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Lattice vibrations in elemental crystals can possess a 6rst-order electric moment, and thus exhibit one-
phonon infrared absorption (reststrahlen), by the mechanism of displacement-induced charge redistribution
(dynamic charge). Trigonal Se and Te, with three atoms per unit cell, belong to the simplest class of rest-
strahlen-displaying elemental crystals. We have performed a group-theoretical, shell-model analysis of
the zone-center optical phonons in these monatomic semiconductors using the most general dynamical
matrix consistent with crystal symmetry and translational invariance. The dynamic charges associated
with the infrared-active modes have been derived, and the effective-charge tensor (Bp/Bu) constructed.
In this model the macroscopic polarization is associated entirely with the shell motion, and the three in-
dependent entries appearing in the eRective-charge tensor correspond to coupling coefBcients connecting
acoustical shell displacements with optical core displacements. For the A2 mode, the chain-twisting core
motion induces an axial shell motion responsible for the electric moment so that a vibration with atomic
displacements J c interacts with radiation polarized ~~c. For this mode both dynamic charge and restoring
force depend upon next-nearest-neighbor interactions between chains, and vanish in the limit of isolated
chains. The expressions obtained for the two L'-mode effective charges provide a means for understanding
the small oscillator strength observed for one E,-mode pair in both Se and Te. The lattice sums entering into
the long-range electrostatic interaction matrix have been evaluated numerically for the detailed geometry
of both crystals. In addition, a simple central-force model for the short-range interactions is discussed to
illustrate some of the more generally derived results.

1. INTRODUCTION

ATTIC E vibrations in elemental, non-metallic
~ - & crystals have been most heavily investigated for
the cubic group-IV semiconductors C, Si, and Ge.
Recently, infrared (ir) and Raman measurements of
zone-center optical phonons have been reported for the
trigonal group-VI semiconductors Se and Te.'—4 Long-
wavelength optical vibrations in these crystals, which
are the subject of this paper, differ in a fundamental re-
spect from optical vibrations in the familiar germanium-
family diamond-structure crystals: For Se @md Te, some

optical modes are i r active S-e and .Te exhibit pronounced
one-phonon absorption spectra (reststrahlen), while C,
Si, and Ge do not. The reason for the nonoccurrence of
reststrahlen in diamond-structure crystals, fjLrst stated
by Lax and Burstein' in 1955, is discussed in the
preceding article' in which the following generalization
is derived: A. necessary and sufhcient condition for the
existence of reststrahlen in an elemental crystal is a
structure with at least three atoms in the primitive unit
cell, s&3. For diamond-structure crystals s=2, so that
the optical modes are infrared-inactive. The crystal
structure of trigonal Se and Te, with s=3, is the
simplest structure known to occur which satis6es this
minimum-complexity condition for a reststrahlen-

' P. Grosse, M. Lutz, and W. Richter, Solid State Commun. 5,
99 (1967).

'G. Lucovsky, R. C. Keezer, and E. Burstein, Solid State
Commun. 5, 439 (1967).

~ A. Mooradian and G. B. Wright, in Proceedings of the Inter-
national Conference on the Physics of Selenium and Tellurium,
Montreal, 1967 (unpublished).

4 R. Geick, U. Schroder, and J. Stuke, Phys. Status Solidi 24,
99 (1967); R. Geick and U. Schroder (unpublished).

5 M. Lax and E. Burstein, Phys. Rev. 97, 39 (1955); M. Lax,
Phys. Rev. Letters 1, 131 (1958); 1, 133 (1958).

6 R. Zallen, preceding paper, Phys. Rev. 113, 824 (1968).
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displaying elemental crystal. The purpose of this paper
is to present a treatment of the lattice dynamics of Se
and Te in the simplest manner which includes the
occurrence of allowed one-phonon absorption processes,
a very strong effect in these crystals.

For NaCl-type ionic crystals, the first-order electric
moment (moment linear in the atomic displacements)
responsible for reststrahlen can be very well understood
in terms of relative motions of nearly-rigid positive and
negative ions, 7 with a small correction coming from the
finite deformability of the charge distribution about
each ion. For an elemental crystal possessing a first-
order moment, the oscillating dipole is due entirely to
the latter phenomenon: the deformation or rearrange-
ment of the electronic charge distribution, under the
inQuence of bonding interactions, induced by the
atomic displacements during vibration. The effective
charge (e*) associated with displacement-induced
charge redistribution is sometimes referred to as
dynamic charge, ' to distinguish it from the static (or
ionic) charge associated with the undisplaced atoms in
NaC1-type crystals.

Previous treatments of lattice vibrations in Se and
Te,'' aimed at calculating phonon frequencies and
dispersion curves from a (hopefully) small number of
force-constant parameters, have considered effective
atom-atom interactions between neutral, rigid atoms.
Since we are interested in dipole moments and effective

' M. Born and K. Huang, Dynamica/ Theory of Crystal Lattices
(Oxford University Press, London, 1954).

SE. Burstein, M. H. Brodsky, and G. Lucovsky, Intern. J.
Quantum Chem. 1S, 759 (1967); W. Cochran, Nature 191, 60
(1961).

'M. Hulin, Ann. Phys. (Paris) 8, 647 (1963); M. Hulin, in
Proceedings of the International Conference on Lattice Dynamics,
Copenhagen, 1963, edited by R. F. Wallis (Pergamon Press, Ltd. ,
London, 1965), p. 135.
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atomic displacements. The dynamic charges are derived
in terms of shell-model matrix elements and collected
in the effective charge tensor (By/Bu) shown in Sec. 6.
In this section we also discuss optical polarizability and
Raman scattering. The geometry-determined part of
the long-range electrostatic interaction is calculated
in Sec. 7 for both Se and Te, and in Sec. 8 we illustrate
some of the earlier results by means of a simple model
for the short-range forces. The principal results are
summallzed iIl Sec. 9.

