
higher-order spurions not projected out in QSTD.
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A simple model to study two overlapping compound-nucleus resonances is constructed. Expressions have
been derived for the joint probability distribution of the spacing and the widths of the collision matrix for
the elastic and inelastic scattering. In the inelastic case, we have considered only a two-channel problem.
It is shown that the unitarity gives rise to the statistical correlation between the width and the spacing of the
collision matrix. The model is also used to check which of the relations between the averages of the parame-
ters of the statistical collision matrix, obtained using the ensemble of random complex orthogonal matrices,
are consistent with the constraint of unitarity.

I. INTRODUCTION

HE statistical properties of the resonance paraine-
ters of the low-energy collision matrix have been

fairly well studied for the case of well-separated reso-
nances. ' During the last couple of years, there has been
much interest in the study of the fluctuations of nuclear
cross sections, ' which occur in the region of overlapping
resonances. In the derivation of the expressions for
various average cross sections and their fluctuations we
need the statistical properties of the resonance parame-
ters in the region of overlapping resonances. Only a few
attempts have been made for such a study. '4

In Ref. 3 it was shown that the random-matrix
hypothesis can be used to study the statistical proper-
ties of the statistical collision matrix introduced by
Moldauer. ' It was shown' that a number of relations
between the parameters of the statistical collision matrix
can be obtained without a complete knowledge of the
weight function, which had to be introduced to make the

C. E. Porter, Statistica/ Theories of Spectra: Fluctuations
(Academic Press Inc., New York, 1965)~' T. Ericson, Ann. Phys. (¹Y.) 23, 390 (1963).' Nazakat Ullah, Phys. Rev. 154, 891 (1967); 154, 893 (1967).:

4 P. A. Moldauer, Phys. Rev. 136, 8947 (1964);154, 907 (1967);
Phys. Rev. Letters 18, 249 (1967).' P. A. Moldauer, Phys. Rev. 135, 3642 (1964).

normalization integral converge. Since the collision
Inatrix must be unitary, there must be relations among
the parameters of the collision matrix. The question we
raise now is as follows: Which of the relations obtained
using the ensemble of random complex orthogonal-
matrices are consistent with the constraint of unitarity?

The statistical properties of the resonance parameters
in Ref. 4 are obtained in two ways: (a) use of large-
scale numerical computations. The numerical values of
the parameters of the statistical collision matrix are
obtained by diagonalizing a complex symmetric-level
matrix, which is constructed using the parameters of the
real-boundary-value problem. These numerical calcula-
tions are helpful in indicating certain trends in the
behavior of the parameters only. (b) construction of
unitary models. Some unitary models are constructed
starting from E.-matrix theory of nuclear reactions. In
most of these models the usual statistical distribution .

of the E.-matrix parameters cannot be used.
A formulation using the ensemble of random unitary

symmetric matrices is also developed by Krieger~ to
calculate the averages and the fluctuations of the cross
sections. This formulation does not attempt to study the

'A. M. Lane and R. G. Thomas, Rev. Mod. Phys. 30, 257
(1958).' T. J. Krieger, Ann. Phys. (N. Y.) 42, 375 (1967).
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statistical properties of the usual resonance parameters
separately but deals directly with the ensemble averages
of the collision matrix.

We present a simple model in Secs. II and III to study
the statistical properties of the resonance parameters
where the resonances may be interfering quite strongly.
In Sec. II wc develop the model for elastic scattering,
and in Sec. III we extend it to include inelastic
processes.

v)'
E=E2+ Q

where E0 gives rise to background scattering, yq are the
reduced-width amplitudes and Eq are the eigenvalues of
the compound-nucleus Hamiltonian.

Substituting Kq. (2) in Kq. (1) and after some
simpli6cation we get

g)'
U=U' 1 i Q—

«-' 2—«+ -,'«F«)
(3)

where U' is a unit-modulus quantity, which gives the
background scattering, e», e2, F», F2 are the observable
resonance parameters. In terms of these resonance
parameters, the amplitudes g),

' are given by

g'"= I'1E(~1 ~2)+( 1)"22(1—'1+I'2)j
XL( —)-!(I -1.)j-'. (4)

Kquations (3) and (4) are valid both for sharp as well
as interfering resonances. For the case of sharp reso-
nances, we note from Kq. (4) that g12 I'1, as it should
be.

