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A general perturbation-theoretic procedure for obtaining accurate wave functions for
atoms and molecules is developed in detail for an arbitrary separable Ho, and the explicit
equations satisfied by the various parts of the first- and second-order perturbed wave func-
tions are given. It is shown how the solutions for the nth-order perturbed function can be
found in terms of solutions to partial differential equations in only n+1 variables for atoms,
and in terms of solutions to sets of coupled equations in the same n+ 1 variables for mole-
cules. It turns out that for atoms the number of pair equations that need be solved to give
4& and the major part of @2 is roughly proportional to N, the number of electrons; while for
molecules of no symmetry, with paired electrons, it is proportional to N(N+ 2)/8 as distin-
guished from the N /4 expected previously. This reduction in the number of necessary pairs
may be of some practical use if the pair equations are integrated numerically. Various Ham-
iltonians are discussed, and an "exchangeless" Hamiltonian is introduced, which can serve
to simplify the computations relative to the usual Hartree-Pock procedure, and might serve
to increase the rate of convergence. Numerical calculations are performed for the helium-
atom ground state in order to illustrate the procedure and to examine the rates of conver-
gence of the expansions based on several different Ho s ~ Results differing from the exact re-
sult by 2—9&& 10 are obtained for the different calculations through third order, and this er-
ror cannot be reduced by changing Ho. The angular expansion and the numerical integration
technique used on the two-dimensional equations are sufficiently accurate that the third-
order energy agrees to within 7&&10 of Knight and Scherr's value.

I. INTRODUCTION

Calculations on atoms and molecules, with the
exception of those on two-electron systems, '
have for the most part been restricted to single-
determinant "self -consistent field" independent-
particle solutions which describe the individual
electrons moving in the average Coulomb and ex-
change fields of the remaining electrons. ' " As j.s
well-known, such solutions only provide energy
eigenvalues to an accuracy of -1%, so that the in-
herent errors are never less than an electron volt
and thus are always of spectroscopic (and hence
astrophysical) importance, to say nothing of chem-
ical or solid state importance. This error, is gen-
erally called "correlation error" as it is due to
the part of the electron-electron interaction that

cannot be treated in the smoothed-out approxima-
tion. It was only recently, with the work of
Brueckner and Kelly" and Sinanoglu'I that the in-
herent simplicity of the correlation problem with-
in a perturbation framework was recognized.
These authors pointed out that when the Hartree-
Fock solution is taken as 4„ the first correction
4', and hence the leading two terms of the correla-
tion energy can be determined by calculating the
various two-particle correlation corrections to the
wave function-a series of helium-atom-like prob-
lems.

Perturbation-theoretic calculations based on the
Hartree-Fock self-consistent field (SCF) 0, have
since been performed to varying degrees of accur-
acy by Sinanoglu and Tuan" and Geller, ' Kelly"
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and Byron and Joachain, ' for the atoms Be, Be,
and 0, and He and Be, respectively. Perturbation-
theoretic calculations based on the hydrogenic +p
have been recently performed through second-
order by Chisholm and Dalgarno" and by Seung
and Wilson" on Li, and by Safronova and Tolma-
chev' on Be. Nesbet' has recently performed a
number of calculations using a nonperturbative
cluster expansion and Conkie2' has performed a
different type of perturbative calculation for Li.

The present paper is devoted to several aspects
of the many-electron problem. ~' In Sec. II a new
set of equations is derived for the pair functions22
which contribute to 4„and since no spin-symme-
try restrictions are included, the number of inter-
orbital correlation functions is exactly half that
heretofore considered necessary. This section al-
so contains the first explicit consideration of the
equations to be solved for the pair and three-parti-
cle functions of 4„and some details in addition to
a comparison with the theory of Sinanoglu'2~23 are
presented in the Appendix. Section III.A is devoted
to a discussion of various possible H, s which can
either enhance the rate of convergence or simplify
the computations, and Sec. III. B and C point out
the advantages in expanding the perturbed wave
functions in spherical harmonics. Finally, in Sec.
IV a numerical procedure for directly solving the
pair equations is described and applied to the heli-
um-atom ground state in order to test the conver-
gence of the energy through third-order for sever-
al Ho's.

It should be noted that the scheme presented in
this paper avoids the variety of terms, such as
those due to integral operators, orthogonality cor-
rections, and certain single-particle diagrams,
which have been treated approximately, for one
reason or another, in the past. The only real ap-
proximation that we make is the neglect of higher-
order terms in a perturbation expansion which is
based on the assumption that the perturbation theo-
ry converges. This assumption is, of course, sup-
ported for both atoms and nuclei by the experimen-
tal verification of the validity of the relevant shell
models. We hope, however, to demonstrate quan-
titatively this convergence for many-electron sys-
tems, so that, for example, the contributions from
three-electron interactions which first occur in
the fourth-order energy can indeed be shown to be
small. This should then contribute to the realiza-
tion of the goal set forth by Sinanoglu in his pio-
neering papers of 1960 and 1961,"namely the solu-
tion of accurate wave functions in terms of their
independent and pair-correlated parts. The fact
that we find it desirable to avoid "self-consistent"
4'0's should not be of particular concern since re-
cent experience24~2' has indicated that these inde-
pendent-particle solutions can give results which
cannot be uncritically extrapolated to the real
physical problems of interest.

II. GENERAL PROCEDURE

In order to be able to describe a perturbation ex-
pansion of atomic (and molecular) wave functions
we define a Harniltonian as a function of

a(~}=-e, + m,

for small values of n, and such that the number of
terms in each expansion that are necessary for the
desired accuracies can be calculated with reason-
able ease.

The class of choices of H, which we have called
in a particular sense separable, 2~ so that

N
a, = P I,(f),

i=1
(4)

with h, a completely arbitrary operator on the
space and spin variables of one electron only, pro-
vides all the tractable orthodox perturbation theo-
retic expansions for many-electron problems.
With this class of choices of H„ the perturbation
term in H(A) can therefore be written as a sum of

as a sum of two terms, one independent of X and
one linear in A., which coincides with the true Ham-
iltonian of the physical system for A =1, the sepa-
ration into H, and H, being otherwise arbitrary.
With this definition, each exact eigenfunction and
eigenvalue of the model Schrodinger equation

[a(X)-E(X)Iq(X) = 0, (2)

which coincides with the Schrodinger equation of
the physical problem for X =1 can be expanded as

q(A) =0, +A%, + ~ (3a)

and E(A.) =ED+ AE~+ ~ ~ ~ ~ (3b)

and these in turn coincide with the wave functions
and energies of interest also for A. =1.

The fact that Eq. (2) is a. well-defined equation
for all values of A and q'(A) and E(X) being continu-
ous functions of X enables the solution of the de-
sired problem, for which X =1, perturbatively,
even though there is no variable linear parameter
such as Z ' or e within H, itself. The present
treatment argues that if the expansions (3) con-
verge for A. ~ p and p &1, they converge for A. =1 to
the unique eigenfunction and eigenvalue, respec-
tively. We have given the same argument else-
where2' in treating intermolecular forces where
the equation analogous to (2) is not even an eigen-
value equation except for X =1.

Note that the expansion of q (A.) and E(X) in pow-
ers of A does not require these functions to be ana-
lytic in A. , but is based on the Weierstrass theo-
rem, and thus is not affected by the observation of
Mendelsohn that the expansion can contain terms
in log%. .

It is important to notice that the choice of Hp,
the unperturbed Hamiltonian, can only affect:

(1) the radius of convergence or semiconver-
gence of the expansions, i.e., whether they con-
verge or semiconverge for A. =1,

(2) the rate of convergence of the expansions,
i.e. , how many terms are necessary to give the
desired accuracy; and

(3) the ease with which each of the individual
terms can be calculated, which determines the
amount of labor necessary to give results to the
desir ed accuracy.

