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Lattice vibrations in elemental crystals can possess a first-order electric moment, and thus exhibit rest-
strahlen (symmetry-allowed one-phonon infrared absorption), by the mechanism of displacement-induced
charge redistribution (dynamic charge). By a group-theoretical investigation of the relation between
symmetry and reststrahlen, we show that a necessary and sufhcient condition for the existence of reststrahlen in
an elemental crystal is a structure with at least three atoms in the primitive unit cell, s&3. Using n„f for the
number of infrared-active phonon frequencies (reststrahlen bands), this minimum-complexity condition
states: (a) n„"=Ops=1 or 2; (b} n„"&1~s&3.To derive (a) and (b}, group-theoretical arguments
are used to determine the number of infrared-active phonons and phonon frequencies, and thereby the
form of the effective charge tensor (Bp/Bu), in terms of crystal symmetry (group characters) and unit-cell
structural complexity (structure factors specifying the number of sublattices invariant under factor-group
symmetry operations). The proof of (a), s&3 as a structural requirement for a reststrahlen-displaying
elemental crystal, follows from these results and the observation that all s= 2 elemental crystals possess an
inversion operation which interchanges the two sublattices; (a) is equivalent to a generalization of the Lax-
Burstein argument for the vanishing first-order moment in Ge. The demonstration of (b), s&3 as a sufhcient
condition for a first-order moment, is obtained by developing an inequality relating n„", s, and g (the order
of the factor group), and by considering the highest-symmetry crystal classes in some detail. Other appli-
cations of his approach, to compounds as well as elemental crystals, are discussed.

eigenfrequencies (number of reststrahlen bands), we
may express this as

1. INTRODUCTION

HE highly successful application of the rigid-ion
model to lattice vibrations in ionic crystals, taken

together with the absence of ionic charge in a crystal
composed of identical atoms, has sometimes led to the
assumption' that elemental nonmetallic crystals cannot
exhibit reststrahlen —allowed one-phonon infrared ab-
sorption. This widespread impression has been re-
enforced by the circumstance that for the familiar
group-IV semiconductors (C,Si,Ge) the zone-center
optical phonons are indeed infrared-inactive. As a
general statement, however, this idea is incorrect. Lat-
tice vibrations in elemental crystals can possess a Grst-
order electric moment, and thus exhibit reststrahlen, by
the mechanism of displacement-induced charge redistri-
bution (dynamic charge). '' The following paper' dis-
cusses a shell-model analysis of effective charges in two
important examples, the reststrahlen-displaying ele-
mental semiconductors Se and Te.

The purpose of this paper is to present a group-
theoretical investigation of the relation between sym-
metry and. reststrahlen in elemental crystals. The
principal result obtained is the derivation of the follow-
ing dependence on structural complexity: An elemental
crystal displays symmetry-allowed one-phonon absorp-
tion if and only if the primitive cell contains three or
more atoms. Letting s denote the number of primitive-
cell atoms and n„" the number of infrared (ir) active

n„"=Ops=1 or 2,

e„"&1~ s&3.

(1.1)

(1 2)

Here (1.1) states that s)3 is a necessary minimum-
complexity condition for the occurrence of reststrahlen
in an elemental crystal, and (1.2) indicates that this
condition is sufficient as well as necessary. Hence, the
absence of reststrahlen for Ge (for which s= 2), and its
presence for Se (s=3).

In order to demonstrate both (1.1) and (1.2), we
develop expressions for e„"in terms of crystal symmetry
(group characters) and unit-cell structure (structure
factors to be introduced). We can also obtain (1.1) by
means of a straightforward generalization of the Lax-
Surstein argument for the vanishing first-order moment
in Ge, and begin with this simple proof in Sec. 2. In
Sec. 3 we discuss the relation between the eigenvibration
symmetries and the effective charge tensor, Bp/Bu. The
group-theoretical formulation is presented in Sec. 4 and
is applied to some simple situations for illustration. The
results of this section are then used to derive (1.1) in
Sec. 5 and (1.2) in Sec. 6, the latter requiring somewhat
more work in that a detailed treatment of the highest-
symmetry crystal classes is necessary. Further applica-
tions, to compounds and to a discussion of the maximum
unit-cell complexity compatible with a single reststrahlen
band, are given in Sec. 7.' M. Born and K. Huang, Dynamical Theory of Crysta/ Lattices