The connection between Uo, ~», e~, F», F2 with the
earlier parameters used in Kqs. (1) and (2) can be
expressed by the following relations:

U'= 02(1—L' E')/(1 —L'R'), (Sa)

61+62=E1+E2 2(Xl +X2) p (5c)

211'2+~21'1=X12E2+X2'E1
~ (51)

2122—gplI2=EXE2 21«1(X1E2+X2E1) y (5e)

Q. ELASTIC SCATTERING

A. Descriytion of the Model

According to the E-matrix theory of nuclear reac-
tions, ' the connection between the unitary collision
function U and the 8 f'unction is

U= 02(1—L'*E)/(1—L'Z), (1)

where the diagonal matrices 0 and I.0 are deGned in
Ref. 6.Let us consider a simple model of two interfering
resonances in the presence of some background scat-
tering, then the R function can be written as

where wc have written

x1= (2 ImEL'(1 —L'E') '7}"2y). ,

s&=(ReEL'(1 L E.') 'j}(ImEL2(1 L E') 'j} '.
The statistical distributions of the quantities yq and

Eq have been very well studied in the past. ' Herc, we
would like to study the statistical properties of the
resonance parameters of the collision function U, using
the relations (5).

Before we proceed further, we make the following two
simpli6cations: (1) We choose the origin of the energy
such that E1+E2——D and write E1————,'S, E2——-,'S, where
S is the spacing between the poles of R. This choice of
the origin of the energy simply means a translation
along the energy axis. (2) We choose the boundary con-
dition such that ReEL'(1 —L'E') 'j=D, which allows us
to write e»= —~~, e2——~e, where e is the spacing of the
real parts of the poles of U.

3. Distribution of the Parameters
of the Collision Function

In this section we shall derive an expression for the
joint distribution of the spacing e and the widths F» and
F2 of t4c colllslon function U. Thc dlstllbutlons of thc
width amplitudes X» and X~, and the spacing S of the E
function, using an ensemble of 2&2 real-symmetric
Hamiltonian matrices, are given by '

E(X1,X2)= (22r(X')) 'bE1 —(X12+X22)/2(X2)j, (6)

E(S)=2r(-,'S(S)2) exp( ——,'2rS2/(S)2),

where (X) and (S) are the ensemble averages of X and S,
lespectlvely. Tile spaclIlg distiburtinEo(S) 1s 'tile sallle
as Wigner's distribution. "

An expression for the distribution of the spacing ~ of
the collision function has been given earlier. "The joint
distribution of the spacing e and the widths F» and F2 of
the collision function U, using Kqs. (5b), (Sd), (Se), (6),
and (7) and some mathematical manipulations, can be
cxplcsscd as

~(.,~.,~,)=(g(S) )- ~E(~.+~.)-2(X')j
XE422+ (I'1—I'2)2jEI"1I'2(22+(X')')j 'I'

XexpE( ——,
' /(S)')( '+I' I' )j. (8)

An inspection of Kq. (8) shows that the spacing e and
the widths F» and F2 of the U function are not distrib-
uted independently of each other, even though we had
started from an independent distribution of the spacing
S and the width-amplitudes I» and X2 of the E. func-
tion. It is an easy matter to calculate the correlation
coeKcients of the widths F» and F2 or the spacing ~ and

8 Nazakat Ullah, J. Math. Phys. 8, 1095 I,'1967).
9 C. E. Porter and N. Rosenzweig, Ann. Acad. Sci. Fennicae,

Ser. A VI, No. 44 (1960).' E.P. signer, Oak Ridge National Laboratory Report ORNL
2309, p. 59, 1957 ('unpublished).

u Nazakat Ullah Nucl. Phys. A.lay 335 (1968).
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one of the widths I'„.The correlation coefBcient of the
widths I'~ and I'2 turns out to be —1, while the correla-
tion coeS.cient of the spacing e and the width I'~ or F2
turns out to be zero. Even though the correlation
coefhcient of the spacing e and one of the widths I'„ is
zero, the correlation coefficients between higher powers
of I'„and e are nonvanishing, as expected from the
dependent distribution given by Kq. (8).By integrating
out g and one of the widths in expression (8) we find
that the distribution of the single width F=Fi,/(Fi, ) is
given by