In other words it is desirable to choose an H,
such that

ft (E) -=IE /E l«~-& =1
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identical two-electron terms, or symbolically, as

us, =-x P g(f, q). (s)
s&j

The use of separable Hamiltonians leads to two
essential simplifications of the procedure for cal-
culating the terms in the expansion of 4, The first
is that the 4'0 which is an eigenfunction of HD satis-
fying

(e,-E,)e, =0 (6)

can be written as a determinant (unnormalized)

4, = Det la(1)b(2)c(3) ~ ~ ~
I

(or a linear combination of degenerate determi-
nants of eigenvalue E,) constructed from spin-
orbitals a, b, etc. , which are eigenfunctions of the
one-particle operator h„satisfying

[k,(1)-e ]a(1)=0. (6)

The second basic simplification, which was first
pointed out by Sinanoglu, '2 is that the nth-order
corrections, 4n, can be obtained by solving sets
of uncoupled inhomogeneous partial differential
equations involving at most n+ 1 electrons. This
enables the energy to be calculated through third
order after having solved equations for no more
than two electrons at a time. As discussed below,
this can be reduced still further to a set of coupled
equations in two variables r, and r2 which decou-
ple" for atoms and ions.

Before examining the specific form of 4„4„
etc. , we note" that it is solely because of the use
of a separable H, that 4, is an independent-parti-
cle function, that 4, is constructed from pair-
correlation corrections, and 4'2 from two- and
three-electron correlation corrections, etc. , inde-
pendent of the particular choice which is made for
Ho.

In order to obtain an explicit expression for 4„
the solution to the first-order perturbation theory
equation

(P, -EO)4, = (E,-H, )40 (9)

we write H1@0 as

-If,e, = —Q g(fq) e a(i)b(2) ~ ~

i &j
= -@[ Pg(ij)a(i)b(2)" ]. (10)

We observe that immediately there is a contribu-
tion to 4, arising from each term on the right-hand
side of (10) introduced by the two operations 8 and
g, so that 4', can actually be written as

4', =8 Q u b(12)c(3) ~ ~ ~,
a&b

where the spin-pair function u~y is the solution to

[k,(1)+k,(2)-e -e ]u (12)

= -g(12)a(1)b(2)
+ boundary -condition (b.c.) terms. (12)

This derivation differs from those in the litera-
ture'2 as discussed in detail in the Appendix. Since

[k,(l)+k, (2)-e -e ]u (12)

= [k -g(12)][(1+P»)ls(l)2s(2)], (i4)

where k~ are the usual boundary condition con-
stants and the spin functions Z, 3 have been divid-
ed from both sides of the equation. When the two
equations are added and divided by 2, we obtain

[k.(1)+k.(2)-~1 -e 1[1(u,+u )l

= [-g(12)+ k]ls(1)2s(2)

+ k '2s (1)is (2),

where we have set
k =-,'(k +k ) =&

g(12) is usually spin-independent, uab will have
electron 1 and 2 in the same spin-state respective-
ly as they are in the spin-orbitals a(1) and b(2).
The boundary condition terms are necessary for
the solution u~g to exist; namely, they are such
that the total inhomogeneity is orthogonal to the
solutions of the homogeneous equation. The latter
are linear combinations of all pairs of orbitals of
energy &~+ &y. If, for example, both a and 5 are
different s states or arbitrary spin and A, is not
the pure hydrogenic Hamiltonian (which introduces
s-P degeneracy), the boundary condition terms are
seen to be

$(1)b(2) Ig(12) la(1)b(2))a(1)b(2)
+ (b(l)a(2) Ig(12) la(1)b(2))b(1)a(2),

where only the spatial orbitals are included in the
integrals. It can be verified that these boundary
condition terms multiplied by the appropriate mi-
nors of 4, and summed over all the pair equations
add up to the term E,4', of the first-order pertur-
bation theory equation. Notice that the u~y are not
restricted to be one-electron orthogonal to any of
the unperturbed orbitals.

The second- and third-order perturbation theory
energies can be obtained by substituting this 4, in-
to equations for E, and E, and the former is given
explicitly in the Appendix.

It is significant to note that 4, is described in
terms of pair functions uab(ij) which possess no
symmetry, whereas in the literature' ~" the de-
scription is always in terms of antisymmetric
pair functions, and has led to considerable compli-
cations. 2 The present nonsymmetric description
shows that these complications are, in fact, un-
necessary, since the singlet and triplet pair func-
tions in the usual scheme are simply related. " To
illustrate this point, it can be seen, for example
that only one nonsymmetric pair function uis2&(12)
need be calculated in order to obtain both the so-
called singlet and triplet pair-correlation func-
tjOnS14& 15&28

up(12)[o.'(1)P(2) v P(l)o.'(2) J=—u~(12)Z, ~

between 1s and 2s doubly-occupied orbitals of
beryllium. The partial differential equations de-
fining these functions are
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and k'=2(& —& ) =A
+ — ls1s (17)

This is just the Eq. (12) for the spatial part of
uls2s(12), so that

u
2

(12) = —,'[u (12)+u (12)]. (18)

+ g Q Q u (123)d(4) ~ ~ ~

a&c
+ft Q u (12)u d(34)e(5) ~ ~ ~ .

a&b
(24)

In a similar way, by subtracting the second equa-
tion from the first we obtain an equation for

u2 (12) = —,'[u (12)- u (12)],

and this equation is precisely P» times the Eq.
(12) for uls2s, so that we have

(2o)

= -g(12)u (12)+b.c. terms
ab

— 3 C

and Q h, (i)-Q e. u M (123)
-i=1 i=a

(25)

The equations satisfied by the uab'" and uabb~ are

[h,(1)+h,(2)-e -c~]u
h

~'(12)

and so that the functions u+(12) are given by

u (12) =(1+P,~)ul 2
(12). (21)

= -g(12)a(1)u (23)-g(23)u (12)c(3)

+b.c. terms, (28)

Excited states of helium have been considered per-
turbatively by several authors, 2' 3' as has the 1s-
2s pair correlation in Be", all using treatments
which obtain the pair functions variationally. In
such variational calculations, the Hamiltonian to
be diagonalized can be symmetry blocked, and the
use of our nonsymmetric pairs offers no particu-
lar advantage and might even prove less favorable
than solving for the projected pairs themselves.
On the other hand, if the pair equations are to be
integrated numerically as described below, the
loss of symmetry is of lesser importance, and the
decreased algebra attending a smaller number of
nonsymmetric pairs might make the latter advan-
tageous. Generalizing from the helium example,
it can be seen that if the X electrons are in N/2
different spatial orbitals, the maximum number
of pair functions that must be determined is
N(Ã+ 2)/8 as distinguished from the X'/4 presum-
ably expected previously. This number will be
reduced still further to M(M +1)/2 for atoms with
electrons in M shells (each at least doubly-occu-
pied) since h, can be taken as a function of r only
so that the radial parts of the pair functions are
independent of azimuthal quantum number nz.
Thus for Ne, Ar, and Kr, respectively, radial
functions need only to be calculated for 6, 15,
and 36 independent pairs, and the size of the cal-
culation of 0, increases roughly in proportion to

¹

In order to obtain an explicit expression for C2,
the solution to

(Ho Eo)4'2 =(E~-H-~)%'~+Em%'o

we write -a,+, as
-H, vJ, =- Qg(ij)e Q u (12)c(3)*~ ~

i&j a&b

Q g(ij)u (12)c(3) ~ ~

abi& ja&b

(22)

(23)

Analogously to the derivation of (11) above, we can
see that 4~ can be written in terms of second-
order spin-pair functions, three-electron spin-
functions, and products of spin-pair functions, as

4, =a Q u &»(12)c(3)d(4) ~ ~ ~

a&b

+ u'
~~ (123) (27)

in terms of known pair functions. The parts of
@2 expressed as products of spin-pair functions
can be seen to occur since clearly

q(1234) =u h(12)u d(34) (28)

is the solution to

4 d
Z &.(f)- Z e,. W(»34)=

'-i=1 i=a
= -g(12)a(1)b(2)u d(34)

-g(34)u &(12)c(3)d(4) +b.c. terms (29)

whose inhomogeneity occurs in the breakup of (22)
and (23).