X
ak

FIo. 1. (a}Primitive unit cell for the crystal structure of trigonal
Se and Te; (b} coordinate axes, vie@red along the c axis (=g axis},
used to describe the atomic displacements.

charges, we must go to the next higher approximation,
the shell model, in which the atoms are resolved into
rigid, oppositely-charged cores and shells. ""The shell
model was originally introduced by Dick and
Overhauser" in order to elucidate, in a simple manner,
the role of dynamic charge in the alkali halides in
producing the well-known deviation of e*/e from 1, the
rigid-ion value for those crystals. Here we apply the
shell model to Se and Te in ord.er to elucidate the
mannel ln which chaI'ge def ol matlon pI'oduces the
observed deviation of e*/e from sero, the rigid-ion value
for elemental crystals.

The group-theoretical reduction of the dynamical
matrix is performed in Sec. 2 and the analysis is carried
over to the shell model in Sec. 3. Sections 4 and 5 present
detailed treatments of the infrared-active optical modes,
particularly the nondegenerate A2 mode in which the
vibration-induced polarization is perpendicular to the

"B. G. Dick and A. W. Qverhauser, Phys. Rev. 112, 90 (1958).
'R. A. Covrley, Proc. Roy. Soc. (I ondon) A268, 109 (1962) j

A268, 121 (1962);R. A. Covvley, VV. Cochran, B. ¹ Brockhouse,
and A. D. B.%oods, Phys. Rev. 181, 1030 (1963);R. L Marston
and B. G. Dick, Solid State Commun. 5, 731 (1967).

& u(f, k) expL —'q. x(~,k)], (2.&)
QX ~

and the inverse relation is

u(l, k) = Q u(q, k) expLiq x(l,k)].
QÃ u

(2.2)

We avoid absorbing the customary mass factor (&mz)
into the definition of the TNC's in order to facilitate
the transition to the shell model in subsequent sections.

The s 3-dimensional vectors u(q, k) de6ne a':l3s-
dimensional vector u(q), in terms of which the equation
of motion for plane waves of wave-vector q and angular
frequency ro becomes

M"'u(q) = D(q) u(q), (2.3)

where M and D are 3s&3s matrices. (Throughout this
paper we will use boldface lower-case letters for vect'ors,
boldface capitals for matrices. ) M is a diagonal matrix
with elements given by ps~BI, I, 8, where ko labels the
e component of the displacement of atom k. 9 is the

'2 S. H. Chen, Phys. Re@. 163, 532 (1967).

ln this section we use group-theoretical methods to
obtain the structure of the most general dynamical
matrix consistent with the crystal symmetry of trigonal
Se and Te. The introduction of the dynamical matrix,
which speci6es the interactions between atoms in the
hRrnlonIc apploxlmatlon, follows BoI'n and Huang)
whose notation we adhere to when possible. The
application of group theory to a nonsymmorphic struc-
ture requires care in describing interchanges among
sublattices, but is otherwise straightforward. The
method has recently been described in clear detail by
Chen in an analysis of lattice vibrations in white tin, "
a nonsymmorphic structure with s= 2.

Let x(l,k) and u(l, k) denote the equilibrium position
and the displacement from equilibrium, respectively,
of atom 0 in unit cell / in a crystal containing
primitive unit cells with s atoms per cell. The trans-
lational normal coordinate (TNC, " analog of a Hloch
function) of wave vector q is de6ned as
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TABLE I. Symmetrized coordinates.

I.R.

A1
A2
A2
E
E

E

C1=
C2=
Cs=
e4=
e5=
C6=
C7=
cs=
e9=

Basis vectors

(4)'"Lrl+r2+rsl
(-)»2gt, +t,+tgg
(—)112t 81+82+ZSJ
(y g) t 2f1 f2 V3tp rs+"8t$'j
(~)'"t 2r1 —r~+V3t2 —rs —its j
(-')1125~2-~sl
(—') '~'L2tI+v3r2 —t2 —mrs —tsj
(—,', l''2$ —2tg+v3r2+t2 —V3r'3+fag
P) I ~2)—2ZI+Z2+gs J

D22 D2s
D2s Ds6

Dynamical matrix

D44 D45 D46
D45 D55 D56
D46 D56 D66

D44 D45 D46
D45 D55 D56
D46 D56 D66

dynamical matrix, a lattice sum of force constants:

&&exp[—iq (x(l,k) —x(0,k'))],
8 %

+a.,a. (&)=
Be.(l;k) De. (O,k'))

(2.4)

where @ is the potential function of the atomic coordi-
nates. We are primarily concerned here with long-
wavelength vibrations (q=0) for which D is real and
the full crystal symmetry is maintained.

The three-atom unit cell of Se and Te is shown in
I"ig. 1."The structure consists of helical coils ("chains")
which wind around the screw triad axis, the c axis of the
crystal. The helices contain three atoms per turn and
are in hexagonal array. The space group is E3&21 (Ds')
for the right-handed crystal of Fig. 1'4 and the six
operations of the factor group are" 1, 3~, 3~X3~, 2,
3&X2, and. 2X3&, where

1 denotes the identity;
3~ denotes a threefold rotation about the c axis,

followed by a —', c translation parallel to the axis;
2 denotes a twofold rotation about an axis perpen-

dicular to c.

This group has been discussed by several authors. '""
It is simply isomorphic to the familiar group 3m (Ca,) of
the equilateral triangle and possesses three irreducible
representations (I.R.'s): two 1-dimensional I.R.'s,
symmetric (A&) and antisymmetric (A2); and a 2-
dimensional I.R. (E)."Notations other than Ar, A2, E
which have also been used for the I'-point (q=0) I.R.'s
are I'y, I'~, I'2 ' and I"~,I',1'3."

The radial (P,), tangential (t;), and axial (s;) unit
vectors shown in Fig. 1 are convenient bases for

"R. W. G. Wyckoff, Crystal Structures (Interscience Publishers,
New York, 1963), Vol. I, p. 36.

"For the enantiomorphic left-handed form, the space group
is F3221 (D66).

'5International Tables for X-Ray Crystallography, Symmetry
Groups (Kynoch Press, Birmingham, England, 1952), Vol. I,
p. 257.