P(F)= (err) 'I e—xp(II)7[F (2 F)—7-'i'[Ep(p)+Ei(p)
—2F (2—F)Ep(ii)] expI —2' (2—F)], (9)

where p= err ((X'&/(S))', and E„(p) is a modified Bessel
function of the second kind. '2

A relation can be obtained using Eq. (8), which con-
nects the parameter p with the ratio of the average
spacing (e) to the average width (Fi,& of the collision
function. It is given by

&e&/(Fi, )= (gg/p)'igI exp(p) 7{Ig(y)—2&I Ig(p) —Ir(y)])
&& L1—@((2p)'")]+Lm (—~)]Io(~)

where I (IJ) is a Bessel function of pure imaginary
argument'~ and C is the error function.

The distribution P(F) given by Eq. (9) depends on
the ratio y, and depending on the value of p it can differ
from the two-dimensional Porter-Thomas distribution,
which has the form

P(X)=~ 'Ly(2 —X)7 '"
where y is the dimensionless width.

A quantity of interest in the theory of the distribution
of random variables is the mean-square deviation. We
can easily calculate its values for the dimensionless
width I' of the U function and the quantity y having a
Porter-Thomas distribution. We are then immediately
led to the conclusion that the distribution P(F) is
always broader than the two-dimensional Porter-
Thomas distribution, except when the parameter p is
very small.

Some of the results which have been discussed in this
section are generalized to the case of an arbitrary
number of interfering resonances and are intended to be
published shortly. "

All the parameters that are used in the complex-
boundary-value problem can now be expressed in terms
of e, I'~, and I'2, e.g., the normalization constant Eq can
be written as

1V,=I 4. +(F,+F,) ] I L4. +(F,—F,) ]-I'. (10)

Using Kqs. (4), (8), and (10), it can be easily shown that

1&a"&I/&I g~'I &= &&~&
' (11)

&F~&=(le~ I'&/P'», (»)
12K. T. Whittaker and G. N. Watson, A Coarse of j/Ioderrl

ANelysis (Cambridge University Press, Qew York, 1962), p. 373.
~ Nazakat Ullah (unpublished).

Z gag= Z Ei' (13)

Since the ensemble average J of the width amplitude
Xq' is real, it follows that

((g real)g& ((g imag)g&

(g
realg imag&

(14a)

(14b)

a result which was found earlier using the ensemble of
random complex orthogonal matrices. '

III. INELASTIC SCATTERING

A. Description of the Model

We would now like to include the inelastic scattering
in our model. Lane and Thomas' have given the follow-

ing expression for the collision matrix

U —Z/a+2jgpilg[p(rgb, year„)g), ]pii g (15)

where U is the background matrix,

~~= (1—R'L') 'vi,
(~ ')i,= (P), P)4a —b.a, —

b.= (L'I:1—R'L'] '7~ v.).
As earlier, we consider the model of two interfering

resonances X=1 and 2, and restrict ourselves to a two
channel problem, the channels being denoted by C1
and C2. As in Sec. II 8, we choose Bzj and 8&2 by
imposing the condition that

Re(Lc'(1 RccaLc') ']=—0, C=C1, C2

Defining, the phase factors

exP (—2+c)= Qc (1—L '*cRc)c/g(1 —LcaRccg),
C=C1, C2, (16)

similar to Kq. (Sa) and a quantity t

t= (Pcipcg)"I I1 Rcici'Lci'I—
X I1 Rcgcg Lcg I] 'Rcicg', —(1&)

the relations which were found earlier using the en-
semble of random complex orthogonal matrices. '

A relation which is not found to be exactly satisfied is

&I a~ I'&/C(l g~ I'&]'= lI.1+2&&~'&7(&Ii'~&) '

except when the parameter p« i.
An interesting result which can be obtained using