(Oxford University Press, London, 1954).' D. H. Martin, Advan. Phys. 14, 39 (1965), especially p. 50,
and Ref. 1, p. 87, lines 12 and 13.' E. Burstein, M. H. Brodsky, and G. Lucovsky, in Proceedings
of the Symposium on Atomic, Molecular, and Solid State Theory,
Sanibel Island, 1967 (unpublished); Intern. J. Quantum Chem.
1S, 759 (1967); W. Cochran, Nature 191, 60 (1961).

4 I. Chen and R. Zallen, following paper, Phys. Rev. 173
(1968).

2. STRUCTURAL REQUIREMENT FOR
RESTSTRAHLEN-DISPLAYING

ELEMENTAL CRYSTALS

We shall use s to denote the number of atoms in the
primitive cell. (Henceforth we will frequently use "unit
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cell" as an abbreviation for "primitive unit cell, " the
smallest translational unit of the crystal. ) For crystals
with s=1, of course, there are no optical branches and
hence no reststrahlen. We will now show that for
elemental crystals with s=2, the optical modes are
necessarily infrared-inactive.

In 1955, Lax and Burstein (LB) demonstrated that
the vanishing 6rst-order electric moment (absence of
reststrahlen) for Ge was a consequence of the following
symmetry property of diamond-structure crystals: an
inversion center located midway between the two atoms
of the unit cell. With the aid of unit-cell charge neu-
trality, I.B showed the first-order moment to be in-
variant under this symmetry operation. Since a vector
must reverse under inversion, the first-order moment
must vanish for Ge"

It does not seem to have been previously pointed out
that the crucial symmetry property mentioned above is
one which is possessed not only by the diamond struc-
ture but by every elemental crystal with s=2. This is
easily seen by taking the origin of coordinates midway
between the two atoms in a unit cell. The location of any
atom is then given by x(l)&p, where x(l) is a lattice
vector and +Io are the positions of the two atoms in the
cell containing the origin. Since —Lx(l) &yj=x(—l) ~y
is clearly also an atomic location, the chosen origin is a
center of symmetry.

Thus s=2 elemental crystals cannot exhibit rest-
strahlen; the first-order moment is suppressed by sym-
metry. The following theorem, equivalent to (1.1),
therefore follows as a simple extension of the LS proof:

Theorem, A necessary condition for the occurrence of
reststrahlen in an elemental crystal is s&3.

This condition sets a lower limit on the crystal-
structure complexity which is compatible with the
existence of a 6rst-order moment in an elemental crystal.
While even the simplest diatomic crystal, with a
monomolecular unit cell (s=2), exhibits reststrahlen
(See Secs. 4B and 7A), a monatomic crystal requires a
unit cell containing at least three atoms in order to
display one-phonon absorption.

them form a 3&&3s rectangular matrix, B=Bp/Bu (B
corresponds to b coeKcient 62~ in Huang's elegant
macroscopic theory for diatomic ionic crystals. ")We
shall refer to B, the first-order electric-moment tensor,
as the eGective charge tensor.

The simplest nonvanishing B occurs for an ionic
crystal with s= 2. For XaCl in the rigid-ion approxima-
tion, the effective charge tensor has the following ap-
pearance in Cartesian coordinates (only nonvanishing
matrix elements are shown),

S=e 1
~ $ ~ ~

(3.2)

This can be simplified to a form containing but three
nonzero entries by transforming to symmetrized coordi-
nates, e;~——(1/v2) (e, '&e; '), where e; denotes a unit
displacement in direction i:

B=Ce . 1 ~ (3.3)

~15 ~16

The three nonvanishing elements correspond to the
three polarizations of the optical phonons (e, ), all
ir-active and equivalent by cubic symmetry. Since

836 a single independent element speci6es
the full tensor.