'6 R. H. Asendorf, J. Chem. Phys. 27, 11 (1957).' A. Nussbaum, in Solid State I'hysics, edited by F. Seitz and
D. Turnbull (Academic Press Inc. , New York, 1966), Vol. 18,
p. 225.

"V. Heine, Group Theory in Quantum Mechanics (Pergamon
Press, Ltd. , London, 1960), p. 27.

and

'S~(2) 0 0
Sr(2) = 0 0 S~(2)

0 S~(2) 0

(2.5)

where the 3X3 submatrices are

1 0 0 1 0 0
S~(3g)= 0 1 0 and S~(2) = 0 —1 0 . (2.6).0 0 1. .0 0 —1.
The reduction of this representation yields

I'= Ag+2A2+3E) (2.7)

which specifies the symmetries of the 9 zone-center
phonons.

Combining the above S~ matrices with the I.R.
matrices" in the method of projection operators, "
symmetrized combinations of atomic coordinates can
be constructed; the results, in terms of r";, t;, 9;, are
given in Table I. Henceforth we will use these sym-
metrized basis vectors in discussing the secular equation
(2.3).

In symmetrized coordinates, the dynamical matrix is
block.-diagonalized. The symmetry-determined form of
D is shown in Table I. D is symmetric, so that the
number of independent elements in the initial 9X9
matrix, before invoking crystal symmetry, is 45 rather
than 81. The number of independent elements in the
block-diagonalized matrix of Table I is 10. This reduc-
tion is obtained by the requirement that D commute
with each Sr. [It is sufhcient to use Sr(3q) and Sr(2),
since 3& and 2 are group generators. $

An additional set of constraints, not yet taken into
account in Table I, is provided by translational in-
variance, the requirement of a vanishing restoring force
for a uniform translation of the lattice. Unit rigid

'6 G. F. Koster, MIT Solid State and Molecular Theory Group,
Technical Report No. 8, 1956 (unpublished).

discussing the 9-dimensional representation I generated
by the unit-cell atomic coordinates. The matrices
representing 3~ and 2, the group generators, in. this
system are

0 S~(3&) 0
Sr(3g) = 0 0 S~(3g)

S~(3g) 0 0
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by simply collecting symmetries and rearranging rows
and columns to correspond to the order ci,e~*,c2,e2~,
eg, eo* instead of el,c2 c9 cy* e~~ . c9*.

The number of independent elements of 9, thus far
reduced to 30 (10 for each submatrix) by crystal
symmetry, can be further reduced, as in the last section,
by translational invariance. Relations (2.8) and (2.9)
become, in the shell model,

translations of l, g, and i (cartesian coordinates also
shown in I'ig. 1) correspond to u= &3e4, &3e7, and V3e~,
respectively, in symmctrized coordinates. Translational
invariance then requires that

(2.8)

leading to

D =0 fo"r ij=23 33 44 45 46 (29)
9(ea+e3*)= D(e4+e4*) = D(ep+ei*) =0 (3.2)

D "=D "= D"—for ij=23, 33, 44, 45, 46. (3.3)

The 10 rel«ions of (3.3) reduce the number of in.de-
pendent elements to 20: 3 in the 2&2 A ~ block, 5 in the
4&4 A2 block, and 12 in either 6)&6 E block.

The 3~ and E optical phonons are treated in the next
two sections, with special attention to the dynamic
charge associated with these ir-active modes. The
procedure is illustrated below for the simple case of the
Ay mode.

For AI symmetry the shell-model equation of motion
lS

where s~ and s~* are the core and shell coordinates,
u=—s~c~+s~*el~. At phonon frequencies m*u' is negli-
gible (m*/m 10 '), so that we may set m*~'= 0."The
vibrational eigenvector and eigenfrequency are then
given by

(3.5)Si —811$1p 811 Dil /D1 i j

$ri07 = X11 y )iii (Dii Dil Dll )/Dil (3 6)

The coupling coeNcient a~~ specifies the amount of
shell motion induced by the atomic vibration (core
motion).

The electric moment associated with each vibration
ls determined by

3. SHELL-MODEL DYNAMICAL MATRIX

In the shell model for an elemental crystal, each
atomic site is associated with two particles: a core
(nucleus plus tightly-bound electrons) of mass yg,

charge +Ze, and a very light shell of mass m*, charge
—ge. For trigonal Se and Te, the unit cell of Fig. 1 then
contains 6 particles and the secular equation (2.3)
couples 18 coordinates: ci,e2, co for the cores;
e~*,e~* . .c9* for the shells. In these symmetrized
coordinates, the 18&18 shell-model dynamical matrix
takes on the appearance

p{q)=Q [+&en(q, k) —Zen*(q, k)], (3.y)

where the first term represents the contribution of the
cores and the second term that of the shells, with the
sum taken over the three atomic sites in the unit cell.
In the present case, from the definition of ei (and
similarly ei ) given in Table I, we see that y vanishes
for the zone-center A~ mode; this fully-symmetric
vibration is ir-inactive (a statement deducible directly
from group theory). "

(3.1)

The three zeros on the diagonal {DS~,D44, D77=D4i)
correspond, of course, to the zone-center acoustical
phonons.

The block-diagonalized structure of 9 exhibits a
1&11~ block, a 2g 2 2 ~ block, and two identical 3&(38
blocks. The two E blocks show that eigenvectors of E
symmetry occur in degenerate pairs, so that if a given
combination of c4, e5, and e6 comprises an eigenvector
of eigenfrequency ~, the same combination of cv, c8,
and c9 de6nes an eigenfrequency at the same cv. The
form of 9 in Table I demonstrates immediately that. c~

(a cliaiil-bieathiilg iiiotioii of frequency Ãii/Blj ~ )
is an eigenvector determined by symmetry, while c2
and e3, and similarly c4, c5, and c6, may be mixed
among themselves by the 2X 2 and 3)&3 blocks,
respectively. However, translational invariance (2.8—9)
reveals that the 2)&2 A& block contains only one non-
vanishing element so that c2 and e3 are, in fact,
symmetry-determined cigcnvcctors; c3 ls thc acoustical
mode polarized t~c, while e2 (a "chain-twisting" motion)
is an optical mode of frequency [D22/m$'". Similarly
c4 and cv, which form one of the three pairs of 8 modes,
are acoustical phonons polarized 3 c. The other two
pairs of E modes, two combinations of e„. and e6 de-
generate with the same combinations of e8 and c9, are
not determined by symmetry alone. These optical
vibrations, unlike the Ai and A2 optical modes (ei and

e2), involve atomic motions with components both
paraHcl and perpendicular to the c axis.