The functions uab@) form the first corrections to
uab. Thus, in an exact-pair scheme analogous to
that of Sinanoglu, ' where we define un'( ) as the
solution to

[I,(1)+I,(2)-~ -e ]
(")

a b ab

=g(12)[a(1)b(2)+u
&

(12)]+b.c. terms, (30)

we have in the X expansion

u =u +Au '+O(A )ab ab ab

The recent work of Byron and Joachain" has
shown the importance of including such terms at
least for outer-shell electrons. The functions
uabu~y, first discussed by Sinanoglu~' and called
"unlinked clusters, "provide a significant contribu-
tion to the fourth-order energy, 2' even though they
only require a knowledge of functions appearing in
the first-order wave function. That they contribute

where the generalized boundary-condition terms
are added as appropriate. As shown elsewhere, '~b

assuming the singularities can be properly taken
care of, the three-electron function uabb~ can be
written as

u
~~

(123) =u ~(12)u~ (23)b(2)
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more to the total energy than the "true" four-elec-
tron clusters, i. e. , those which require the solu-
tion of four-electron partial differential equations,
is easy to see, since the latter only appear in 40
and contribute first to E„well beyond any expect-
ed accuracy in atomic calculations. We prefer not
to use the terms "exact pairs" and "unlinked clus-
ters'"' since the actual functions depend on the
particular choice of separable Hamiltonia, ns II,.

The problem of finding 4' and E using perturba-
tion theory thus reduces to choosing an appropri-
ate separable H, to satisfy the three criteria of
goodness described above: solving for the spin-
orbitals a, b, etc. , the spin-pair functions uab(12),
etc. , and perhaps the functions uabbc(123) and
uab ~@(12), etc. , and at the last step evaluating a
number of integrals over these orbitals, pair func-
tions, etc. We now discuss the choice of H„ fol-
lowing which we briefly discuss some of the meth-
ods of computation and give our results.

@
UHF(.

) |~ ~ Z

+ 2 fl- I- ]-I.— I -]] (32)
p p p p

and certain "restricted" variants thereof. The
spin-orbitals ap are those occurring in

+, = a a, (1)a,(2) ~ ~ , (33)

and the "exchange" operators include integration
over spin. Recently calculations have been per-
formed using Hamiltonians ' 39 which replace the
exchange operators in A,UHF by an effective Thom-
as-Fermi exchange potential first discussed by
Slaters' with

b (i) = --,V.2-Z/~.TF .
i

+Q [—a I
—a ]-b(Q la 12)~~2,

p p p p p
(34)

where the two choices of the constants k differ mul-
tiplieatively by 2.. The avoidance of "exchange"
terms in ko not only simplifies the calculation of
+0, but also that of +, and of electromagnetic prop-
erties when performed numerically. 4'~4' As anoth-
er class of Hamiltonians we have suggested" the

III. METHOD OF CALCULATION

A. Choice of 00

A general separable II, for an atom can be de-
fined in terms of the one-electron operators

a, (i) = --,'V.'-Z/r. + V(i)+ fdic. V(ij)P, (31)
Z Z U'

where the potentials U(i) and V(ij) include spin-
projection operators and I'z& permutes the coordi-
nates of electron i and j.

In addition to the hydrogenic Hamiltonian for
which V(i) = V(ij) =0 and the screened-hydrogenic
Hamiltonian for which V(i) = v/~i and V(ij) = 0, cal-
culations have been usually performed using the
unrestricted Hartree-Pock Hamiltonian, '4

use of "exchangeless" Hamiltonians of the form

ho (i, n) = =,V.'-Z/x.EL .

+Q' Z r-a 'I-a '],
p p

(35)

Q = (N 1)/N, - (36)

so that the total screening terms do not complete-
ly screen the nuclear attraction term. As an al-
ternative choice, which might actually prove use-
ful in increasing the rate of convergence for large
atoms, we also propose the choice

n = (N-1)/2N, (39)

where ap are single-particle spin-orbitals which
should simulate the a,ctual orbitals ap of +0 but
need not be the self-consistent solutions. In par-
ticular, it will be convenient for open-shell sys-
tems to take ap as the spherical and spin average
of the approximate eigenfunctions of hoEL, there
being no advantage, in the perturbative scheme
discussed here, to carry out the iteration to self-
consistency. (These arguments could be applied
to modify b,TF in the same way. ) This enables bo
to commute with l', lz, s, and sz, so that Ho com-
mutes with I-', Lz, S2, Sz, ~', and Jz. Thus 40
can be constructed as either an eigenfunction of I-',
Iz, S, and Sz, or as the linear combination of a
number of determinants of , 4z, ~, and Sz,' and
since H, also commutes with all these operators,
+„4„etc., are also exact eigenfunctions of the
appropriate angular momentum operators. For ex-
ample, the '~P' state of carbon can be written as
the sum of three determinants (unnormalized),

40 = Det I (ls)2(2s)'2poo. '2p, p I

+ Det I (1s)'(2s)'2p Q2p p I

+ Det I (ls)'(2s)'2P n2P+it I, (36)

where the three P states are degenerate eigenfunc-
tions of the same AOE; and equivalently as

40= 81sn(l)1s p(2)2s Q(3)2s p(4)

xi~.'(&,)ft '(&,)Y,(6,.)&(5)P(6), (37)

where Y,(9,~) is the first spherical harmonic of
the interelectronic angle ~,e, and R~' is the radial
part of the three 2P functions (n=2, f =1). Thus
open-shell atoms can be treated on exactly the
same footing as closed-shell atoms, which is not
possible in one of the Restricted Hartree-Pock theo-
ries of Roothaan. 42 It is possible to treat them
equally in the hydrogenic theory of Layzer, 43 Lin-
derberg and Shull4 and Safronova and Tolmachev"
except that here there is the extra Coulomb degen-
eracy as well. Notice that for partially-filled
shells the effect of the exclusion principle becomes
particularly transparent when E, is written in the
form (A.4).

The variable parameter n which appears ink,
of (35) can be chosen based on a variety of criteria
—such as to simulate h,UHF, to minimize the pair
operator gEl (ij) asymptotically in some region of
space, etc. %e propose without further discussion
the choice
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which makes g(ij) asymptotically

g (ij) —1/r -..1/2r .-1/2rEL . .
ig

(40)

a l (r, &, p, s) =[A 1(r)/r]I'I (8, p)o(s), (43)

where &~ is a spherical harmonic and o' a spin
function; the radial function Aui(r) is independent
of m and is the solution to

[ 2d'/dr-'-(1/r)d/dr+ V(r)+ l(l+ I)/2r' e]-
x (g /r) = O. (44)

This type of solution has been used in all single-
particle atomic calculations, for historical rea-
sons, in order to make hand computations practi-
cable, even for so-called SCF calculations on open-
shell atoms, which serve as an orbital restriction
on self -consistency. "

Similarly, the spin-pair function uab(l, 2) can be
expanded as"

u
b (12)= o(l)o(2) Q Ull, ,(r„r,)ab

)E / / %2&l

I
(1)yl (2)(r,r.)

