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Success and Limitations of Two- and Four-Quasiparticle Tamm-
Dancoff Theories of Vibrational States: Applications to Even Tin

Isotopes with a Realistic Nucleon-Nucleon Potential*
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Internationa/ Atomic Energy A gency, International Centre for Theoretical Physics, Trieste, Italy
(Received 10 May 1968)

Extensive calculations of the spectra of the even Sn isotopes with the two- and four-quasiparticle (qp)
Tamm-Dance theories are performed. The effective nuclear forces are the Tabakin and the Yale-Shakin
potentials renormalized for core polarization involving up to all the subshells between the magic numbers 8
and 126. Several different sets of single-particle energies are considered, one of which corresponds to a
Woods-Saxon potential. Over-all semiquantitative agreement with the data is obtained. We show how
relative large values of the quadrupole moment of the 2&+ state t such as Q(2&+) =+0.125 bj may arise from
large two-qp-four-qp cross terms even in cases where four-qp components are small. Many aspects of the
theory are critically examined; in particular, several diferent approximations in projecting out spurious
kets of the nucleon-number nonconservation. Projected improvements and developments of the theory are
outlined.

I. INTRODUCTION

HK one-three-quasiparticle and the two-four-
quasiparticle (qp) Tamm-Dancoff (TD) theories

have been extensively applied to studying both parity
states of even and odd tin and nickel isotopes. ' " In
particular, the even tin isotopes are generally believed to
be representative of the so-called vibrational region and
at the same time a good testing ground for such theories.
The reason for the latter point is that, while the
Bardeen-Cooper-Schrieffer (BCS) pairing effect of the
many valence neutrons in subshells of rather large
degeneracies is important, strong mixing of shell-model

conigurations and, in particular, formation of collec-
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tive states, is also characteristic of these nuclei due, in
part, to a relatively high single-particle (or qp) level
density. The quasiparticle Tamm-Dancoff (QTD)
method involves excitations belonging to the class of
seniorities zero and two, while the quasiparticle
second Tamm-Dancoff (QSTD) also embraces certain
particular excitations of seniority four of the shell
model. The great power of the methods of mixing qp
con6gurations lies in the fact that while it probably
comprises, in general, all the most important dynamical
sects of the residual interactions, it allows at the same
time a relatively large number of active subshells to be
taken explicitly into account for a large number of
interacting nucleons. For example, in describing tin
isotopes which involve numbers of active neutrons of
the order of 20, one can in QSTD get away with includ-
ing all the 6ve valence subshells and reaching dimensions
of only up to about 200X200; the corresponding
dimensions of exact shell-model calculations or even of
complete seniority-four calculations would lead to quite
ridiculous dimensions. The quasiparticle methods,

justified physically by the importance of the BCS
pairing component of the nuclear force, seem thus to be
the only feasible ones in such cases. They are based on a
statistical mechanical description of the nucleus as a
grand canonical ensemble. The conservation of the true
particle number only on the average allows, in this
picture, sen. lar matrix dimensions independent of the
exact nucleon number of a given nuclide determined
only by the angular-momentum geometry and selec-
tion rules and the qp anticommutation relations.

The price for the above simpliications is heavy: One
must face the problem of spurious states due to the
above nonconservation, i.e., of Quctuations of the N
operator and of its powers X"+', n= 1, 2, , in all the
excited modes and of X"+' even in the qp vacuum. In a
given orthonormal basis such spurions are explicitly
constructed and projected out of the secular matrices
before their diagonalizations. This must be done but
can be done in a QTD Hilbert space only for spurious
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kets which are entirely contained within that given
Hilbert space (we call them "basic spurions"). One is
then always left with a parasitic contamination of the
final "physical" eigenvectors by higher-order spurions
which are partly inside and partly outside our Hilbert
space. It is believed that such kets are not too dangerous,
since generally they have only small (after normaliza-
tion) components inside our Hilbert space. The pro-
jection out of basic spurions can be performed either
by the secular matrix projection described in Refs. 2
and 8 or, completely equivalently, by projection of
spurions and the Schmidt procedure, i.e., by an explicit
construction of the physical (nonspurious) orthonormal
basis vectors in which to set up the secular matrix (this
procedure is used in Refs. 9 and 11). There arises an
ambiguity about the treatment of the 9+ states in
QSTD and in higher TD theories, an ambiguity con-
nected with the approximations involved and with the
peculiar character of the 0" states as the only ones in-
volving the qp vacuum ~0) as one basic vector of the
Hilbert space and with the fact that the ground state
0&+ itself belongs to the set. This ambiguity and related
interpretational problems are described in Sec. II.

The exact number projection after" or before' a
QTD or QSTD diagonalization is very interesting for
evaluating our residual (higher-order) spuriousness;
however, while it sacrifices, in general, the relative
simplicity of the qp formalism, introducing a heavy
mathematical apparatus, it is also entangled in inter-
pretational difhculties.