where each of the three symmetric 9)(9 submatrices,9" 9"=9" and 9" are of the form shown in Table I.
The D of (3.1) may be put into block-diagonalized form

~' The eR'ect of setting m~co'=0 is to discard the high-frequency
solution of (3.4) which corresponds to a shell vibration (i.e., an
electronic excitation) rather than a lattice vibration. The extra
eigenfrequencies, which are introduced in the doubling of 9 upon
going to the shell model, are subsequently eliminated in this way.

"Reference 6, Table I.
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4. A2-SYMMETRY OPTICAL MODE

The shell-model equation of motion in the A2 sub-
spRCC spRIllled by $2c2+$3c8+$2 c2 +$8 c8 ls

r
S2

mysterious since, being parallel to the c axis, it is
perpendicular to the displacements of all of the atoms
(cores) in this mode.

From (3./) and Table I, the unit-cell moment of an
A2 vibration is p=P,i, with

CC

D23-
D22CS

D2 CC

$3

S2

5$ $3

D cc

CC

D2 CC

CC

B22"
CC

88

D CC

CC

D CC

D CC

D CC

S2

S3

(4.1)

p.=v3Ze(s8 —$8~); (4.10)

axial displacernents (s3,s8 ) contribute to p, while
chain-twist displacements {sl,s2*) do not. We check,
wltll (4.7), thRt p valllslles foI' the acoustical mode, Rs

it must by charge neutrality. For the optical mode we
find that

Setting m*=0 in the third and fourth rows leads to
relations for the shell displacements in terms of core
displacements:

S2 =@22S2)
D28 ++22 D83

822=-
D23" —D22"D33"

(4.2)

The second and erst rows, respectively, of (4.1) then
yield

mo)'s3=0 (4.4)

ygaO $2= P 22S2,

X22= |.D28 (D22 +2D22 +D22 )
D CC D eaD CC

+D88 (D22 +22 D22 )j (4 6)

One solution of (4.2—6) is immediately recognizable
as an acoustical mode:

M —0t $2 —S2 —Oi $3—$3 (4.7)

This corresponds to a rigid translation of the crystal
parallel to the t,. axis.

For the optical mode, by (4.4), s3 vanishes, while the
other three coordinates participate in the vibration:

(e= (ll22/288) "', (4.8)

$3=0
& S2 ~22S2 y S3 = 832S2 ~ (4.9)

The last relation shows that in this mode the atomic
motion, a chain rotation (s2e2), induces not only a
similar motion of the shells (s2*e2*) but in addition, via
the coupling coefFicient a32, an axial motion of the shells
(spc8 ).We will see below that it is precisely this axial
shell tno)ion which accounts for the electric moment of
the A2 optical mode, a dipole moment at first sight

D28 (D22 +D» )
$3 a32$2+ $8 p a82

D22"D33cc—D23CC

D23"= (1—a22) (4 3)
D CC

pg= V3Ze$3

=—VSZea82s2,
(4.11)

verifying the central role of the induced axial motion of
the shells. We identify the multiplier of s2 in (4.11) with
the effective charge of the optical mode of A2 symmetry:

e*(A2) = —V3Zea82. {4.12)

The interpretation of these results is illustrated in
Fig. 2. An interesting feature of the "cha,in-twisting"
A2 mod. e is that for this vibration both the restoring
force and the induced electric moment depend. upon the
presence of next-nearest-neighbor (NNN), and higher-
order, interatomic interactions. (This point is discussed
further in Sec. 8 in terms of a simple model for the
short. -range interactions. ) Nearest-neighbor (NN) bond
lengths and. angles are unchanged during this vibration.
Equilibrium NN bonds arc shown as solid lines in
Fig. 2. Shown as dashed lines are the instantaneous
locations of the four NNN bonds surrounding one atom.
For the s2 displacement shown, bonds 1 and 2 are in
compression, bonds 3 and 4 in tension, relative to their
equilibrium lengths. These interchain bonds, viewed as
springs, provide a restoring force opposing s2, con-
tributing importantly to A,22.

The shell-model results of (4.9) are represented on
the left side of Fig. 2, with heavy dots as cores, open
circles as shells, and arrows a,s the dipoles induced at the
atomic sites by the A2 optical eigenvibration. The
signi6cance of the coupling coeKcients a22 and a32, which
specify shell displacements induced by core displace-
ments, is evident. The dipole components in the plane
J q sum to zero over the unit cell, while the components
~~c are equal and add to give the result of (4.11).

As nearest-neighbor interactions do not contribute
to X22, we might expect Ie(A2) to be smaller than the
other optical-mode eigenfrequencies. This is indeed the
case, for both Sc and Te.'-' However the analogous
statement for the first-order moment does not hold.
The e~(A 2) derived from the reststrahlen band for light
polarized parallel to the c axis (E~~c) is as large ( e) as
thc effective cha, rges for the E-mode reststrahlen bands
observed for EJ c.'4 We conclude that next-nearest-
neighbor interactions contribute substantially to the
dynamic charge of their-active modes.
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FIG. 2. A2-symmetry optical mode:
(a) top view (viewed along the c
axis); (b} side view (viewed J c).
Solid dots represent displaced cores;
open circles, displaced shells. The
numbered dashed lines indicate next-
nearest-neighbor "interchain" bonds.

Since e*(A2) e and Z I, we see from (4.&2) that
g 1, so that s* s2. Thus a chain-twisting atomic
displacement (s~) induces an axial shell displacement
(sq*) of comparable magnitude. The mechanical energy
of the vibration resides, of course, with the massive
cores, i.e., with s2. %e may regard that the electro-
magnetic character of the mode resides with se* which
is responsible for the erst-order moment, the macro-
scopic electric polarization of the lattice.