Eqs. (1) and (2) is that for any finite number of reso
nances included in the E. function, the collision function
II has the form given by Eq. (3) and that
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we 6nd that the matrix U' can be expressed as

exp( —22/el)
1+8

exPE 2(4'cl+Ac2)3
1+P

expt —2(gcl+QC2) jI+6
p

exp( —2~c2)
1+8

%e write the resonance part of the collision matrix
given by Eq. (15) as

(P—P2), = 2C
—*'Bc+Ac 1

X Z glcglC /(& —21+22&2), (19)

where the resonance parameters eq and Fq of the
collision matrix U are related to the parameters of the
8 matrix by the following relations:

& +& = (1+8)-'(X cP+X,cP
+Xlc2'+X2C2'), (20a)

&1+ '$2 $(1+8) (X1C1Xlc2+X2C1X2C2) p (20b)

4S +2S~(1+~ ) (X1CIX1C2 X2C1X2C2)
—

2 (1+f) '(XlclX2C2 —Xlc2X2cl)', (20e)

2112+22@1—2S(1+/)-1
X (XlcP+Xlc2 X2cP—X2c2 ) ~ (20d)

The quantity 5 has been de6ned in Sec. II 8 as the
sparing of the poles of E. matrix, and the quantities
Xqg's, which are like the width amplitudes of the R
matrix are de6ned by

X„=(2P )'~2(t1 —R 'Lc l)»c.
B. Distribution of the Width and Syacing of the

Collision Matrix

The problem we would like to discuss in this section is
to 6nd an expression for the joint probability distribu-
tion of the parameters of U matrix starting from the
known distribution of the parameters of R matrix and

81=Xlcl +X2cl +Xlc2 +X2C2 t (22a)

C2= S2+ (XlclX2C2 X'lc2X—2cl) ~ (22b)

e2= S(XlcP+XlcP—XlcP—X2C22) (22c)

Since Z is a real symmetric matrix we can 6nd a real
orthogonal transformation which diagonalizes it. Under
this orthogonal transformation relations (22) and the
volume element in the space of Xqg's remain invariant.
Let Dg~ and Dg2 be the eigenvalues of Z and let Xqg's
now denote the transformed variables, then using Eqs.
(7), (21), and (22) we can write the joint probability
density function of the variables ~~, e2, and va as

using the relations (20). The joi~t probability density
function of the amplitudes X),~'s using the ensemble of
real-symmetric 2)&2 Hamiltonian matrices is given by'

(XlclyX1C2)X2cl)X2C2)

= (2~~Z~)- SL='2(X„Z-'X,)—1j
g bL2 (X2,Z 'X2)—115L(X1,Z 'X2)j, (21)

where Xq denotes a vector in the channel space, Z is the
eova, riance matrix, the diagonal elements of which give
the variances of X),q's and the o8-diagonal element is
related to the correlation of Xlcl and X&,c2, ~

Z
~

denotes
the determinant of the matrix Z.

The distribution of 5, the spacing of the poles of R
matrix is the Wigner's distribution. '0

To derive an expression which is similar to the earlier
expression (8), which gives the joint probability density
function of the spacing and total widths of the U matrix,
we take 1=0 and, as in Sec. II 8, write e~= ——,'e and
~2= 2&. Let us introduce three variables v~, e2, and e3,
de6ned by the relations

E(sl,e2,22) = (4(S)2 iZ i ) ' 8/vl —(Xlcp+X2cp+Xlc22+X2C22))

X~LC2 S (X1C1X2C2 Xlc2X2C1) ]bt 52 S(Xlcl +Xlc2 X2cl X2C2 )g

&&LSexp( 42rS'/(S)')jSB(Dcl-1X2CP+Dc-'Xlc2) —ljbt-'(Dcl 1X2CP+DC2 1X,c22)-1]

~ t1LDC1 X1C1X2C1+DC2 X1C2X2C2jdS dXlcldXlc2~X2cldX2C2 ~ (23)

integrating Eq (23) and using the Eqs. (20) and (22) we 6nd that the joint probability density function of 2,

I'~, and F2 is given by

&(,&,&.)= (g(»')-'hL(1'+1'. )—2(D.,+D„)j[(r,r.—4D.,D,.)t "+(D„-D„)y-
XL4"+(1,—1,)'3 expL( —2~/(S&') ("+l,l,—4DclDc2) j. (24)
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As expected, when one of the channels is switched off,
Eq. (24) reduces to Eq. (8).