' (46)

with the Uil ~~ (r„r,) solutions to the two-demen-
sion31 equations

82 ]. 9

l(l+ 1) l'(l'+ 1)

~.&b
&& (rp, ) 'Ull, ,(r„r,)

where the number of repulsions exactly cancels the
number of attractions. This mould correspond to
an asymptotic A, EL of the form

(&)--'& -[(N+1)/2]/r; (41)

in which each electron is screened from the nucle-
us by an average Coulomb field arising from the
remaining N lel-ectrons. Our first choice (38)
has the advantage of enabling h, EL to reduce to the
exact Hamiltonian for a hydrogen atom, whereas
the ho of the hydrogen atom is"

ho = ——,V'-I/r+ [-1s I-1s]-[-ls I ls-], (42)
UHF

and the convergence of the perturbation corrections
to the electric polarizability using this h, has been
shown40 to be quite slow. For helium, the hoEL
with o.' of (38) reduces to the Hartree ho, the con-
vergence of whose perturbation expansion has been
demonstrated by Byron and Joachain. "

B. Partial -Wave Expansions

When the spherically symmetric A,EL is used,
the equations for the spin-orbitals, the spin-pair
functions, and three-electron functions, etc. , can
be separated into uncoupled equations for each of
the partial waves. Thus the solution to the one-
particle equations (8) can be written as

ab
~if mm (r"")

where
Q&& ~ is defined by the partial-wave ex-ll mm.

pansion o~f the inhomogeneity of (12)

(46)

g (12)a (l)b (2) + b.c. terms

= o(1)o(2) Z I'I (I)I'I (2)@if. , (47)
$)/ / I/ PBtB

It is seen that the operator of (46) is independent
of m and m' and therefore the pair corrections for
al/ pairs of orbitals a and b, which differ only by
azimuthal quantum numbers (e.g. , all pairs of P+,P, and Po of the same quantum number n) can be
obtained from the U' s for an individual pair mere-
ly by including the appropriate angular factors and
Clebsch-Gordon coefficients.

For a and b, both s states the right-hand side of
(47) can be written as

o(1)o(2) Z I'1(6„)Q1 (r„r,)
ab

(48)
l=P

Qi (r„r,) c- [/I (r,)8 (r,)/r p', ]r /r (49)

for I &( and the Ull~rara~ of (46) can be replacedab
O' Q

The one-dimensional eigenvalue equations and
the two-dimensional inhomogeneous equations can
be solved by linear-expansion techniques equiva-
lent to the usual variational procedure, by nonlin-
ear-expansion techniques using the appropriate
variational principle, or by numerical integration
techniques. We have chosen the direct numerical
integration procedure for the present study to ob-
viate the problem of choosing a complete, but not
overcomplete basis." Cohen and Coulson4' have
indiceted the ease of performing such numerical
calculations for molecular spin-orbitals, and we
have suggested using these numerical procedures
for large molecules. " The application of numeri-
cal techniques to the two-dimensional inhomoge-
neous equations was suggested to us by V. MeKoy. 4

The calculations, which are presented in the next
section, have been performed using solely numeri-
cal techniques and do not fit the results to analytic
functions in order to evaluate the integrals analyt-
ically. Had we been interested in simple polyno-
mial fits of the radial pair functions and been will-
ing to evaluate the analytic integrals, we could
have solved the problem variationally in the first
place and obtained exactly the same results as can
be obtained by solving numerically and then fitting,
and have also managed to avoid the extrapolation
problems inherent in the numerical procedures.
While we might actually treat the pair functions of
larger atoms variationally for reasons of conven-
ience, we are content here with performing calcu-
lations which are at every stage numerical and con-
tain no analytic fits whatsoever; and we claim an
error in the energy which can be estimated direct-
ly from arguments of numerical analysis. As such,
there are no questions of limits of basis size, and
the errors due to finite boundaries or finite such



size can be estimated quantitatively,

C. Molecules

%'bile the present discussion has been centered
on atomic problems, it is pertinent to sketch brief-
ly the application to molecules since we believe
that exchangeless H, '8, single-center expansions,
and numerical methods may be a useful combina-
tion of techniques for molecular calculations.

%hen the Hamiltonian contains many Coulomb
interactions, it mill px'obably not be possible to
wx'lte RQ 80. Rs R function of & measured from some
center in the molecule such that a perturbation pro-
cedure will converge, although this might be possi-
ble for some diatomics RDd some illustrative cal-
culations have been made by Hauk, Parr, and Ha-
meka'o and Dvoracek and Borak'~ along these lines.
%'hat we expect should be done is an expansion of
some exchangeless or even screened bare nuclear" »"h, about a point,

ho =Qf ho (r)Yf (8, y)

and a numerical solution20 of the coupled set of
equations for each of the eigenfunctions

a (r, 8, q, s) =o(s)p[Af (r)/rjFf (8, y) (51)

accuracy of the computational method because of
its simplicity Rnd becRuse variational solutions for

already exist for the hydrogenic4 ' "and Har-
tree'5 Ho's. In this section axe given the explicit
expressions for E, and 8,. The numerical proce-
dures are described in Sec. IV.B, and the energies
calculated through third order for five different
Ho's are given in Sec. IV.

With ho defined as in (31), we take the spatial
part of boas
ls(1)is(2) = (4sr,r,)-'P(r, )J (r,) (52)

and~ using (12)~ solve fol' 4"1 wlllcil 18 1'tself slnlply
a Spatial palx function, gls&s, times a spin func
t1011. Uslllg E(ls. (45) (49) alld wl'ltlllg

u =Qf 4 u (r„r,)P (c08812)(rlr,)-', (53)
(21+ 1)

the equations that must be solved for the p,
E

Rre

(1+P„) —
2 8,——+ 2, +V(r, ) -2ei uf

82 2 &(f+ i)
f ] lg

ls ls I Isla 5&0+ V X~ + V r2 5&0

as has already been done for II2+ in its ground Rnd
excited states by Cohen and Coulson4' some years
ago, The advantage of not having a self-consistent
or even pseudo-self-consistent (e.g. , fully iterated
exchangeless) scheme, becomes apparentwhen one
realizes that for these functions this could require a
double- iteration scheme. Experience seems to indicate
that coDvel geQce of the single ltex'RtloQ Dec68-
sary to obtain the A~ will be relatively rapid, al-
though a fairly large number of individual A)~ may
be needed. The calculations previously performed
on single-center expansions other than those of
Cohen48 cannot, however, be compared with such
calculations for a numbex' of reasons, principally
because they did not deal with numerical solutions
of one-electron eigenvalue equations. Notice, how-
ever, that despite the relative complexity of the
form of the orbitals, one has the opportunity for
gx'eRter px'eclslon than lQ the usual limited bR818
set schemes.

Si.milarly the paix -equations arising from the
first-order perturbation theory equations can be
solved by expanding the U@g in partial waves as
for atoms, except that now the equations for the
different partial waves do not separate and the
U~~~~~~@ must be solved for iteratively. Again,
even despite the labor involved, this procedure
may prove tractable where the conf lguratlon intel'R-
tloll (Cl) type 18 Ilot.

IV. APPLICATION TO THE HELIUM-ATOM GROUND STATE

A. Equations Resulting from
PartialWave Expansions

The helium-atom ground state has R single, sym-
etric pRlx' functloQ fox' the spRtlal pRrt of its fix'st-

ox'dex' wave functloQ» Rnd lt 18 R QRtux'Rl system on
which to test both the various choices of Ho and the

wllel'8 [isis ) is is j ls the usual two-Blectl'011 Coll-
lomb integral. Notice that the term in 8, vrhich is.
required for the inhomogeneity to be orthogonal to
Rll Sobltlons of the homogeneous equation enters
only in the j'= 0 case, since there are no eigenfunc-
tions of energy ~ps for E&0.

As pointed out by Schwartz, ' E2 decouples into a
sum of terms

— QE (f)
E=O

())= J'(»))'(») i i [i»(»)+i»(»)»)» Iii)OI

xu fdr gdr2.