In a series of papers, ~' the QTD and QSTD theories
have been applied to the even tin isotopes with the
realistic nucleon-nucleon potentials of Tabakin" and
of Yale." For such potentials (reaction matrix of
Shakin et a/. "for Yale) a renormalization is necessary
for the core polarization, i.e., by including virtual excita-
tions and de-excitations of the core protons and neutrons
in the sense of the double scattering terms of the
Brueckner theory. Such a renormalized effective realistic
nuclear force in Sn differs from the corresponding one as
derived by Kuo and Brown" for light and almost mirror
nuclei by an unsymmetrical treatment of the core
neutron and proton parts due to a large separation of
the respective two Fermi levels and a different treatment
of the Pauli principle for the two nucleonic charge states
of the particle-hole pairs. In Refs. 4-6, only the ap-
parently most important four highest-lying core sub-
shells of both the protons and neutrons between the
magic numbers 28 and 50 have been included in the
core-polarization corrections. In the present paper, we
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M. H. MacFarlane, in Lectures irI Theoretical I'hysics in 1W5
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extend our analysis also to cases in which we include all
the core (hole) subshells between the magic numbers 8
and 50 and the extra higher (particle) subshells of the
upper major shell between the magic numbers 82 and
126,

One of the greatest limitations of the previous and
current QTD calculations is the lack of a self-consistent
determination of the single-qp parameters in the sense
of the Hartree-Fock-Bogolubov (HFB) procedure. In
fact, the independent qp model (IQM), and, thus the
single-qp basis, should ideally be determined just from
such self-consistent calculations. Such calculation,
particularly with a reaction matrix for a realistic poten-
tial and with the condition of the double self-con-
sistency, '~ is a formidable task in itself and has not yet
been reported in the literature. Instead, we have used
several more or less purely phenomenological approaches
in determining our single-qp (QTD, QSTD input)
parameters. The question is delicate, as some results
(particularly the noncollective states and properties)
are moderately sensitive to these input parameters.
Clearly, provided one stays within a reasonable range
of parameters, the results are much less sensitive to
their details for even isotopes than they are for odd
isotopes.

One of the recipes applied in the present paper
is that of a best-fit-type parameter search for the
"unperturbed" single-particle energies within quite re-
stricted reasonable ranges of variation (the restrictions
imposed are those of compatibility with the Mayer-
Jensen shell-model spectrum and qualitatively with the
odd isotopes). A subsequent solution of the BCS
equation gives a desired set of QTD, QSTD input
parameters.

Another series of our present results is based on the
set of energy eigenvalues of the best Woods-Saxon
potential reported by the Bonn group. ' In this case
the corresponding qp input parameters are Gxed from
an independent calculation and involve no free parame-
ters. Details of these procedures are given below.

In the present paper, we do not investigate the ques-
tion of a possible (even partial, mixed) "stable" de-
formation of the Hartree-Fock average nuclear Geld of
the tin isotopes. We keep the assumption of a basic
spherical shape. We pay particular attention to the re-
ported large observed values' of the quadrupole mo-
rnents of the first excited 2r+ states, Q(2r+). We show
how such large values of Q(2r+) can be understood
without invoking the assumption of a stable quadrupole
deformation for the single-particle basis.
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II. DISCUSSION OF APPROXIMATIONS
AND RESULTS

Let us first examine the question of the 0+ QSTD
spurions. The lowest-order spurion of the number non-
conservation is, as in Kq. (21) of Ref. 2,

l4»p&=- N»p(N —No) IO&= 2 P.A.pp'(o(i) IO&, (1)

where Np is the exact particle (neutron) number;
Az((rt(aa') is a two-qp basic operator of Ref. 2 and
l~= —N»&&&~N p~ ~f»p) of Kq. (1) is the only basic
spurion of QTD. In QSTD one clearly has basic spurions
containing four-qp components. Such spurions are of
"higher order" for QTD and their scalar products with
the final "physical" QTD vectors measure their higher-
order spuriousness, i.e., the nonprojected unphysical
ingredients. Similarly, the particle nonconservation
spurions with six-qp components are of "higher order"
for QSTD, and their scalar products with the final
"physical" QSTD eigenvectors would measure the
degree of parasitic contamination of those vectors due
to the failure to project out the exact nucleon number
before diagonalization.

The natural dehnition of a spurion seems to be

(P».„(Ju)&=5;,,,„(N Np)X„,,~—~0),

where X,J pr
~
0) is a vector of our Hilbert space. If we

choose X,pic—=A Jprt(cc'), we obtain

~P»p(cc', J3f))=N»4(cc', J)/bzpbirpb„2j N 0,
+(Np —N„)(1+8,, )'"A g((rt(cc')

+g, g,u,p,a(p, i,~t(bbcc') jl o), (3)

where X,p4 is the normalization factor, S„=ED—~,'
+N, '—v, '+N, ' is the average nucleon number in the
state A~irt(cc')

~ 0),

N„= (0~ A~pi(cc')NA~pit(cc')
~
0),

and St is an unnormalized four-qp basis operator
defined in Eq. (10) of Ref. 2. The term containing
(N —Np) is generally small; we call it the "blocking
term. " In our results presented below, we refer to
~f»4) of Eq. (3) as to spurions with no "blocking. "
Almost numerically equivalent solutions are obtained
if one replaces Np in the right-hand side of Kq. (2)
by N„, i.e., when the term containing (N„—Np)
drops out. Below we refer to this case as with "blocking"
(this approximation is, in practice, a useful simplifica-
tion; most of our results reported here as well as those
of Refs. 2—10 correspond to this case). In both the
variants a Schmidt orthonormalization of the set of
~p»4& is necessary, in general.