The coefficient u32 is a measure of the deformability,
under chain rotation, of the charge distribution. When
a~2 vanishes, then so does e*(A2) and, from (4.3), ar2 is
uriity; shells and cores then move together and we have,
in eGect, neutral rigid atoms. This occurs when
D22"= —D22" If, in addition, D22"= D22" then a rela-
tion of the form of (3.3) obtains for ij=22, indicating
invariance of the dynamical matrix under a rigid chain
rotation (e2+e2*). In this case, which corresponds to
the limit of negligible interactions between chains, X22

also vanishes.

The axial shell displacement s3~ shown in Fig. 2
corresponds to a particular choice of sign (positive in
our coordinate convention) fol cg2 which can deviate
from zero (the rigid-atom value) in either direction.
This sign is not determined by ir measurements. If we
consider the electronic charge to be concentrated along
the bond directions, and assume that overlap repulsion
causes a charge transfer from bonds under compression
to bonds under tension, then the contributions to a3~ of
transfer w'ithin the NNN bond pairs 1—4 and 2—3 are,
respectively, positive and negative. Molecular-orbital
arguments" indicate that in the vicinity of each atom
more charge is located along bonds 1 and 4 than bonds
2 and 3, hence the (positive) choice of sign shown
ln Flg. 2.

This question of the sign of @32, and hence of e*(A2),
is closely analogous to the question of the sign of the
deviation of e*/e from unity for the alkali halides. "

"S.Tutihasi and I. Chen, Phys. Rev. 158, 623 (1967).
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There e*/e(1 because the dynamic-charge contribution
to e* is dominated by the part arising from the de-
formability of the negative ion. The concentration of
charge about the negative ion in that case is directly
analogous to the concentration of charge along par-
ticular bond directions in the present case. In both
cases the dynamic charge is a net result of contributions
of opposite sign arising from different portions of the
charge distribution. Of course, for the alkali halides the
dynamic charge merely provides a correction to the
rigid-ion value of e*, while for the elemental crystals
discussed here it is the whole story.

5. E-SYMMETRY OPTICAL MODES

s4 = s4+a45s5+a46s6 l

$5 — 855$5+856$6 &

s6 = a65ss+a66s6 ~

(5.2)

Three of the nine coupling coefficients are found to be
independent of D;

844= 1, 854= 864= 0. (5.3)

The expressions for the two coefficients which will

appear in the effective charge tensor are

D cc D cc D cc

+45= ——D56" D55" D66",
—D56" D56" D66as

D cc D cc D cc '

~46 D56 D55 D56

For the E modes it suffices to consider one of the
identical 6X6 blocks on the diagonal of 9, provided
that we keep in mind that for each solution

u=s4e4+s5e5+s6e~+s4*e4*+s~*e5*+se*e~* (5.1)

there is a degenerate solution obtained by replacing
e; by e;+3 and e;* by e;+3*.

The relations between shell and core displacements,
obtained by setting m*=0 as before, are

nates are all, in general, nonvanishing. From (3.7) and
the definitions of Table I, the electric moment associated
with the u of (5.1) is y= p,9, with

p.=vSZe(s4 —s4*) . (5 6)

Thus p vanishes for the acoustical mode, and for the
optical modes

p.= —v3Zes4*

= —V3'Ze(a45s5+ a46s6) . (5.7)

The actual optical-mode eigenvectors, which we
denote as e and ep, will, in general, mix core displace-
ments e5(J c) and e6(~jc). Introducing a mixing param-
eter 0. we can write, by orthonormality,

e =net+(1 —n')'I'e6,

ep ——(1—n')'"e5 —net.
(5.8)

e*(E~)= VSZe—[na45+ (1 o') '~—'a46]

e*(Ee)= V3Z—er (1 n') "—'a4q na46—] (5.9)

LWhile n, and for that matter co(E ) and &u(Ee), can be
calculated in terms of the 12 D; s appearing in the
6)&6 E block, the resulting complex expressions are
unilluminating and will be omitted here. ]

It is interesting to consider the form of expressions
(5.9) in the light of the following experimental observa-
tions: For both Se and Te, the effective charge of one
8 vibration is very small, an order of magnitude less
than that of the other (for which ~e*~ e).'4 In (5.9)
the effective charges appear as the sum of two terms
which, independent of the relative signs of o., a45, and

a«, interfere constructively in one case and destruc-
tively in the other. Thus one set of circumstances con-
cordant with experiment consists of comparable
coupling coef5cients (( a45

~

=
) a4~ ~) and comparable

components (( and J to c L(n) = ((1—n')' '( =1/~2].
More generally, if we write

By expressing the moment p induced by core displace-
ment s e as e*(E )s 9, and similarly for spec, we obtain
the effective charges for the optical modes of E
symmetry:

where

—D66" D56" D66" e*(E-)= eo* (1+vv),
e*(Ee)= e.* (p—g),

(5.10)

D cc D cc D cc

D cc D as ss (5.4)

D46" D56" D66"

One of three solutions corresponds to an acoustical
mode:

to=0, ss=s5 =sg=se*=0, s4=$4 . (5.5)

For the remaining two solutions, representing optical
modes, s4=0, while the other Qve Z-symmetry coordi-

where eo*=— V3Zeua45, —7—= (1 n')'I'/n—
& g a46/a45,

—=
then the experimental results require that p= p or —q

—'.
The set of circumstances described just above corre-
sponds to

f y f

=
f g /

=1.
For (5.4) we see that in terms of dyn. amical matrix

elements v simpli6es to D46"/D45" when Dq5"/D5q"
=DM "/D56" D6q "/D~6" f. Set——ting f= 1 is e——quivalent
to an assumption that the core-shell interactions occur
via the shells. " For f'= —1, a45 ——a46

——0 and both

"R.A. Cowley, W. Cochran, B.N. Brockhouse, aIId A. D. B.
Woods, Phys. Rev. 131, 1030 (1963).
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E-mode c6ective charges vanish. In fact, in this case
the only nonvanishing coupling coefficients are
a44=a55=a66=1, which describes neutral rigid atoms.
If f= —1 and, in addition, the same relations hold with
D,,"replaced by D;,",the E-symmetry eigenfrequencies
vanish as well as the cGective charges.