The third-order energy can be obtained by substi-
tution of the 4, and r» ' expansions into

E2= (1 )H, -E, [1)-2(l ( 0)E2 (57)

and is given by

(2f, + i)(21,+1)
&: ): ffP

l„l,=o a

~
—i- [V(»,)»Vl» )»)),]II~OI+

xu u& dr,dr;2E, ffP(r, )P(r,)uyr, dr, (55)
2

vrhere

C&
& &

=f P& (cosv)P& (cosa&)P&(coerce)sin(dd&u. (59)
2
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A general formula for this integral is given in-Con-
don and Shortley. '3 The range of k for given I, and
$, is limited to a finite number of values by a tri-
angle condition; on the other hand the sums over
I, and I, are infinite. It is hoped, and this hope
seems to be borne out in this work and that of By-
ron and Joachain, "that for chemical accuracy
these expansions can be truncated after the first
few terms.

B. Numerical Solution of the Differential Equations

The applications of numerical techniques to solv-
ing the ordinary differential equations of atomic
and molecular physics are well-known, having
been applied to the eigenvalue problem for atomic
orbitals by the Hartreese and to inhomogeneous
perturbation equations by Sternheimer~ in connec-
tion with one-electron perturbations. Numerical
methods for partial differential equations have not
received the attention they deserve in atomic cal-
culations"-most workers preferring the use of
variational procedures"-although they are regu-
larly used in engineering and have been suggested
by Bartlett" as a method of direct solution to the
helium-atom Schrbdinger equation.

The advantages of the use of numerical methods
are (1) there is no problem of incomplete basis
sets; (2) analytic evaluation of integrals over ba-
sis functions is avoided; (3) the problem of abso-
lute minima versus local minima in variational so-
lutions is avoided; and (4) the solutions are ob-
tained in easy visualizable form as ampli. tudes over
a turbo-dimensional domain.

To begin the numerical solution, the single-par-
ticle radial equations (44) were solved by the Har-
tree'~58 method using Numerov successive point-
by-point integration. Five or six decimal accura-
cy in the orbitals and eigenvalues is readily ob-
tained, to give 4o, ~0, and E„with the latter be-
ing obtained to the same accuracy by two-dimen-
sional numerical integration using the trapezoidal
rule. "

To obtain numerical solutions to the pair equa-
tions (54), a square domain in the r,-r, plane was
chosen with both r, and r, running from zero to
some sufficiently lax ge value n. The square was
partitioned by a mesh of N' points (N -40) at whose
intersections the continuous variables r„r„V,
P, and 0 were defined. Conversion of the partial
differential equation to a discrete algebraic equa-
tion was completed by substitution for the second
derivatives of the simple five-point finite differ-
ence formula" where h, the mesh size, is the dif-
ference between adjacent points (n/N) in either the
r, or r2 direction, and U(i, j), f, j= 1, ~ ~ ~ N, is the
value of the pair function at r, = ih, r, =jh.

Taking cognizance of the boundary conditions for
the partial differential equations (54) we impose on
the discrete problem the condition that U vanish on
the boundary of the square nxn domain. For the
exact problem, U should be small (but nonzero) at
r„r2 =n, if at these points the one-particle solu-
tions are themselves quite small.

The pair equation is turned into a set of simul-
taneous equations summarized by the matrix rela-
tion MU =Q where U and Q are N' vector approxi-
mations to the pair functions and inhomogeneities,

respectively, and M is the X'xN' matrix xepre-
sentation of the operator of (54). The off-diagonal
elements of M arise only from the finite difference
approximation to the derivatives and can all be
trivially reduced to unity by multiplying the equa-
tion through by h'. Matrix M is then reduced to a
matrix of NxN submatrices of which only the diag-
onal submatrices (M;; i = 1, ~ ~ ~, N') and two adja-
cent strips or bands of NxN identity submatrices
contain nonzero elements (Fig. 1). Such a matrix
is sometimes referred to as block-tridiagonal. "
The fact that it contains very few nonzero elements
in this particular arrangement facilitates solution
for U, since the large size of M (greater than 10'
when N has the typical value 40) precludes it from
being stored intact and inverted.

Matrix M can be set equal to the product of two
matrices L and U also having block-tridiagonal
character but with zero elements above and below
the diagonal submatrices, respectively (Fig. 2).
Such L-U decompositions allow solution for U by a
two-step process using forward substitution with
L followed by back substitution with U.

M can also be seen to be a band matrix of width
2N+ 1, namely one in which all nonzero elements
lie in a band symmetric to the diagonal, and any
element Mzj of M vanishes for (i-jl &¹The band-
matrix viewpoint~' does not take account of the
block-tridiagonal character of M and therefore,
although allowing for a L-U decomposition, does
so at the cost of larger storage than tbe block-
tridiagonal L-U method of Fig. 2. In fact, by ob-
serving that L~ =Uz ', the storage is reduced to
the Ã2- lU matrices.

Although the results given in the following sec-
tion were obtained by the L-U method, we have
also found Gauss-Seidel iteration" to be conver-
gent, and capable of yielding eight decimal place
agreement with the direct L-U decomposition in
only slightly larger computer times. This method
starts with an initial solution U', readily obtained
by inverting the diagonal part of M[e.g. , U'
= (diag. M) 'Q]; and it has a number of advantag-
es over the L-U method, the most important being
its neglible storage requirements. Various extrap-
olation and relaxation techniques' can be intro-
duced to accelerate convergence, and these are
under current investigation.

The finite difference approximation is the larg-
est source of error in 4~ and in the E2 and E~ corn-
puted using the trapezoid rule. This error may be

M~ I
sh2 7

I M~ I

«I M~P

FIG. 1. The b1ock-tridiagonal matrix (N2&N2) of ma-
trices M and I, each NXN.
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L)
I L2 0

I L~

0
I LN2

I U)

U2 0
I U~

UN2 )

I

the constant c may be chosen to adjust the number
of intervals of p space to correspond to some de-
sired length in x space; for example with c =0.1
and 1.0, half the intervals in p space correspond
respectively to ~= 1.0 and 10.0 a.u. A disadvan-
tage of this change in variables is that first deriv-
atives are introduced into the pair equations; how-
ever, this problem is easily resolved in the itera-
tive method of solution.

FIG. 2. The product of a lower block-tridiagonal ma-
trix j and an upper tridiagonal matrix U, where LU
-.=M of Fig. 1.

very greatly reduced using an extrapolation tech-
nique known as Richardson's differed approach to
the limit, "for which an expectation value of inter-
est is expanded in a power series in h

(A) =A +A~hm+A~h4+ O(h'), (60)

where the A's are constant. Since (60) contains
three unknown A' s, the desired "zero-mesh" quan-
tity may be found by computing (A) h at three dif-
ferent mesh sizes and solving simultaneous equa-
tions. The error in (A) obtained by this extrapo-
lation method is on the order of hmm, ', where
hmax is the largest of the three meshes so that it
is desirable to keep &max as small as possible.

Our intent in applying numerical methods is to
obtain energies in error by only chemically insig-
nificant amounts, and we do not intend to compete
with calculations as in Refs. 1-3. The actual ac-
curacy of our numerical procedure is limited by
the choice of a finite boundary and by inaccura-
cies in the finite difference-extrapolation sequenc-
es. These errors should in general be balanced
against each other for a fixed number of mesh
points: decreasing the upper limit n of the domain
reduces the boundary error but increases the cor-
responding mesh size. A way to get some meas-
ure of the boundary error is to run several trial
computations with the mesh size held fixed and n
moved sucessively further out. When this was
done for the hydrogenic helium expansion it was
found that increasing n from 5.0ao to 7.0a, de-
creased E,(l =0) by 1 &&10 ' a.u. , while changes in
E,(l &0) were even smaller. A further extension
for 7.0ao to 8.0ao changed E~(l =0) by 1 &10~ a.u.
For the single calculation with e=o =0, n was tak-
en as 5.0 a.u. and the chemically acceptable error
was assumed in order to get the advantage of
smaller mesh size. For the other calculations
(discussed in the next section), the orbitals were
more diffuse because of nuclear screening, and
for these cases the boundary was arbitrarily taken
as 7.0 a.u.