The specihcity of the 0" spurions is their nonvanish-
ing ~0) vacuum component. This obviously implies a
depletion of this component in the ground state, 0~+,
the lowest eigenstate of the secular matrix for J =0+.

In fact, this implies a criticism of and a correction to the
particular given BCS solution (or to ~0)) assumed in
the TD formalism to be a zero-order approximation to
the ground state. As we shall see, this depletion effect
is a measure of the spuriousness in [0) rather than of a
dynamical eGect of the H40 part of the Hamiltonian
(coupling of the four-qp excitations to

~
0)).In particular,

by projecting out the spurions ~f»4) of Eq. (3) we
automatically project out the well-known most im-
portant spurion K(N' —NpP) ~0) of the BCS solutions

t the large fluctuations of the N' operators; in fact, this
spurion is a linear combination of the spurions of
Kq. (3)j. Fluctuations of N', N', etc. , which are part
of the remaining higher-order spuriousness, remain
unproj ected.

Another approach implicit in Refs. 9—11 consists in
insisting on the physical purity (correctness) of the
unprojected BCS ground state ~0&, as a good non-
spurious basis vector. This means assuming that it is
practically an eigenstate of N and that the spurions

~g»4& have no qp —vacuum components /the constant
term with 8J p in Eq. (3) is dropped and the new

~ f»p )
is renormalizedj. Formally it can be done by the
rede6nition

~ $,„4'(cc',JM) &
= X,~4'(cc'J)A q((r+(cc') (N Np)

~

0—) . (4)

Actually, the technical prescription of Refs. 9 and 11 is
diferent, but the results are equivalent to those based
on Eq. (4). The projection out of ~iP.,4(cc,00)) by the
Schmidt procedure is then particularly simple. The de6-
nition of Eq. (4) is clearly a limitation and in contrast to
the basic notion of a spurious ket as (N Np) applied to-
a ket belonging to our Hilbert space, and it is a sacriice
of the theory in this sense. Clearly, the depletion of the
~0) component of ~0i+& of QSTD will now be small,
as it is due practically to the small dynamical eGect of
H40 only. The advantage of this approach over that of
Eq. (3) is the unity of description one obtains in this
way between the

~
Oi+) and all the QSTD excited states.

In fact, the exclusion of all the six-qp excitations in the
QSTD states means, in particular, the exclusion of the
six-qp spurions which have (small) nonvanishing two-qp
components. These spurious two-qp components are
small but analogous to the ~0& component of ~P»4) of
Eq. (3) for J=O. Somewhat consistently, both are not
projected out in the present approach, which should
tend to preserve correct interrelations (level spacings,
etc.) of 0i+ and all the other states. The states J 40"
are defined in QSTD as two- and four-qp excitations
out of ~0). In the approach of Eq. (4), this means that
such excitations are generated almost out of the ground
state itself. This seems to have a particular advantage;
for example, in the corresponding description of two-
nucleon transfer reactions. On the other hand, in QSTD
with theprojectionof ~f»4) of Eq. (3), ~0i+) ismarkedly
di6'erent from

~ 0), and the excited J WO+ QSTD states
can no longer have the interpretation in terms of simple
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0.0
2.054
2.904

QsTD ((0 I tp.„)wo)
no "blocking" with "blocking"

—0.102(35.3)
1.979( 6.3)
2.921(14.6)

—0.098(36.0)
1.942( 4.2)
2.756( 6.1)

QSTD
((o I~p..4') =o)

with "blocking"

—0.121(2.1)
1.942(6.9)
2.756(6.1)

TABLE I. QTD and QSTD eigenvalues of 0+ states of Sn"
calculated with the Tabakin potential with core polarization
(S2) of Gmitro et al.& the four-qp percentage weights of QSTD
vectors are given in parentheses; three cases of spurions projected
out, as discussed in the text, are compared. 2+ 4+

QDT QSTD QTD QSTD QTD

1.439 1.391(1.4) 2.268 2.200(2.6) 2.673
2.621 2.515(4.6) 2.814 2.714(4.7) 3.380

5 6
QTD QSTD QTD QSTD QTD

3
QSTD

2.828(2.7)
3.054(3.7)

7
QSTD

TABLE II. QTD and QSTD J WO+ states of Sn ' with the
renormalized Tabakin potential of Table I; the spnrions IP;p4)
are with "blocking. "

a References 4 and 5.
2.371 2.335(1.1) 2.607 2.565(1.4) 2.429
2.754 2.712(1.2) 2.751 2.687(23) 2.880

2,322 (4.1)
2.790(3.0)

basic excitations out of the ground state of the same
QSTD theory.

Neither of the approaches to the problem of QSTD
spurions is entirely satisfactory and calculations based
on exact number projection before diagonalizing secular
matrices of a QSTD-type theory would be very
interesting.