By integrating out e and one of the total widths in
Eq. (24) we find that the distribution of the single total
width i'= I"l/(I'2) is given by

P(r) = (psvr ')Lexp(yl)][V(2 —l') —p2] "'
X(8202 [f~2(P1)+It0(Pl)]
—2Ll'(2 —l') —p ]&o(p ))

Xexpl —2p [I'(2—I')—p ]}, (25)
where

121 (2r/8(S) ) (DCl DC2) y g2 —4DClDC2/(DCl+DC2)

222 ——(lr/8(S)') (DCl+DC2)'

This should be compared with the total dimensionless
width y of the E matrix which is given by

&(r)= (~ ')b(2 —r)—~2?"' (26)

To compare the distribution of the width I' given by
Eq. (25) with the one given by Eq. (26), we again
calculate the mean-square deviations of the quantities
I' and y. As in Sec. II B, we find that the distribution of
the width I' is always broader than the one given by
Eq. (26), except when the quantities Dcl/(S) and
Dcl/(S) are very small.

Iv. CONCLUDING REMARKS

The statistical study of the spacing and the widths of
the unitary collision matrix described in Secs. II and III
is somewhat like the statistical study of the eigenvalues
and eigenvector components of the random 2)(2 real-
synunetric Hamiltonian matrices, which was done by
Porter and Rosenzweig" in the early days of the
statistical model. We have shown that the spacing and
the widths of the unitary collision matrix can be
correlated, while the correlation between the eigenvalues
and eigenvector components of the real-symmetric
Hamiltonian matrices was strictly zero. We have shown

how the distribution of a single width of the unitary
collision matrix, depending on the ratio of the average
width to average spacing of the collision matrix, di6'ers

from the usual Porter-Thomas —type distributions.

The simple model has also been used to check which
of the relations between the various ensemble averages
of the parameters of the statistical collision matrix,
obtained using the ensemble of random complex orthog-
onal matrices, ' are consistent with the constraint of
unitarity.
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The spectroscopic factors S of bound neutron states are usually found from (d,p) stripping reactions. An
alternative method of finding S„for medium-to-heavy nuclei is to analyze isobaric analog resonances ob-
served in (p,p) scattering from these nuclei. The present analysis uses a modified R-matrix theory in which
boundary matching is done within the optical-model potential region rather than directly onto the Coulomb
potential region. A resonance mixing phase and an optical penetrability are introduced. Both single- and
multilevel resonances are treated. The sects of compound elastic scattering and the energy dependence of
the level shift are investigated. Formulas for the spreading width are obtained. The variation of S with
the value of the matching radius and the best choice of this radius are discussed. As examples of the method,
analyses of the s-wave resonance in 'Zr(p, p)"Zr near 6.0-MeV bombarding energy and of s- and d-wave
resonances in "Zr(p, p)"Zr near 5.8 and 6.8 MeV are presented. The values of S& obtained are compared
with those from (d,p) experiments, and the reliability of the two methods is discussed.

I. INTRODUCTION
' 'N the elastic scattering of protons from medium-to-
&- heavy nuclei it was found that large resonance
states, which are the isobaric analogs of the bound
neutron-plus-target states, are produced. ' Such reso-
nances may be described by an R-matrix theory in

* Research sponsored in part by the Air Force Once of Scientific
Research, OfBce of Aerospace Research, U. S. Air Force, under
AFOSR Grant No. AF-AFOSR-440-67, and the National Science
Foundation under Grant No. NSF-GP-5114.

t Present address: Ohio University, Athens, Ohio.
J. D. Fox, C. F. Moore, and D. Robson, Phys. Rev. Letters

12, 198 (1964).

which the neutron-plus-target states are simply related
to the analog states formed by the proton plus target. '

The parameters of the analog resonances can be
obtained by analyses of diGerential cross-section exci-
tation functions at energies near the resonances. Corres-
ponding polarization excitation functions also are useful
in 6nding the best resonance parameters. An optical-
model potential which describes the nonresonant (back-
ground, or T& states) scattering may be determined by
fitting angular distributions taken at energies off reso-
nance, but in the same energy region. The best situation

' D. Robson, Phys. Rev. 137, $535 (1965).