6. EFFECTIVE CHARGE TENSOR,
POLARIZABILITY, AND RAMAN

SCATTERING

The results of the preceding sections enable us to con-
struct the effective charge tensor 8= Bp/Bu which con-
nects the atomic displacements u=sIeI+sIe~+ .+s9e~
with the fIrst-order electric moment p= pA+p„g+p, z.
In the symmetrized coordinates of Table I, this tensor
(show111g OI11V 11011vaIlls111Ilg IIlatrlx elellleIlts) llas been
found to be

~ ~ 0 g45 @46 ~ 0 ~

&45 «6 (61)8= —V3Ze

g32 1 i ~ ~ ~

8 contains five nonvanishing elements, three of them
independent& coll csponding to thc 6ve lr-active c1gcn
vibrations and the three ir-active eigenfrcqucncies. 24

The three coupling coeKcients appearing in {6.1),
defIned in {4.3) and (5.2), are those which specify the
acoustical (translational) shell displacements (sa*,s4*,sI*)
induced by the 22+28 optical core displacements
(sq, s5,sq, s8,sg). In (4.3) and (5.4) we have expressed these
cocKcients in terms of shell-model dynamical matrix
elements.

Besides the polarization Su induced by lattice dis-
placements, the present approximation allows us to
discuss the ordinary polarizability describing the
response Aa to an electric fieM a. For trigonal symmetry
the polarizability tensor possesses two independent
elements, A„=A» and 3„.25 %orking in the A2-
symmetry manifold, we will derive shell-model ex-
pressions for A„(a&=0) and A„(ra= ~), the static and
optical polarizabilities for sjjc.

The response to a stationary 6eld e,z can be found by
setting the LHS of (4.1) equal to zero (co=0) and adding
to the RHS the term

0
—V3Zee,

0
.+VBZee..

Solving for the unit-cell moment p, by means of (4.10),
and recognizing that A „=p,/se„where v is the unit-cell.
volume, we obtain for the static polarizability

3(Z&)2j D cs~ D ccD asj
(6.2)

IGP(A 2)V[D23 D2$ D33
A.,(0)=

'4 Reference 6, Sec. 3."J.F. Nye, Physical Properties oj Crystals (Oxford University
Press, London, j.957), Appendix E.

Equations (4.5-6) have been used to slightly simplify
the form of (6.2).

For the high-frequency polarizability in the crystal s
transparent regime, we consider a frequency assumed
to be much greater than phonon frequencies but much
smaller than electronic frequencies su'(Am) D;;/Ie((I01
&(D@/III,*. At this frequency the cores do not respond
and may be regarded as fixed; for convenience we choose
s2=s3=0, although as we shall see the choice does not
matter. Ke are then left with a 2&2 secular equation
in s~* and s~*, and readily obtain the optical
polarizability

3(Ze)'D "
A„(~)=

&LD2R D88 D23
(6.3)

Thc increase in A„between optical and low fre-
qucncics is duc to the absolptlon associated with thc
intervening A2-mode reststrahlen band. Vhth the aid of
(4.5—6) for ra(22) and (4.3;4.12) for e*(AI), we can
verify that the polarizabilities of (6.2—3) satisfy, as
they must, the relation"

A „(0)—A „(~)= e*'(As)/mc»'(A 2)s. (6.4)

In the presence of both atomic displacements u and
electric 6eld e, the polarization contains a second-order
term Cue in addition to the terms As+Su discussed
above. This bilinear term is responsible for Rarnan
scattering: Cu is equivalent to a, polarizability change
induced by the atomic displacements. Ke have been
able to discuss the second-rank tensors A and 8 with
the model treated in this paper, but cannot do so for
the third-rank tensor C. Thus in the derivation of (6.3)
wc find the result to be independent of s2 and s3, the
optical polarizability is not modulated by the lattice
vibrations and there is no Raman scattering. " The
reason for this is simple. The shell-model equations of
motion in the harmonic approximation are linear in a
as well as in e. Solutions superimpose so that the re-
sponse to a 6eM e, and therefore the polarizability, is
una8ectcd by the presence or absence of displacements
u. In order to obtain Raman scattering (nonvanishing

C) we would need. to extend the approximation to in-
clude such quantities as displacement-dependent shell-
shell springs, D '~ D '+D,,I,"'sI,

'7. LONG-RANGE ELECTROSTATiC FORCES

The oscillating dipoles set up at the atomic sites by
the lattice vibrations, such as those shown for the A2
optical mode in Fig. 2, contribute a long-range electro-
static interaction to the dynamical matrix. " In the shell

26 Reference 7, Sec. 7; E. Burstein, in Proceeklgs oj' the IrIter-
rlatiogal Coefererlce ori, I.ance DyrlarrIics, CoperihagerI, , 1963, edited,
by R. I". Wallis (Pergamon Press, Ltd. , London, 1965), p. 3IS.

»The case worked out in (6.3) is actually a bad choice for
demonstrating this point since the Az mode is Raman-inactive by
symmetry. However, the same negative result (no Raman
scattering) is obtained by working out the corresponding shell-
modcl equations for the Raman-active AI and 8 modes.
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model this dipolar interaction is prescribed by the
charge assignment Z and by the detailed geometry of
the crystal structure. In this section we calculate the
long-range Coulomb interaction matrix at q =0 for both
Se and Te. Long-range forces, omitted from previous
force-constant treatments, '' are important in deter-
mining the zone-center optical phonons in these two
crystals. This is in marked contrast to the germanium-
family elemental crystals. Not only is there no vibration-
induced macroscopic polarization in Ge, ' ' but at q=0
there is also no microscopic electrostatic interaction
because each atomic dipole sees a tetrahedrally-

symmetric dipole array which exerts no force upon it."
For Se and Te, the dipole-dipole interaction at the zone
center is not suppressed by symmetry.