In Table I, we illustrate some of the points discussed
above on the example of the Tabakin potential with the
second-order core-polarization corrections of Ref. 4
and the single-particle energies of Bando' as used in
Refs. 4 and 5. The nucleus is Sn'". Theharmonic-
oscillator parameter is +v=0.454 I'

The number of orthonormal spurions
~ f,p4) is always

equal to the number of Appt(cc), i.e., to the number of
subshells. In our case, it means six spurions altogether:
6ve ~f,p4) of the 6ve valence neutron subshells plus
~it'.pp) of Kq. (1). In the case "with blocking" one can
also include the (otherwise redundant) seventh spurion,
X(Ns —Ep') ~0). A diagonalization shows that, for ex-

ample, in the case of the results of Table I this gives no
significant modification of the corresponding results
with (O~f,p4)WO, with blocking. The exact QSTD 0"
matrices are 56)&56 with 50 nonspurious eigenstates.

From Table I, we see that while the 0+ eigenvalues
for all the cases in question are quite close to each other,
the only striking difference lies in the four-qp per-
centage weight (in parentheses) of the ground state
(0i+ eigenvector). The lowering of the Oi+ energy with
respect to the qp vacuum is small in all cases. Since the
total weight of At~0) is almost negligible in

~
Oi+), we

find only about 64% of the ~0) weight in ~0r+) (a 36%
depletion) in the cases of (0 I $„4)NO L ~ f,p4) of Eq. (3)]
and a 98% ~0) weight for (O~p,p4')=0 LIP,p4') of Eq.
(4)].The case of no "blocking" and no

~
0) components

of
~
it„4') gives almost the same result. In order to see

that the
I 0) depletion effect is practically independent

of the 840 coupling, we have diagonalized the 0+

QSTD matrix with ~f,p4) of Eq. (3), inconsistently
setting H40 equal to zero. Again we find the depletion
by about 36% of the ~0) component. Only the 0i+

2 H. Bando, Progr. Theoret. Phys. (Kyoto) 38, 1285 (1967);
and in Proceedings of the International Conference on Nuclear
Structure, Tokyo, 1967 (to be published).

eigenvalue is shifted a little; the other results remain
unchanged. We can conclude that the 36% depletion
effect is due almost exclusively to (0~ /, p4) WO.

One striking feature of our results is the smallness of
the 0&+ energy shift in relation to the BCS ground. This
means that the four-qp correlation components are
randomly distributed and, in the 0+ matrix diagonaliza-
tion, shift the 0+ energy only a little, at least for our
particular nuclear force. In particular, a perturbation
estimate where all 'the individual four-qp modes con-
tribute a positive shift is not justi6ed here. In principle,
one should add the negative of this shift to obtain each
J excitation energy. However, this shift is actually
connected with Bpp, which is left out in QSTD for
J &0".It is probable that similar shifts will occur for
J /0" states in a six-qp Tamm-DancoG calculation. "
These could, at least in part, compensate for the cor-
responding ground-state shift. It is then safer not to
count the QSTD Oi+ shift in interpreting other QSTD
J„eigenvalues. Moreover, our calculations containing
no HFB self-consistency are particularly unreliable for
the ground state.

Dimensions of the other J QSTD Hilbert spaces are
much larger, but do not exceed 204X 204(4+). We have
used a special zoRTR~ code due to Ottaviani for com-
puting all the diagonal and all the four-qp-two-qp
coupling elements in each given case. This serves as a
guide in deciding truncations of the complete secular
matrices by numerical saturation of successive diagona-
lizations of matrices with increased dimensions (com-
puter experiments). This allows the complete dimensions
to be reduced by 50% or more.

In Table II, we give our results for J /0" for the
same renormalized Tabakin force and for Sn" . There
is no difference here between

~
P,p4) of Kq. (3) and

~ P,p4')

of Kq. (4); we use the variant with "blocking. " The
four-qp percentages are indicated in parentheses for
QSTD. The observed levels of Sn'" are: Op, s+:1.76,
2.02) 2j, ,2+:1.29, 2.11) 4j,2,3,4+:2.39, 2.53) 2.80, 3.05)
3i '. 2.27; 5i .'2.364; 6i .'2.774, and 7:2.909 (all in
MeV). The identification of the quoted 7 state as
7& would appear very hard to understand.

"J. Hendekovic has performed, as examples, some "caricature"
calculations in this direction.
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TAsLE III. QTD and QSTD states of Sn'" for the renor-
ntalized Yale-Shakin force SHA I described in the text; ~g,g4l
are with "blocking. "

TAsLE IV. QTD and QSTD states of Sn"o for the renor-
tnalized Yale-Shakin force SHA II described in the text; ~tg.„4)
are with "blocking. "

0+
QTD QSTD

0.0 ( -0.192) (37.0)
2.040 1.889 (6.7)
2.892 2.613 (20.2)

2+
QTD QSTD

1.376 1.307 (2.2)
2.530 2.444 (6.2)
3.134 2.972 (64.7)

2.120
2.901
3.240

4+
QSTD

2.009 (4.0)
2,722 (7.6)
3.062 (54.4)

QTD

0+ 2+ 4+

QTD QSTD QTD QSTD QSTD

0.0 (—0.210)(37.0) 1.187 1.158( 0.8) 2.006 1.975( 1.1)
2.074 1.971 ( 4.1) 2.593 2.530( 3.5) 2.946 2.662(77.3)
3.002 2.794 (4).9) 3.171 3.000(52.5) 3.371 2.899(30.7)