An interesting method of avoiding both boundary
and mesh size problems might be the change of
variables p = cr/(1+ cr), with c an appropriately
chosen constant discussed below. The domain of
the pair function is reduced to a unit square (since
p-1 as r —~) on whose perimeter the pair func-
tion vanishes identically. Moreover, choosing Ã
= 40 makes h = 1/40, which the present work sug-
gests is a sufficiently small mesh size. Finally,

C. Energies for Ground-State Helium
in Several Perturbation Expansions

Table I summarizes much of the perturbation
literature for atom energies. The results of Kel-
ly" are not included as he does not separate vari-
ous orders of perturbation. It can be seen for the
three atoms for which comparison is possible, the
hydrogenic expansion is not necessarily much
more slowly convergent than Hartree-Fock and,
in fact, for helium it is even better through third
Order.

For the helium-atom ground state, we have used
five perturbation expansions: (1) hydrogenic [rr=0,
also exchangeless, o. =0]; (2) and (3) screened hy-
drogenic with o =-,' and —'„', respectively; (4) ex-
changeless with n = —,

' from (38) and fully-iterated
orbitals, which corresponds to the Hartree proce-
dure; and (5) exchangeless with a = 4 from (39)
with the orbitals a' being first iterates starting
from a 1s Slater orbital of exponent 1.6875 as the
zeroth iterate. Energy values for the expansions
(1) and (4) have been obtained in previous calcula-
tions, while the energies from (2) and (3) are use-
ful in providing checks on the numerical techniques,
and the energy from (5) can be compared with that
from the somewhat UHF-like expansion (4). The
different rate of convergence of expansions of (1),
(2), and (3) is of no significance, since the various
En are related to each other. However, the differ-
ence between the convergence of the corresponding
expansions in molecules may be important. 2'

In order to illustrate the rate of convergence of
the l expansion of E, and the numerical errors in-
volved in the computation, we compare in Table II
our results for hydrogenic helium with the varia-
tional results of Byron and Joachain" and Knight
and Scherr ~T.he components, E,(l) of the second-
order energy differ from the more accurate varia-
tional values by at most 7 x10 ' a.u. for E~(0) and,
in fact, the total error through l =7 is only S.6
&&10 ' a.u. higher than the variational value through
l =7. The error in these terms is probably due to
limitations of the extrapolation procedure. For ex-
ample, the extrapolated value, E,(0) = -0.125 262,
was obtained from the three values -0.1260377,
-0.126 2027, and -0.1264127, at mesh sizes h cor-
responding to &9, ~8, and &a„respectively. Thus
the extrapolation has succeeded in reducing the er-
ror by one order of magnitude. As anticipated,
this error is roughly hmax', and explicitly 9A,max .

Terms in higher l such as E~(5) and Em(7) have
larger relative (although smaller absolute) errors
than the l =0 term because the peakedness of the
pair functions increases with l in the manner dis-
cussed by Schwartz. In fact, Byron and Joachain"
have suggested the largest source of error in their
calculations arises from E~'s of higher l. The for-
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TABLE I. Literature values for atomic perturbation energies (a.u. ). The numbers in parentheses are the errors in
parts per thousand, referred to Eexact.

Hydrogenlc
E "' -4.00000 (-3800)
E"' -2.V5OOO (530)E"' -2.9OV 66 (-14)
E (3' -2.9O332 (1.4)E"' -2.9O353 (O.65)E"' -2.9O366 (O.21}
E"' -2.9O3 VO (O.O69}

Hydrogenic
E(" -1O.125O (-35OO)
E(~) -7.0566 (560)
E(» -7.4649 (18)
E"' —7.4726 (V.3)

Hydrogenic
E( ) -20.0000 (-3900)
E"' -13.v628 (62o)
E'2' -l4 6404 (18)
E (3)

E (4)

E (5)

n
(n)

k=o k

He].ium: Eexact = -2.903 722-5

Hartree~5
-1.835 92 (3700)
—2.8616V {140)
-2.9O9 84 (-21)
-2.9O26V (3,6)
-2.9O3 96 (-O.S3}
—2.903 VO (0.069)

Lithium; Eexact = -7.478 07b

Hartree-Focka
-5.006 21 (3300)
-V.432 V3 (61)

Beryllium: Ee~a~t = -14.6674

Hartree- Fock~5' a
-10.083 88 (3100)
-14.573 O2 (64)
-14.6482 {13)

--14.6585 (6. 1)
--14.6635 (2,6)
--14.6655 (1.3)

Hartree-Fock
—1.835 92 (3700)
-2.8616V (14O)
-2.898 92 (16}
—2.9O2 69 (3.5)
-2.9O3 54 (O.62)
-2.903 VO (O.O69)

a
Eo andEq were obtained by C. C. J. Roothaan, L. M. Sachs, and A. W. Weiss, Rev. Mod. Phys. 32, 186 (1960).b'
A. W. Weiss, Phys. Rev. 122, 1826 (1961).c
The tiMe is a reminder that these calculations omitted three-particle terms in 42 and in the evaluation of E3.

mation of cusps can readily be seen from Fig. 3,
in which the amplitudes of the radial pair functions
Uf(t;, rm) of Eq. (54) are plotted for 5 =0, l, 3, 5,
and 7 along the line r, + x~ = constant-a perpendicu-
lar to the diagonal r, =~2-vrhich passes through
the maximum or minimum of the function. Be-
cause of the small magnitudes of the U's of higher
l, the presence of cusps does not greatly affect the
energy to the accuracy sought here and the slower

I I I i I I f tIO—

TABLE II. Numerical and variational perturbation en-
ergies for hydrogenic helium.

Numerical Variational~~

E2(l =0)
(l =1)
(l =2)
(l =3)
(l =4)
(l =5)
(l =6)
(E =7)

E2 (through E=v)
E2 (a.ll l}
E3 (through /=7)
E3 (aQ l)

+E
E (3)

-0.125 262
—0.026 495
-0.003 900
—0.001072
-0.000 402
-0.000 182
-0.000 094
-0.000 053
-0.157461

+ 0.004 165
-0.004 3494

-0.053 296 -0.153317
-2.903 296 -2.903 316

-O.125 334
-O.026 495
-0.003 906
-O.001077
-O.000 405
-0.000 183
-0.000 094
-0.000 053
-O.15V 54V"
-0.157 656,"-0.157 666'

0—
I I l 1 I j I I I j 1 I I

-6 -4 -2 0 2' 4 6
8

FIG. 3. Amplitudes of P{r&)P(&2),00{x&,&2) and U/{x&,
.v2) for /=1, 3, 5, and 7 plotted against 6, the displace-
;ment from the diagonal along the line x& =-~2+constant
which passes through the function's minimum /maximum
:for P(&~)P(&2)]. P(&i)P(&2) and 00 are the radial parts of
1s (1)ls (2) and the radial part of Uo orthogonal to P(x(}P(x2).
A 6 unit =0.15 a..u. The functions are all symmetrical
with respect to r& =&2, and they have been normalized on
an arbitrary scale from 0 &o 10 to show the relative
peakedness. These results were obtained at mesh size

The scale factors can be obtained from Fig. 4.
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convergence' is not a problem.
Another interesting feature of 4, is that U's for

l &0 are entirely negative while U„ that part of
our U, orthogonal to 4„ is negative near the nucle-
us and positive further out. (4'o is, of course, pos-
itive throughout the domain. ) When viewed along
the diagonal r, =r„as shown in Fig. 4, along with
U~(l &0), U, has a negative minimum at about
0.33a, and in the region near the nucleus looks
very much like HB2s'(r), where B2s is the radial
part of a 2s orbital.