For elemental crystals with s= 2 (diamond structure,
arsenic structure, hcp, etc.), the 3X6 effective charge
tensor, by virtue of (1.1), contains only zeros.

The size (3&&3s) of the smallest nonvanishing B for
elemental crystals, in which the 6rst-order moment is
due entirely to charge-deformation sects, therefore
occurs for s= 3. A group-theoretical shell-model deriva-
tion of the effective charge tensor for Se and Te, for
which s=3 and which are the simplest known rest-
strahlen-displaying elemental crystals, is given in the
following article. 4 The form of the tensor for these
trigonal crystals in the appropriate symmetrized co-
ordinates, is as follows:

3. EFFECTIVE CHARGE TENSOR B 0 ~ Rs %s (3.4)

The linear relation between the unit-cell 6rst-order
moment p and the atomic displacements u may be
expressed as'

p= SU. (3.1)

(Throughout this paper we will use boldface lower case
letters for vectors, boldface capitals for matrices. ) As y
is a 3-vector and u a 3s-vector, the coeKcients joining

5 M. Lax and E. Surstein, Phys. Rev. 97, 39 (1955).
6 M. Lax, Phys. Rev. Letters 1, 131 (1958); 1, 133 (1958).
'As Lax points out in Ref. 6, the one-dimensional proof of

Ref. 5 carries over directly to the diamond structure. The analo-
gous three-dimensional proof is explicitly given by M. Lax,
Symmetry Principles in Solid State Physics (to be published).

832

The 6ve nonvanishing matrix elements correspond to
the 6ve ir-active optical modes; since symmetry re-
quires four of these to occur as two pairs of degenerate
vibrations, there are only three independent elements.

The two examples of (3.3) and (3.4) illustrate the
connection between the symmetrized effective charge
tensor and the symmetry of the unit cell normal modes:
the number of nonvanishing matrix elements equals the
number of ir-active eigenvibrations (e"), while the
number of independent elements corresponds to the
number of ir-active eigenfrequencies (e„").For NaC1:

K. Huang, Proc. Roy. Soc. (London) A208, 352 {1951).
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Fn. 1. Primitive cells for crystal structures discussed in the text. Table II lists the crystal symmetries
and values of s, n,", and I"for these structures.

e"=3 for Se and Te e "=3 e"=5 [The
symmetrized 8's of (3.3) and (3.4) are obtained by
expressing u in symmetrized coordinates and y in
cartesian coordinates determined by symmetry axes.
Thus in (3.4) for Se, p3 is the dipole component parallel
to the triad axis, pq the component parallel to a diad
axis. When Cartesian bases are not defined by sym-
metry elements, as for triclinic and monoclinic crystals,
the connection between 8 and e",g,"is less simple than
stated above. )

The unit-cell structure of trigonal Se is shown in
Fig. 1(a). There are s=3 elemental crystal structures
which would give rise to simpler one-phonon spectra,
such as the hexagonal crystal of Fig. 1(b) discussed in
the following section. For this structure ts„"=1 and
e"=2, so that the 3&9 effective charge tensor contains
just two equal, nonvanishing elements, and is much
simpler than (3.4).

4. GROUP-THEORETICAL FORMULATION

In order for a displacement eigenvector I; to induce a
polarization with component p; (i.e., 8,;&0), it must

transform as does the x; component of a vector. %e
1Dtloduce the following definitions aDd notation:

6=—the crystal factor group, of order g;
o, is an operation belonging to 6;
P=—the 3-dimensional polar-vector representation

of t;
F=—the 3s-dimensional representation of G generated

by the unit-cell atomic coordinates (the displacements
of the s atoms in the primitive cell);

I";=an irreducible representation (I.R.) of G;
I'„=—a I'; occurring in the reduction of I' (a vector

IR) {I' )I-(I''}
The I'„'s appearing in the reduction of I' correspond to
eigenvibrations which transform as vector components,
and which thus may induce 6rst-order moments. How-
ever, one I' set of r~'s contained in I' corresponds to the
acoustical modes which, by unit-cell charge neutrality,
induce no macroscopic polarization. Thus the number
and type of ir-active modes are determined by the F„'s
occurring in I'—I'. Group-theoretical analyses are out-
lined in Table I for NaCl, Ge, Se, and the structure of
Fig, 1(b).