3
QSTD

2.269 (3.0)
3.064 (8.8)

5
QTD QSTD

2.311 2.261 (1.3)
2.746 2.677 (1.8)

6
QTD QSTD QTD

7
QSTD

2.537 2.479 (1.6) 2.709 2.628 (2.4)
2.859 2.781 (2.4) 2.968 2.853 (3.7)

QTD

2.503
3.209

3 5 7
QSTD QTD QSTD QTD QSTD

2.414 ( 3.9) 2.281 2.253( 1.0) 2.530 2,490( 1.4)
3.079 (11.1) 2.783 2.740( 1.5) 2.952 2.892( 2.5)

The over-all agreement with experiment is not very
satisfactory. Moreover, the renormalized Tabakin force
is so weakly attractive that it gives only very small
four-qp percentages of the lowest

~
J ) vectors. With

1.4'Po of the four-qp components of ~2i+) we find, with
the neutron eGective charge e,«&"=1, only a small
quadrupole moment Q(2i+)=0.042 b. The observed
value" is Q(2t+)=(0.4+0.3) b. The transition rate
B(Z2,2t+ —& Oi+) =270.6e'F' is found in QSTD and
=354.9e'F' in QTD with the same e.zz'g~ =1.The latter
difference is particularly striking because of the small
four-qp percentage in ~2t+); however, since it is the
QSTD Oi+ state with (0~$„4)WO (with "blocking" )
which is used here, the difference is due mainly to the
destructive effect of the four-qp components of ~0&+).

In the following series, we present some QTD and
QSTD results for the Yale-Shakin force'g rs and with
slightly modified (adjusted) single-particle energies.
For example, reasonable results are obtained for the
reasonable set of energies "SHA I":2d5p'.0.0; 1gvg2.—0.5; 3s1p, 1.0; 2dep ..2.5; 1h»]2. 2.0; j.gef2

..—4.0;
1fg/g, 2pi/g, 2pg/g. —12.0 (all in MeV). Again the core
renormalization of the force is limited to the four most
important neutron and proton subshells. The results
or Sn"' are summarized in Table III. The QSTD 0+
results refer to (O~f,g4)&0, with blocking. The Oi+

energy shift is larger here than in Table I. Again the
core-renormalized force is only weakly attractive and
QSTD is generally well approximated by QTD ex-
cept for Q(2i+) for which even the small (2.2'Po) four-qp
admixture in ~2t+) is most important (with the 94-
component

~
2i+) vector); we find here Q(2t+) =+0.10b.

In the isotope Sn"', the 71 state has been identi6ed
at a much lower energy, at 2.483 MeV, and no observed
6 state has been reported. In Table IV, we summarize
our QTD and. QSTD results for the renormalized Yale-
Shakin force and for the somewhat modiied set of the
single-particle energies: 2d5f 2'. 0.0; 1g7/2. 0.5; 3s1f2.1.75;
2dg/s. 2.3; 1htt/g. 'l.4; igg/g. —4.0; 1fs/g, 2pt/sy 2pg/g.—12.0 (all in MeV). This force we call SHA II. The
results of Table IV are generally very similar to those of
Table III. No observed value of Q(2i+) has been re-
ported. The observed energy levels of Sn"0 are: 02+:1.89;
2i .1.17;4i .2.18;3t .2.39;5t .2.28, and7t '. 2.48 (all

in MeV). Except for Og+, the agreement with the data
is better here than that for Sn"' in Table III.

In the following series, we give results based on the
single-particle unperturbed energies obtained by the
Bonn group' with their best Woods-Saxon potentia, l.
The energies (in MeV) for the five valence (zzl;) sub-
shells are: —10.52(2ds/s), —9.36(igr/g), —8.45(3si/s),—7.78(2dg/g), —7.16(ihtt/g), for all the other proton
and neutron subshells between the magic numbers 8 and
126 we have: —30.09(ids/g), —27.93(1dg/2), —27.07
(2si/g), —22.91(1fr/g), —19.07(if s/g)) —18.82(2P3/s) I—17.28(2pi/g), —15.24(igg/g), —2.56(2fr/s), —1 14
(3pg/g), —0.23(3pi/g), +1.01(2fs/g), +1.04(iztg/g),
+1.07(1hg/g). In all our previous results of Tables I-IV
we were, in our core-polarization corrections, applying
the variant "S2" of Ref. 4, i.e., simpli6ed energy
denominators and the ansatz of a —', occupation of the
neutron valence subshells. In the following we use in the
same corrections, the exact (full) energy denominators,
the variant "C2"of Ref. 4. In Table V, we give results
where only the four core subshells of 1gg/g and 1f2P
(as in Tables I-IV, without 1fr/g) are included in the
core corrections to the eGective force. Comparison is
given between the Tab akin and the Yale-Shakin
potentials. In the latter case, we use a slightly different
value of gg=0.46F '. The isotope is Sn'". The results
of Table V are generally similar for both potentials.
Only small four-qp weights are found in all the 6rst
excited J states. The definition of ~iP,n4) for J =Oi
is the same as for the results of Tables III and IV. While
the 21+ energy is rather high for the Tabakin force, the
general over-all agreement with all the other observed
energies is somewhat better for the Tabakin force than
for the Yale-Sha»~ force. This agreement is not bad
(except for the dubious 7i case) if one realizes that
we have in this variant no ad hoc adjustable parameter
at all. With the neutron E2 e6'ective charge e,gg&'&=1

we find for Tabakin: B(E2, 2,+ —+ Oi+) =304.3 (QTD)
and =210.8 e'F4(QSTD); Q(2i+) =+0.034 b (QTD)
and =+0.098 b (QSTD). Similarly, for Yale-Shakin we
find: B(E2, 2t+ ~ Oi+) =303 1(QTD) and .=216.8 egFg