The sum of Em(l) through l = 7 is -0.157 474 a.u.
compared with the value -0.157 666 obtained by
Knight and Scherr~ and claimed to be good to bet-
ter than six decimal places. Our value of E~
through l =7 is in error by about -0.0002 a.u. ;
however, since our E, is quite close to the varia-
tional E2 through l =7, our error is due almost en-
tirely to neglect of higher l values. Although an
extrapolation in l reduces the. error in E„ it turns
out to be unnecessary since the error in E, and E,
appear to cancel. It is hoped that this cancellation
will ho$d in atoms other than helium.

Our value of E'~', the energy thr'ough third order,
is -2.903 296, differing from Knight and Scherr's
value (-2.903316) by less than 2&&10-' a.u. Simi-
lar good agreement was obtained for the Hartree
expansion, where the numerical method gives
-2.90259 a.u. , and Byron and Joachain" obtained
-2.902 67 a.u.

Table III contains the results through E"' for all
five perturbation expansions we considered. The
screened-nucleus expansions give a check on the
internal consistency of our method, since the
terms in the various expansions can be seen to be
related to each other —as has been observed pre-
viously, ""although it has not been generally rec-
ognized. Thus E"' is actually the same in all ex-
pansions and is independent of o, and furthermore,
the E~'s of any two expansions are related by

E,( )/oE, (o,) = (2-o2)/(2-o, ).
From Table III it can be seen that our E(" is con-
stant to 6 ppm, and for the ratios of E,'s we ob-
tained 0.744, 0.649, and 0.873 quite close to the
exact ratios of 0.75, 0.656, and 0.875. Notice that
the energy E &@(o) can be given approximately as

E "'(o') =E "'(o = 0)+ 0.0028o

which, if set equal to the exact nonrelativistic en-
ergy, such that

gE =0
m=4

60—

50

40

30
UJ
O

L- 20
Q.
X

IO

-I 0
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0 4 S I 2 I 6 20
r (in o /q)

FIQ. 4. Amplitudes of P(r&)P(r2), Up [P(rg)P(r2)+ Up],
and U7 are plotted along the diagonal r=r&=r2. Uv typi-
fies U~, l & 0 all of which are negative with minima at
about (6j/9)ap.

would find the "optimum" a - -& for a third-order
calculation, or negative screening. This, of
couse, does not imply that E4, E„etc., them-
selves are zero or even small, which should illus-
trate the completely arbitrary nature of finding
"optimum" screening parameters. The same type
of argument applies to the calculation of electro-
magnetic properties of atoms in hydrogenic and
screened hydrogenic expansions. "

The two exchangeless energy results as given in
the last two columns of Table III show reasonably
rapid convergence, both oscillating about the ex-
act solution rather than approaching it monotoni-
cally as does the Hartree-Fock expansion. "
Through third order the e = 2 expansion appears
to converge more rapidly than the e =

& expansion.
The conclusions to be drawn from Table III are

that all five expansions converge very rapidly, and

TABLE III. Energies for various expansions.

Hydr ogenic
a=0, G.'=0

Screened nucleus
0'= 2 O'=

II

Exchangeless
e —2 (Hartree)

g (p)

g (i)

g (2)

E (3)

Error

—4.000 000
-2.750 000
—2.907 461
-2.903 296
—0.000 428

-2.250 000
-2.812 500
—2.907 473
-2.901 878
—0.001 846

-1.722 654
-2.707 027
-2.907 479
-2.901067
—0.002 657

-1.835 891
-2.861 649
—2.909 710
-2.902 586
—0.001 138

-2.828 048
-2.834 202
—2.911688
—2.901772
—0 ~ 001 952

a Referred to E exact 2 903 724
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surprisingly enough, the most accurate E"' is ob-
tained from the unscreened hydrogenic procedure,
which has the worst E'0' and might have beeri
thought the least likely to converge rapidly. Since
the present calculations are virtually insensitive
to the choice of II„ it remains for further studies
to determine which possible expansions will con-
verge most rapidly. We have succeeded in demon-
strating once again that one need not use the Har-
tree-Fock procedure with its computational disad-
vantages in order to obtain accurate energy values,
at least for the special case of helium atom.
There seems no reason, however, to imagine that
the convergence of the exchangeless procedure
will be drastically different for large atoms than
it is for helium. Further studies on larger atoms
using these methods and the procedure of Musher
and Silbey'4 are being undertaken in. our Laboratory
in order to further clarify these points.

The important points made in this paper can be
summarized as follows: A new derivation has
been presented for the explicit form of the first-
order perturbation correction 4, for a separable
many-electron Bo. The pair problem occurring
for 0, has been examined in detail, and it has been
shown that the number of interorbital pairs can be
reduced by foregoing spin symmetry. This simpli-
fication may be of some practical utility wheri used
in conjunction with the numerical methods dis-
cussed here. When partial-wave expansions are
used, the number of pairs that need be calculated
for atoms is reduced still further. An explicit
derivation of the contribution to 4~ has also been
given.

The choice of H, has been discussed and it was

suggested that exchange operators be removed.
For atoms, IIO should retain spherical symmetry,
and for molecules, a realistic H, should be expand-
ed in partial waves. A numerical procedure for
solving the pair equations has been given and
shown to be an accurate alternative to the Hyller-
aas variational procedure. The study of various
H, 's for the helium ground state led to no signifi-
cant improvement in energy convergence, at least
through third order. None the less, the absence
of exchange should be an important computational
simplification.

We are presently employing these pair equations,
radial expansions, and numerical methods on larg»
er atoms and examining related problems in finite
nuclei.
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Appendix A: Some Details

The explicit form of the second-order energy is obtained from the 4', of (11) as

F., = 5 (Ps'a(1)b(2) Ig(12) I u b(12)) + p (P'@a(l)b(2)c(3) Ig(13) +g(23) Iu b(12)c{3))
a&b cga, b

+ p (P"'a(1)b(2)c(3)d(4) Ig(34) Iu b(12)c(3)d(4))- Z (P~'c(1)d(2) Ig(12) Ic(1)d(2))
c&d

~(P»a(1)b(Z) Iu (12)), (A. l)

(P~'ac lu b)(P~'bd IgIcd), (A.2b)

where
P(.)=E ( l)qP

q=o

is the projector onto the antisymmetric represen-
tation of the symmetric group of N particles, e.g. ,P"' = (1 —P») The fi~st thre. ~ terms in the bracket
arise from (0 IH, I 1) while the last term arises
from -E,(0 I1).

This expression can, however, be simplified
further by examining the third set of terms in de-
tail. They can be divided into the following three
types, containing two, one, and zero "coincidenc-
es," respectively, in the overlap integrals,

(P"'ab Iu b) (P ~'cd
I g I cd), (A.2a)

(Ps'cd Iu )(Ps'ab IgIcd).ab
(A.2c)

The terms in (A.2c) can be seen to cancel all the
terms of the last sum of (A.1) except those in
which c =a and/or d = b in the double sum. In addi-
tion, the tert'ns of (A.2b) and (A.2c) sum to Zero
by an argument analogous to one given previously. 6'

Thus, foe' example, the substitution of the formal
solution

u
b

=Is +eb-h, (1)-b,(2)] '

x [g(12)a(l)b(2) + b.c. terms]
into (A.2c) leads to the vanishing double sum

(~ +a~ ~) '
a b c d

(c, d) ~ (a, b)

x l(Pe'cd Igiab) I'=0 (A 3)
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—P' (P"cd I gled)(P~'ab lu )
c &d ab (A.4)

in which the primed sum indicates at least one co-
incidence between the sets (c, d) and (a, b) Thi.s

since for every choice of a, b, c, and d the same
squared matrix element will appear twice in the
summation once multiPlied by (ea+ eb-ec-ed)
and the other time by (ec + ed-ea-eb) ' with any
singularities properly taken care of by the bound-
ary condition terms. The same argument pro-
vides for the vanishing of the sum of (A.2b).