The held exerted on a dipole by all the other dipoles
in the crystal is referred to as the exciting field (XF),29

and we will denote the corresponding contribution to
the dynamical matrix by D ~. The lattice sum for
Dx~(q), expressed in a form which exploits Ewald's
8-function transformation, has been derived by Born
and Huang. "BH present the result in condensed form.
Explicitly written out in full for purposes of calculation,
it is as follows:

D~. ,~. '(q) = —~~z~.e'Q~. ,i. (q); (7 1)

Qq, , &. (q)= —4m. v 'q q q 'exp( —m'q'p ')+bi& h~~ 43ir ' 'p'+Pi'(3x~x x ""erfc(px)—8 x 'erfc(px)
+6ir "'px~x~ x 'exp( —p'x')+4~ '"p'x~x~ x 'exp( p'x'l —b~~ 27r —"'px 'exp( —p'x')) exp( 2n—iq x)

—4~~ '&h'(k +q )(k +g )lh+ql 'expl —~'& 'lh+ql'+2irih x(0,kk')] (7..2)

The matrix Q, with the dimensions of reciprocal volume,
contains the dependence on the atomic positions and is
the same as BH's Q save for the first term, which they
split o6 to discuss separately. At q=0 this term corre-
sponds to the macroscopic held and will not be con-
sidered here as it vanishes for transverse vibrations. In
(7.2) x denotes x(l,kk')=x(l, k) —x(0,k'), h denotes a
reciprocal lattice vector, and p is the 0 function dividing
point, an arbitrary parameter (with dimensions of
reciprocal length) chosen to obtain rapid convergence
of the two sums. The primes indicate that in the lattice
sum the term /=l' is omitted when jh=k' and in the
reciprocal lattice sum the term 5=0 is omitted.

There are three structure parameters needed to 6x
the atomic positions in Se and Te: the unit cell dimen-
sions g and c, and the bond length b. These are indicated
in Fig. 1 and their room temperature values are given
in Table II."It is convenient to work with the quanti-
ties di, dm, and d3 given by —,'a, ', [b' (-',c)'-g"',—and —',c,
respectively.

With Table II as input data for the sums of (7.2),
Q has been numerically calculated with the aid of an

D = —(7e)'( (7 3)

The Coulomb coefficients for Se, because of the
smaller spacings in this crystal, are somewhat larger
than for Te. However the appropriate value of Z in
(7.3) is certainly larger for Te than for Se by virtue of
the former's greater atomic number and electronic

IBM 7044 computer. The program was written to
obtain Q(q), but here we discuss only Q(0); results for
the full zone will be presented later. The program was
tested by checking that it yields Qi, &

= (47r/3r)b
for a cubic crystal. For both Se and Te it was found
that sums over =500 lattice vectors, using p=0.4(A) ',
yielded good convergence. Convergence was also
checked by comparing components connected by
symmetry.

In, symmetrized coordinates the Q matrices have the
form shown in Table I. The ten independent elements
of Q(0) for Se and Te, calculated as described above, are
presented in Table III. The shell-model Dx~(0) is then
specified by (7.1):

Crystal

Unit-cell
dimensions (A)

a c

Bond
length (A)

b

TABLE II. Structure parameters. a

De6nitions
of d;

Matrix
element Se Te

TABLE III. Electrostatic interaction matrix elements
in10 "cm '.

Se
Te

4.366
4.457

4 954
5.929

2.373
2.835

dI= gGj do= gC)
d2 ——,fb' —(-',c)'j'I'

See Ref. 30.

"Reference 7, Sec. 9; W. Cochran, Proc. Roy. Soc. (London)
A253, 260 (1959)."Reference 7, Sec. 30; P. P. Ewald, Ann. Physi 54, 519 (1917);
54, 557 (1917);64, 253 (1921)."P. Cherin and P. Unger, Inorg, Chem. 6, 1589 (1967); Acta
Cryst. 23, 670 (1967).

Qll
Q22

Q23
Q33
Q44
Q4S
Q46
Q55
Q56
Q66

—0.675
1.387
0.688
2.117
1.246—0.486
0.516—0.712—0.972
0.356

—0.060
0.813
0.268
1.476
1.110—0.189
0.218—0.753—0.378
0.376
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TAaLE IV. Central-force shell-model dynamical matrix elements.

Symmetry
Matrix
element

Coeflicients of the short-range parameters
+NN ~NNN

A2

D11

2CC

D22
D23CC

D33"
D44
D4 CC

D46CC

D65CC

D56
D56
D CS

CC

Ca

12d2 6d22
6d22
2d22

—2d2'
2d2da.
2ds'
4d22—V2d2d3
2d2
2dg
d32

&2d2d3
242d2d3

4d22

2d2

6(VSd1—2d2) '

6d1'

—3V2d3(V3d1 —2d2}

12(d1'+d2' —Ad1d2)

1Gd12+12d22 —12V3d1d2
8d12+ 12d22 —12 sad 1d2

+4d22 —4V3dId2
4d2(VSd1 —d2)—2d3(V3d1 —2d2)

4ds'
8(d1'+d2' —VSd1d2)

%2d3(V3d1 —2d2}
2d, +4d2 —4V3d1d2

2d32—%2d3(%3d1—2d2)—242d3(VMI —2d2)
8(d1'+d2' —V3dld2)
4(d12+d22 —V3dId2)

polarizability. For Te the effective charges of the ir-
active modes, proportional to Z, are approximately
twice those for Se."Since D;,x~ is proportional to Z'
as well as to Qe., the exciting 6eid is larger in Te. From
Table III and (7.3), the elements of Dx~ relevant to
the As optical mode are =(1—4)&&10' g sec ' for Z=1.
Since sssaP(A s) = (5—6)X 10' g sec ' for the two crystals,
it is clear that long-range forces signihcantly affect
this vibration.