(QSTD); Q(2i+) =+0.043 b (QTD) and =+0.122 b
(QSTD). These results are quite reasonable. We see
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TABLE V. QTD and QSTD states of Sn'" for the renormalized
Tabakin and Yale-Shakin forces with the core polarization
determined with the single-particle energies of Bleuler et al. ,'
including only the four highest-lying core subshells; ~iP.s4l with
"blocking. "

TABLE VI. QTD and QSTD states of Sn"' for the Yale-
Shakin force; the core-polarization calculation includes all the
subshells between the magic numbers 8 and 126, and the single-
particle energies are all from Bleuler et al.~

QTD

0.0
2.050
2.481

QTD

Tab akin
QSTD

(—0.114)(35.7)
1.926 ( 4.4)
2.224 ( 9.7)

Tab akin
QSTD

0+

QTD

0.0
2.336
2.862

QTD

Yale
QSTD

(—0.286) (37.5)
2.134 (10.0)
2.579 (12.4)

Yale
QSTD

0+
QTD QSTD

0.0 (—0.363)(39.0)
2.427 2.029 (15.2)

5
QTD

2.943
3.241

2+

QTD QSTD

1.259 1.153( 3.3)
3.074 2.804{13.7)

6
QTD

3.236
3.324

4+

QTD QSTD

2.755 2.565(13.8)
3.380 3.041 (52.5)

7

QTD

2.896
3.454

1.427
2.429
2.474

1.313 ( 3.6)
2.249 ( 5.9)
2.307 ( 6.3)

1.369
2.708
2.798

1.251 ( 3.S)
2:4SS ( 9.4)
2.61,4 ( 7.0)

QTD

2.263
2.679
2.712
2.947

Tabakin
QSTD

2.171 ( 2.9)
2.552 ( 6.0)
2.617 ( 3.2)
2.717 (11.2)

QTD

2.382
2.894
3.021
3.156

Yale
QSTD

2.286 ( 3.5)
2.7o9 (12.9)
2.921 ( 4.2)
2.947 ( 8.2)

QTD
Tabakin

QSTD QTD
Yale

QSTD

2.904
3.810

2.784 ( 4.2)
3.673 {22.8)

3.080
3.905

2.949 ( 4.7)
3.75o (19.o)

QTD

2.404
2.670

Tabakin
QSTD

2.355 ( 1.3)
2.616 ( 1.7)

QTD

2.593
2.887

Yale
QSTD

2.544 ( 1.2)
2.S24 ( 1.S)

QTD

2.558
2.767

Tabakin
QSTD

2.4S6 ( 2.3)
2.666 ( 4.4)

QTD

2.782
2.984

Yale
QSTD

2.697 {2.8)
2.852 ( 4.2)

QTD

2.269
2.728

Tab akin
QSTD

2.197 ( 2.3)
2.628 ( 3.0)

QTD

2.496
2.925

Yale
QSTD

2.416 ( 2.6)
2.820 ( 3.0)

a Reference 18.

that the two-qp-four-qp interference terms in QSTD
are able to increase Q(2&+) by a factor of the order of 3
in the direction of a better agreement with experiment. "

Clearly, the weakness of the effective attractive part
of the core-renormalized two-nucleon force depends
rather critically on the smallness of the separation of the
highest core subshells (of 1gs~s, in particular) from the
valence subshells. According to general experience and
to the related evidence from (e,e'p) reaction on other
nuclei on the deepness of lower core subshells, the
Woods-Saxon eigenvalues of Ref. 18 for 1fr~s and lower

a Reference 18.