Thus E, can be written as

~ = Z ((&"'~& Igl~, &&
a&b

+ Q (P' 'a(1)b(2}c(3)lg(13) +g(23) lu (12)c(3))cga, b ab

expression cannot be further simplified in a prac-
tical sense, and there appears to be no way to de-
crease further the amount of labor necessary to
calculate F,

Notice that Eq. (11) which defines the uab does
not restrict these functions to be one-electron or-
thogonal to the remaining occupied orbitals c, d,
~ ~ ~ . Thus uab can, and indeed will contain con-
tributions of the form q&(l)c(2)c(3) ~ ~ and c(1)q'(2)
xc(3) ~ ~ which give rise to terms in q, such as
ay(1)c(2)c(3)d(4) ~ ~, etc., which clearly vanish by
the laws of determinants and make no contribu-
tions to the energy. Since, however, these terms
are not subtracted out of the uab in the first sum
of (A.l} or (A.4) they will occur, in the second
sums as well, and thus appear to be exclusion-
principle-violating (EPV) terms. " As is well-
known, we could have replaced uab everywhere by"

u (12) =u (12)— p [e(1)fc(j)u (j2)dj+c(2) fc(j)u (lj)dj-c(l)c(2) fc(i)c(j)u b(ij)«dj]
cga, b

(A.5)

without changing 4, and hence F.„the only appar-
ent change being that two of the six permutations in
the second term of (A.4), the EPV terms, will
give zero, the corresponding terms having been
shifted into the first tery'. Notice that the uab
will, however, contain contributions of the form
uab will, however, contain contributions of the
form y(1)b(2)c(3) ~ ~ and a(1)rp'(2)c(3) ~ ~, etc.,
which are true single excitations, and whose cor-
responding parts of 0, do not vanish, so that the
variety of other terms in (A.4) cannot be practical-
ly eliminated. Only in the special case of the Har-
tree-Fock self-consistent expansion, for which the
net effect of such single excitations vanishes so
that these two permutations vanish anyway, does
this provide any actual simplification. There is @
correspondingly greater number of terms in E3
which cannot be eliminated by any orthogonaliza-
tion procedure. In view of the great deal of alge-
bra involved in obtaining F3 for large atoms, it is
perhaps better to use the procedure recently dis-
cussed by Musher and Silbey based on a Hartree-
like nonsymmetric H, for which the algebra is con-
siderably reduced.

We now make the observation that, by defining
the g(ij) as in Eq. (5) to be the same for all elec-
trons i and j, we have derived a set of equations
(12}which when symmetrized and applied to the
Hartree-Pock expansion are actually different
from those of Sinanoglu, e.g., Eq. (34} of Ref. 12.
While both derivations are "correct" and the final
results identical even though the actual pair
functions differ, it is illustrative to indicate the
differences in detail.

The procedure af Sinanoglu, also used by Byron
and Joachain, defines a, set of pair operators h(ij)
which are different depending on which orbitals
are being operated on. Their definition is only ap-
plicable to the Hartree-Fock problem, but a slight

generalization which includes the exchangeless pro-
cedure can serve to further clarify the situation,

Consider the class of II,'s which can be written
as

e, =P U (i)+ P—1

p, i p
(A.6)

where Vp(i) is some effective potential due to or-
bital ap or some approximation thereof apo op-
erating on electron i. Thus, for example,

-U (i)=[-a I-a ]-[-a la -] (A. 68)
p p p p p

for the UHF expansion with the h, of (32), and

-V (i)= n[-a 'I-a ']
p p p

(A.6b)

for the exchangeless expansion with the h, of (34).
When the product Ppo of (9) is expa-nded out as

-0 @+HI' C-. ~ ~

with

'ho= (N! )"'84' —= Sa (l)a (2) ~ ~

the H, operating on 4 can be written as

e,[4]= Qh (tj), (A.7)

where

h (ij) = 1/r. . + V.(i)+ U.(j)
V 2 l

+[1/(N-l)][V, (t)+ V, U)] (A.8)

and where the subscripts i and j of the ~'s refer to
the orbital of an 4 which electrons i and j are in,
respectively, and are not electron indices, being
different, therefore from the subscripts in 1/r».
The equation for the pair function cab corresponding
to the uab of (12) thus becomes

[ho(1)+ho(2)-e -&b]v b(12) =-(r 2
~+V (1)+V (2)+(N-1) ~[V (1)+ Vb(2)]ja(1)b(2)+b.c. terms. (A.9)
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&&a (i) =0
p

(A. 11)

where now the -& (i) correspond exactly to the
S&(x;) Itp"(x;) o-f inanoglu. " The equation (A.9)

Notice that from the form of H, given by (A. 5)
there are ¹&&(i)'sof which N(N-1) are for i &j so
that two of these can be associated as appropriate
with each of the X(A'-1)/2 terms x,j '. The re-
maining N terms, &;(i), however must be some-
how divided among these N(N —1)/2 terms and this
is done symmetrically in the definition (A.B) of
h@(ij). Clearly, the breakup of H, into terms h(ij)
will be different for each permutation I'4 of 4,
which makes the derivation somewhat cumbersome
to present fully, although it is straightforward and
has been given previously. " Notice that in the
above notation our g(ij) is defined as

8'( j)= 1/; +[1/(&-1)lz~[l'~( )+ i'~(j)l, (A. lo)

and thus distributes all the potentials symmetrical-
ly and not just the "self-potentials" Vi(i).

For the UHF expansion the h(ij) notation has the
simplification that self-potential terms drop since

-l' (i)~ (i)=fl-~ ~-~ 1-[-~ ~~ -8
P P P P P P

thus reduces to

[ho(1)+ho(2)-& &~-Jv ~(12)

=-[,.-"~,(1)+~ (2)l (1)f (2)

+b.c. terms (A. 12)

which relates to the Eqs. (27)" of &yron and
Joachain's Be calculations for v+ and & by an ar-
gument analogous to that of Eqs. (13)—(19) above.

The Sinanoglu formulation based on the h(~j) pro-
vides an important conceptual advantage over our
g(ij) formulation for this UHF case in that it en-
ables a simple demonstration of the lack of single
excitations in +y The projection of the right-hand
side of (A. 12) onto either a(1) or b(2) is immediate-
ly seen to vanish so that )(g(1) and Xg (2) of

~ &(12)=s(1)X&(2)+X (1)&(2)+~
t,
'(»)

must be taken as zero; and &zg does not contain
single excitations from a and b. The u~g of (12) in
the Hartree-Fock procedure actually contains such
single excitations, although the net effect of the
single excitations in all the pairs making up 4', can
be shown to vanish.
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Electronic g factors and magnetic hyperfine interaction constants have been mea-
sured for the eight lowest-lying atomic levels of Rh . The data are analyzed in
terms of available wave functions.

INTRODUCTION

The low-lying levels of Rh I arise from the three
even-parity configurations 4d 5s', 4d'5s, and 4d'.
Since terms from each of these occur below 13 QQQ

cm-', a considerable amount of configuration inter-
action can be expected. Moreover, a high degree
of spin-orbit mixing occurs within each of the first
two configurations. For these reasons, even the
low-lying levels can have complex admixtures