Tmxz I. Group-theoretical analyses for reststrahlen in some simple crystals.

Crystal
structure

NaCl, ZnS
Ge
Se
Fig. 1{b)

2F1g
~15+125'

A 1+2A2+38
A 1'+22'+32"+2E'+E"

I'15
A2+E

//+ El

~15
~25'

A I+A 2+2E
A I'+2 2'+E'+E"

8" n"

a The international short symbol (Ref. 13}is used for point-group symmetry.
b The notation for tne irreducible representations foBows Ref. 12 for groups 32 anti 6m2. while the familiar BSW notation is used for cubic symmetry

I.L. F. Bouckaert, R. Smoluchowski. and E. P. signer, Phys. Rev. 50, 58 (1936)g.
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In order to develop expressions for e" and e„", the
number of ir-active vibrations and frequencies, we need
to consider both the crystal symmetry (contained in F;
and I') and the unit-cell structure (contained in F). In
the 3s-dimensional representation F, the atomic dis-

placements u~, u2, , u, comprise a 3s-vector u, and
each factor-group operator o. is represented by a 3s&3s
matrix Sr(n). ' Using the individual atomic displace-
ment-vectors u; as bases, we can write (showing a
specific Sr for concreteness)

s (~)
s~(n)

+s—1

, us .

Sr(a) =
0 S+(n)

~ 0 S~{n)
Si'(n) 0

(4 &)

where the submatrix S~(n) is the 3-dimensional polar-
vector representation of operator n. S (n) appears s
times in Sr(n), all other elements vanishing. For each
sublattice (unit-cell atomic site) which does not go over
to another sublattice under n, S~(a) occurs on the
diagonal of Sr(a). Off-diagonal submatrices correspond
to an interchange of sublattices under n, for example,
the threefold permutation among sites s—2, s—1, and s
which is illustrated in (4.1) corresponds to a=3 (C~), a
threefold rotation.

Let s(u) be the number of sublattices not converted
to other sublattices under symmetry operation o., i.e.,
the number of sublattices invariant under o.. Then
S~{n) appears s{n) times on the diagonal of Sr{n), so
that the characters of 1', X"(n)=—Trs (n), are simply
related to those of I' by

&'(~) =~ {~)x'(~) (4 2)

The g quantities s(a) contain all of the essential in-
formation about the primitive-cell structure which is
needed in addition to the crystal symmetry G.

In general, F and I' are reducible representations.
C(I',F,) will be our notation for the number of times I',
is contained in F; similarly C(P,F~) will denote the
number of times I"„ is contained in I'. From familiar
representation theory'0" we can write

& '(~) =2 C(F,F')& "(~),

x'(~) =2 C(I',Fn)x "(~),
(4.4)

9 Examples of representation I', demonstrating its applicability
to nonsymmorphic as well as symmorphic crystals, are given in
Ref. 4 and in S. H. Chen, Phys. Rev. 163, 532 (1967).' G. F. Koster, MIT Solid State and Molecular Theory Group,
Technical Report No. 8, 1956 (unpublished}.

"V. Heine, Group Theory in, Qgantgm 3IIechurIics (Pergamon
Press, Ltd. , London, 1960).

I"=(&/g) 2 L~{~)—~j '(~) ""(~)* (4.7)

'"=(I/g) 2 L ( )—ijx'( )&'"( )"&'"(I) (4g)

These results determine the number of symmetry-
allowed ir-active optical phonons (e") and phonon fre-
quencies (I„") for a crystal of given symmetry and
unit-cell structure. Equivalently, z" and rs„" 6x the
number of nonvanishing elements and independent
elements, respectively, in the symmetrized eRective
charge tensor 8 discussed in Sec. 3. The crystal sym-
metry appears in these expressions through the charac-
te» &(e) of the crystal point group isomorphic to G."
In addition, the complexity of the atomic structure of
the primitive cell makes itself felt by means of the
structure factors s(n). In Table I, both NaC1 and Ge
belong to the same crystal class (point group m3tu, or
Oi,) so that their character systems are equivalent, yet
their infrared behavior is markedly diferent. As will be
shown in Secs. 48 and 5, the appearance of reststrahlen
in one and not the other reflects their different s{n)'s.