subshells should probably be separated further from the
four high-lying core subshells. This w'ould mean that the
effect of the so-modiied lower subshells on the core
polarization would be actually much smaller than the
one we find and present below for the Woods-Saxon
single-particle energies of Ref. 18. The deep-lying
subshells in Table VI still give appreciable contributions
towards reducing the general over-all attraction of the
eGective force, and the resulting calculated levels of
Sn'" are shifted upwards in relation to those of Table
V. In Table VI, we give several of our lowest states of
Sn'" for the Yale-Shakin force with the second-order
core-polarization renormalization involving all the sub-
shells between the magic numbers 8 and 126. All the
speci6c assumptions for the calculations are here ex-
actly as in those of Table V. Except for 2&+ the energy
levels lie typically too high; the QSTD ground-state
energy shift is large (Yale potential) and ~0t+) has a
large depletion of the ~0) component due to the re-
moval of the QSTD spurions. In the case with e,ff &s& = 1,
we find B(E2, 2t+ -+ Ot+) =317.0e'F4 in QTD and
=273.7e'Es in QSTD; the corresponding values of
Q(2t+) are +0.036 b (QTD) and. +0.125 b (QSTD).
These values are slightly higher than those corre-
sponding to the eigenvectors of the states of Table V.
The most important contributions to the differences
between Tables V and VI are due to the 1f7~s subshell,
although the e8ect of the upper major shell is important.
All the level spectra for cases intermediate between
those of Tables V and VI lie in between the spectra
of Tables V and VI and vary with the number of
core subshells included in a smooth, uniform manner.
We do not give here our results for such intermediate
cases. Somewhat better results are systematically ob-
tained if one uses in the core-polarization terms the
simplified (S) energy denominators of Ref. 4 which were
systematically used by Kuo ef ul. '5 This di6erence
means that, in the case of a vibrational nucleus such as
Sn, with many relatively wide-spread valence sub-
shells, single-particle excitations within the valence
subshells are important corrections to the core particle-
hole excitations.
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An interesting observable quantity is the magnetic
moment of the 5~- state. The observed g factor for
Sn"' given by Bodenstaedt et a/ "is gq, -(116)= —0.065
&0.005. If we limit ourselves to the contribution of the
valence neutron spin part of the P operator, "we find
the following values of this quantity: (1) with the
Tabakin force of Table V: gq, -(116)= —0.238 (QTD)
and = —0.253 (QSTD) Lit is interesting to mention
that if we do not use the "blocking" approximation for
~f,~4) we find g~-(116)= —0.150 (QSTD) for the same
forcej; (2) with the Yale-Shakin force of Table V:
gq, -(116)=—0.198 (QTD) and = —0.221 (QSTD). In
order to Gt the observed value of Ref. 22, we have under
taken a calculation involving the contributions of the
neutrons and protons of the core explicitly, in addition
to the valence neutrons. '4 Our preliminary results
show that the absolute values of g5,—given above get
reduced by the contributions of the core nucleons.

III. CONCLUSIONS

We have examined several aspects of the power and of
the limitations of the microscopic spectroscopy of super-
conductor vibrational nuclei based on the QTD
methods. We have seen how, with realistic nuclear
forces renormalized for core polarization, reasonable
semiquantitative agreement with experiment can be
obtained by solving secular problems of dimensions
reduced by many orders of magnitude with respect to
those of the exact shell-model-configuration problem.

The pure two-qp QTD theory with the projection out
of the (N—Eo)

~
0) spurion is a very good approximation

(except for the 0 states) of the QSTD eigenstates; this
means only very small four-qp (or seniority v=4)
admixtures in such states. In particular, if one wants to
interpret QTD modes as "phonons, " the excited 0+, 2+,
and 4+ "triplet" and other excited states certainly are
sot of the two-phonon type. Similar conclusions apply
to the simply related quasiparticle random-phase ap-
proximations (QRPA and QSRPA). On the other hand,
the four-qp components of QSTD eigenvectors are,
even though small, very important for single-particle
observables. In particular, they considerably enhance
the diagonal elements of the E2 operator Lin Q(2q+) j.

The theory presupposes here the predominance of the
BCS (or qp vacuum,

~
0)) component in the ground state

(~0q+)). In principle, the QTD and QSTD theories
should be based on self-consistent solutions of the HFB
problem. Presumably, such bases, being a better (varia-
tional) approximation to the ground state, should tend

~' E. Bodenstaedt et al. , Nucl. Phys. 89, 305 (1966); Z. Physik.
168, 370 (1962).

"Through an unfortunate trivial arithmetic error the values of
g5, —of Ref. 3 must be corrected to read: for the Gaussian (3=1)
force g5~-(116) = —0.233 (QTD) and = —0.258 (QSTD) if e,&&(~')
=0 and g5, -(120)= —0.373 for the same.

~4 M. Gmitro, A. Rimini, J. Sawicki, and T. Weber, Phys. Rev.
Letters 20, 1185 (1968); Phys. Rev. (to be published).

"Y.K. Gambhir, Phys. Letters 268, 695 (1968); R. Alzetta,
Y. K. Gambhir, M. Gmitro, A. Rimini, J. Sawicki, and T. Weber
(unpublished).

to decrease the ultimate con6guration mixing and, in
particular, to reduce the spuriousness of the particle-
number nonconservation and thus the depletion of the
~0) component in ~0r+). In such a situation, the QTD,
QSTD modes have a clear interpretation of simple
operators generating excitations directly from the
ground state.

One very interesting question is that of possible de-
formed HFB solutions; it would be natural to expect a
further reduction of the four-qp modes in QSTD with
an HFB deformed basis. This question remains com-
pletely open. A QSTD description in terms of a purely
spherical basis may turn out to be equivalent to a QTD
description with a deformed HFB basis.