8. SHORT-RANGE CENTRAL FORCES

To illustrate some of the results of Secs. 4 and 5 ob-
tained with a general, symmetrized, shell-model
dynamical matrix, we now consider a very simple
model which assumes, for the short-range interactions,
central forces between nearest and next-nearest shell-
model neighbors. Irlteiactlon between cole Mld shell at
the same site is taken to be isotropic with force constant
E. The potentials describing interactions between sites
are assumed to be of the following form, illustrated for
the interaction between a core on one site and a shell
at a next-nearest neighbor (NNN) site:

4'www" = 4www "(
j x(/1', H')+n'(l, k) —n'(&', k')

j
'). (8.l)

These interactions will be speci6ed by the six quantities
~NN ~NN ~NN ~NNN ~NNN and ~NNN
where, for the example of (8.1),

Rwww" =4+www""(
j x(~I'&&Is') j

') {82)

In terms of these central-force parameters and the
geometric factors of Table II, the short-range contri-
bution to the symmetrized dynamical matrix is as shown
in Table IV. This table presents the short-range
contribution to 15 of the 20 shell-model matrix elements
in terms of 5 of the 7 force constants; the remaining
matrix elements {D, * for san=11, 22, 55, 56, 66) and
force constants (Rww" and Rwww") are obtained by
interchanging c and s in the expressions for D;,".The
total matrix elements are obtained by adding short-

range and long-range contributions, e.g. ,

Dss"= —1&+2ds'Rww "+4ds'Rwww" —~sesQss.

In Sec. 4 we showed that e*(As) is proportional to the
coupling coefficient a32, and that u32 vanishes when
Dss"+Dss" vanishes. In terms of the central-force
model Dss"+Dss" becomes 6dr'(Rwww" +Rwww")
demonstrating, as mentioned earlier, that the A2-mode
dynamic charge requires the presence of next-nearest
neighbor interactions; e*(As) =0 if Rwww"=Rwww"=0.
In Sec. 5 we found that the relevant couphng coefFicients
for the E modes vanish if D "+D "=0 for
ij= 55, 56, 66. For this to occur in the present context,
both nearest and next-nearest-neighbor interactions
would have to vanish, as can be seen by examining
Table IV.

Returning to the Ag mode, it is easy to show that
&g(As) vanishes if the three Rwww's vanish; we have
already seen that e*(As) vanishes if two of the Rwww's

vanish. This points out the intimate connection between
dynamic charge and the bonding interactions responsible
for restoring forces.

Vhth Table IV and the results of the previous section
one could construct a shell-model dynamical matrix
containing eight parameters: Z, E,ANN", RNNN".
Optical experiments alone can provide nine quantities:
four optical-mode frequencies Lcm(Aq), &u(As), ~(E),
a&(E)1, three effective charges Le*(As), e*(E), e*(E)j,
and two optical polarizabilities LA (~), A„(~)j.
Expressions for these quantities in terms of shell-model
matrix elements have been discussed in Secs. 4—6 of
this paper. There are also six elastic constants for D3-
symmetry crystals, and some of these have been mea-
sured for Te and Se. The elastic constants can similarly
be expressed in terms of matrix elements. Geick and
Schroder, 4 using Hulin's model for the short-range
forces, ' have performed a rigid-atom force-constant fit
to the optical frequencies and certairl elastic constants
for the two crystals. (Effective charges and polariza-
bilities are, of course, outside the scope of a rigid-atom
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model for an elemental crystal. ) The work of these
authors indicates that an adequate model for the short-
range interactions must go beyond nearest- and next-
nearest central-force interactions. We are presently
refining our treatment of short-range forces so that, by
means of these and the results for the long-range inter-
action, we can calculate the optical properties men-
tioned above and, in addition, extend the shell-model
analysis over the full Brillouin zone.

9. SUMMARY

Trigonal Se and Te, with s= 3, belong to the simplest
class of reststrahlen-displaying elemental crystals. We
have performed a shell-model analysis of their q=o
optical phonons, using the most general dynamical
matrix consistent with crystal symmetry and transla-
tional invariance. The dynamic charges associated with
the ir-active modes have been derived in terms of shell-
model matrix elements, and the effective charge tensor
constructed in symmetrized coordinates.

The effective charge tensor for Se and Te contains
three independent entries which correspond to three of
the coupling coefficients appearing in the theory. These
dimensionless quantities specify the shell displacements
induced by displacements of the cores. In the shell
model for an elemental crystal the vibration. -induced
macroscopic polarization is due entirely to the shell
motion. The important coupling coefficients are those
connecting acoustical shell displacements with optical
core displacements; in the present context they are e»
for A2 symmetry, a45 and a46 for E symmetry.

I'or the A2 optical vibration, the chain-rotational core
motion induces an axial shell motion responsible for the
first-order moment, thereby accounting for the inter-
action, with light polarized parallel to c of a mode in
which all of the atomic displacements are perpendicular
to the c axis. The dynamic charge of this mode,

e*(A2) = —V3Zea3a, depends upon the presence of NNN
interactions between chains, as does the eigenfrequency
co(A~); both e*(A2) and co(A2) vanish in the limit of
isolated chains. In a bond picture, a» may be under-
stood in terms of charge transfer between NNN bonds.
We assign a sign to a», and therefore to e*(A2), by a
molecular orbital ar'gument.

The analysis for the E modes, which occur in de-
generate pairs and mix motions parallel and perpen-
dicular to c, yields more complex results. The relevant
coupling coefficients, a45 and a46, are combined in the
two e*(E)'s in a manner which leads to reenforcement
in one case, cancellation in the other. The latter provides
a means for understanding the very small oscillator
strength observed for one of the two E-mode pairs in
measurements on both Se and Te.

Dielectric polarizabilities, as well as effective charges,
can be treated in the present model, and we have ob-
tained expressions for A,.(0) and A „(~).Raman scat-
tering, however, is excluded from this treatment since
the harmonic-approximation shell-model equations of
Inotion are separately linear in electric field and atomic
displacement.

Unlike Ge, for Se and Te the dipole-dipole interaction
at q=o does not vanish. The lattice sums which enter
into this long-range electrostatic interaction have been
evaluated for the specific geometry of both crystals. A
simple central-force model for the short-range inter-
actions has been considered in order to illustrate some
of the points discussed.
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