"A convenient listing of the character tables for the crystal
point groups is given in Appendix K of Ref. 11.

From the opening discussion of this section, it follows
. directly that the sets of integers C(F,F„) and C(P,F~)

determine e„"and n":
~„' =P,„LC(F,F„)—C{J,F„)j, (4.S).' =Z. LC(F,F,)-C(&,F,)jx"(&). (4.6)

The negative second term within each sum avoids
including the acoustical modes. The factor Xr~{1) ap-
pearing inside the sum for e", the number of ir-active
vibrations, is just the degeneracy of each of the ir-active
eigenfrequencies counted in the expression for I„"{n= 1
denotes the identity operation, so that Xr~(1) is the
dimensionality of F„).In (4.3)—(4.6), Pr,. indicates a
sum over all of the I.R.'s of G, while Pr„ indicates a sum
taken only over the vector I.R.'s.

Substituting (4.2)-(4.4) into (4.5)-(4.6) yiekls ex-
pressions for n„" and m" which we will make extensive
use of:
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A. Elem ental Crystals with s= I
With a single sublattice s(n) = 1 for all n, so that

n„"=e"=0, as must be the case since a space-lattice
crystal has no optical modes.

B. Diatomic Compounds with s =2

Since the two atoms in the primitive cell are not
identical no symmetry operation interchanges the two
sublattices, so that s(n) = 2 for all n. Therefore (4.7) and
(4.8) yield..-= (I/g) r, "(.)x" (-)*=Z C(~,l .), (4.1p)

a, I'y

ss"= (1/g) P Xz'(n)X r (a)*X r (1)

= Q C(P,I'„)x r"(1)=x"(1)=3. (4.11)

Thus for such crystals, of which rocksalt and zinc
blende are examples, the three zone-center optical
phonons are all infrared active.

C. Low-Symmetry Crystals: Crystals Classes
1, 2, m, T, and2/m

In this section we dispose of the exceptions to (4.9),
the triclinic and monoclinic crystal classes. (We shall use
international "short" notation for the crystal classes. "
For the point-group operations, e will denote an e-fold
rotation and rs an I fold rotatio-n inversion. ) Since these
five point groups possess og ly one-dimensional repre-
sentations, e„"=n" in what follows.

For classes 1, 2, and m, the set of vector I.R.'s coin-
cides with the full set of I.R.'s, {I„}= {I,},so that in
(4.8) we can exploit an orthogonality relation for group
characters"

ss"= (1/g)Z~([s(a) —1jxr(u)Er; [Xr;(u)*xr;(1)~}
= (1/g)Z. [ (-)-»"(-)g~-.
= [s(1)—13X (1)
=3$—3 . (4 12)

Before proceeding we note, for later use, a simplifica-
t-ion which obtains for a11 crystal symmetries higher
than triclinic and monoclinic. Expression (4.7) for the
number of reststrahlen bands can be written as

r4"= (1/g)2-([s(u) —1]x'(n)Zr, x'"(u)*}.
Except for the 6ve low-symmetry classes discussed
below in Sec. 4C, each vector I.R. appears just once in
the reduction of I (each C (P,I ~)= 1) so that, by (4.4),
Xr(n)*=Jr„xrs{n)*and the above expression becomes

ss."=(1/g)Z- [s(n)-1jl x"(u) I' (4 9)

In the Secs. 4A, 4B, 4C, and 4D below, we apply (4.7)
and (4.8) to some simple cases (including obvious ones)
in order to illustrate the approach developed above.