Unfortunately, in practice HFB bases are not
available, especially in the Sn region, and one is forced
to use bases defined in a purely phenomenological way.
This is, of course, a very bad limitation. With the
de6nitions applied in the present paper we find generally
unpleasant ambiguities and also rather large depletions
of the ~0) component of ~0~+). This renders the inter-
pretation of all other QTD and QSTD eigenstates
somewhat obscure. In collaboration with Alzetta and
Gambhir, "the present authors are now performing cal-
culations for both even and odd Sn isotopes where the
BCS solutions would be based on a modified inverse-
gap-equation (IGE) method. The qp basis is in this
method dehned by the lowest experimental energies of
the odd mass isotopes and the one- and three-qp Tamm-
Dancoff (QTD 13) solutions. It is hoped the method
will give a considerable general improvement of our
theory of the even isotopes in addition to assuring good
agreement with the observed energy spectra for the
odd isotopes.

The basic spurions due to the nucleon-number non-
conservation must always be projected out before
diagonalization. Their importance depends on the set
of the single-particle parameters used as input in a
given secular problem. The "blocking" or any other
approximation of the basic spurions may not be very
good for inappropriately chosen single-particle parame-
ters. There always remains a higher-order spuriousness
of spurions with components outside our Hilbert space.
Their parasitic role is probably not very dangerous for
the lowest-lying states but may become so for higher-

lying Tamm-Dancoff eigenvalues and eigenvectors.
These problems are now being investigated. Calculations
are now projected for the exact nucleon-number conserv-

ing projected qp second Tamm-Dancoff (PQSTD)
theory, which is an extension of the PTD method de-

scribed by MacFarlane. " In this method, the qp
vacuum ( ~

0)) vector is replaced by the number-

projected vector called the projected BCS (PBCS)
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ground state. The number-conserving PQTD and
PQSTD excitation operators are then applied to PBCS
and orthonormalized by a Schmidt procedure. The
Anal exactly spurion-free solution of the secular problem
represents mixing of shell-model configurations of
seniority m=0, 2, and 4 in a Hilbert space spanned on
QTD and QSTD modes, thus of dimensions reduced
enormously with respect to the original "exact" shell
model. The dimensions are, in fact, independent of the
number of nucleons; only the matrix elements depend
on a given isotope (or isotone). The PQSTD model
should clear up the question of the role played by the
higher-order spurions not projected out in QSTD.
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A simple model to study two overlapping compound-nucleus resonances is constructed. Expressions have
been derived for the joint probability distribution of the spacing and the widths of the collision matrix for
the elastic and inelastic scattering. In the inelastic case, we have considered only a two-channel problem.
It is shown that the unitarity gives rise to the statistical correlation between the width and the spacing of the
collision matrix. The model is also used to check which of the relations between the averages of the parame-
ters of the statistical collision matrix, obtained using the ensemble of random complex orthogonal matrices,
are consistent with the constraint of unitarity.

I. INTRODUCTION

HE statistical properties of the resonance paraine-
ters of the low-energy collision matrix have been

fairly well studied for the case of well-separated reso-
nances. ' During the last couple of years, there has been
much interest in the study of the fluctuations of nuclear
cross sections, ' which occur in the region of overlapping
resonances. In the derivation of the expressions for
various average cross sections and their fluctuations we
need the statistical properties of the resonance parame-
ters in the region of overlapping resonances. Only a few
attempts have been made for such a study. '4

In Ref. 3 it was shown that the random-matrix
hypothesis can be used to study the statistical proper-
ties of the statistical collision matrix introduced by
Moldauer. ' It was shown' that a number of relations
between the parameters of the statistical collision matrix
can be obtained without a complete knowledge of the
weight function, which had to be introduced to make the

C. E. Porter, Statistica/ Theories of Spectra: Fluctuations
(Academic Press Inc., New York, 1965)~' T. Ericson, Ann. Phys. (¹Y.) 23, 390 (1963).' Nazakat Ullah, Phys. Rev. 154, 891 (1967); 154, 893 (1967).:

4 P. A. Moldauer, Phys. Rev. 136, 8947 (1964);154, 907 (1967);
Phys. Rev. Letters 18, 249 (1967).' P. A. Moldauer, Phys. Rev. 135, 3642 (1964).

normalization integral converge. Since the collision
Inatrix must be unitary, there must be relations among
the parameters of the collision matrix. The question we
raise now is as follows: Which of the relations obtained
using the ensemble of random complex orthogonal-
matrices are consistent with the constraint of unitarity?

The statistical properties of the resonance parameters
in Ref. 4 are obtained in two ways: (a) use of large-
scale numerical computations. The numerical values of
the parameters of the statistical collision matrix are
obtained by diagonalizing a complex symmetric-level
matrix, which is constructed using the parameters of the
real-boundary-value problem. These numerical calcula-
tions are helpful in indicating certain trends in the
behavior of the parameters only. (b) construction of
unitary models. Some unitary models are constructed
starting from E.-matrix theory of nuclear reactions. In
most of these models the usual statistical distribution .

of the E.-matrix parameters cannot be used.
A formulation using the ensemble of random unitary

symmetric matrices is also developed by Krieger~ to
calculate the averages and the fluctuations of the cross
sections. This formulation does not attempt to study the

'A. M. Lane and R. G. Thomas, Rev. Mod. Phys. 30, 257
(1958).' T. J. Krieger, Ann. Phys. (N. Y.) 42, 375 (1967).