This result means that all optical modes are allowed by
symmetry to be ir-active in these crystals. We note that
an elemental crystal must satisfy s)3 in order to belong
to one of these three classes; in Sec. 2 we have seen that
with s = 1 or 2 it automatically possesses inversion
symmetry.

Crystal class 1, with only the inversion operation n = 1
in addition to the identity n= 1, is the simplest (g= 2)
for which ir-inactive optical modes are present. Since
Xr(u)gr Xr (n)*=3 for both n= 1 and n= 1, (4.7)
yields

ss."=5{[s(1)—13+[x(1)—13}
=-;[s+s(i)—2]. (4.13)

For class 2/m, Xr(n)gr, xr~(u)*= 6 for u= 1 and u= 1,
0 for n = 2 and n =2. Since g =4 in this case, substituting
into (4.7) yields a result identical to (4.13). For an
elemental crystal with s= 2 belonging to one of these
two classes, s(1)=0 so that e„"vanishes. These are then
special cases of (1.1) and of the discussion to follow in
Sec. S. For s)3, (4.13) reveals that ss„" cannot vanish
since s(1) is nonnegative. This result, along with (4.12)
for classes 1, 2, and m, is generalized in Sec. 6 to include
all crystal classes, yielding (1.2).

D. Cubic Crystals: Crystal Classes
23, m3, 432, 43m, and yn3 yn

For each of the five cubic point groups, P= I'„; there
is a single 3-dimensional vector I.R. In (4.7) and (4.8),
Qr„collapses to a single term:

ss."=(I/g)&- [s(n) —1j I
x"(a) I',

(4 14)g"=3g

S. ELEMENTAL CRYSTALS WlTH s=2:
ABSENCE OF RESTSTRAHLEN

We wil. l now use the results of the previous section to
derive the vanishing first. -order moment for any ele-
mental cryst. al with a two-atom primitive cell. As shown
in Sec. 2, all crystals of this type have a center of sym-
metry midway between the two unit-cell atoms. Be-
cause G contains the inversion operation it must have
the form of a direct product group, GpX (1,1},where Gp

is a group of order g/2 and. {1,1}is the group of order 2

containing the identity and the inversion. Thus the
operators a+G occur in pairs; for every &p+Gp 6 has
two u s: np and up1. We can therefore rewrite (4.7) so as
to replace the sum over n by a sum over np .

ss.*'= (1/g) 2 {[s (np) —1jx'(ao) X '"(up)
"'

+[s(np1) —1)x"(ap1)x '~(up1) '}
= (1/g) 2 [s( o)+s( 1)—2)x"( o)x "( )* (3 1)

ep, Fy

Ieternati onal Tables for X-Ray Crystallography, Symmetry
where we have made use of the fact that X ~ ~apl ~

Groups (Kynoch press, Birmingham, England, 1952), Vol. I'. = —X""(np) and X (ap1) = —X (up). The inversion oper-
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ation for this type of crystal interchanges the two
sublattices Ls(1)=0], so that if s (n) = 2 then s(n01) =0,
if s(no) =0 then s(+01)= 2. Thus

s(ao)+s(~01) =2 (5.2)

and e, '* vanishes. Elemental crystals with s= 2 cannot
exhibit reststrahlen, as stated in (1.1).

A. Proof of SuKciency in One Dimension

The one-dimensional proof is quite simple since there
are only two crystal classes, 1 and 1, corresponding to
the absence or presence of inversion symmetry. The
Dumber of ir-active modes for the two one-dimensional
classes are already contained in the results of Sec. 4C,
Rnd are obtained by removing a factor of 3 from the
right-hand sid.e of (4.12) and (4.13):

6. ELEMENTAL CRYSTALS WITH 8&3:
PRESENCE OF RESTSTRAHLEN

Sections 2 and 5 establish that s&3 is a structural
requirement which must be satished in order for an
elemental crystal to display a first-order electric mo-
ment. In this section we demonstrate that this condition
is su@cient, as well as necessary, for the occurrence of
reststrahlen. SuKciency, in this context, means that
reststrahlen j.s not suppressed by symmetry in any
elemental crystal with s)3. (Of course, the detailed
dynamics for a particular crystal, such as very tightly-
bound shells —nearly "rigid" atoms —may cause a
symmetry-allowed 6rst-order moment to be quite small
in a specific instance. ) We will then have established
connection (1.2) between the number of reststrahlen
bands and the primitive-cell complexity: e„"&1+-+s& 3.

A demonstration of (1.2) in one dimension is given in
Sec. 6A. The proof in three dimensions is presented in
two parts. A simple equality is derived in Sec. 68 which
enables us to establish suKciency for Rll but four
crystal classes. These high-symmetry classes are treated
separately in Sec. 6C, which completes the derivation of
(1.2). Information about specific s)3 structures dis-
cussed in thi.s paper is collected in Sec. 6D.

B. Proof of SQFiciency in Three DiIDensions:
Most Crystal Classes

In three dimensions we must contend with 32 crystal
classes. Our discussion of Sec. 4C constitutes a proof for
thc 5 tricllnlc RDd monocllnic classes' lD this Rnd 'thc

following section we address ourselves to the remaining
27. The approach taken here will be to proceed con-
sidering the minimum number of details needed at each
stage: For most classes only the group characters are
required; at higher symmetry we consider limitations on
symmetry operations satisfying E(n) =0; finally, for full
cubic symmetry, we must investigate the 10 53m (Oi,)
space groups. Most of the proof is provided by means of
a simple inequality, derived below, connecting n, ", s,
and g.

For the 27 crystal classes of concern here, (4.9) is
vahd

g~."=Z«L~(~) —13 I
x'(~) I'.

Negative terms within the sum can arise only through
the presence of symmetry operations under which no
primitive-cell sublattice is transformed. into itself,
s(n) =0. LThe proof of vanishing N, "for s= 2 elemental
crystals given in Sec. 5 depends upon the fact that for
such crystsis precisely half of the factor-group symmetry
operations satisfy s(a) =O.j The total negative contri-
bution to (4.9) is

(6.3)
a|-s(a) =0

Since s(1)=s and
I
x~(1) I'=g, the identity operation

always makes R positive contribution to gl glvcD by
9(s—1). Thus a lower limit to ge„"(—) is obtained by
including all 0. s, other than the identity, in the sum
of (6.3):

(6.4)

Since a lower limit on the positive contribution to ge, "
is 9(s—1), it follows that

g~."&9(~—1)—2 I
x'(~) I'

clRss 1 s =s—1 (6.1)

class 1: e ' =-', LE+s(i)—2]. (6.2)

Elemental crystals with s= 1 and s= 2 belong to class 1,
with (6.2) yielding 0„"=0.For s&3 both symmetries
are possible, and both (6.1) and (6.2) show that e„"
does not vanish. This completes the proof. Note that for
class 1, all optical modes are ir-active. For class 1, s& 3,
e,"depends on the number of atoms located at centers
of symmetry (there are two in each one-dimensional
unit cell). For odd s, one atom is at a symmetry center
so that s(i) = 1 and. n„"=-,' (s—1). For even s, there are
either zero or two atoms at syDunetry centers so that
s(1)=0 or 2 and n„"=-', (s—2) or -', s. Thus, for class 1,
= half of the optical modes are ir-active (to within &-,).

(6.5)

Since each F~ occurs just once in the reduction of E for
each of these 27 classes, it follows directly from the
orthogonality relations for group characters'0" that

Z. I
~'(~) I'= gh (6 6)

ge, "&9s—gh. (6.7)

where k is the number of I"„'s,k= Pr„(1). (h is 1 for the
cubic, 3 for the orthorhombic, and 2 or 3 for the
tetragonal, trigonal, and hexagonal groups. ) Substi-
tuting (6.6) into (6.5) puts the inequality into a very
simple form:
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The first term on the rhs of (6.7) equals the size of 8,
the effective charge tensor; the second term may be
interpreted as the number of constraints imposed by
symmetry. The former increases with the unit-cell
degrees of freedom; the latter is fixed for each crystal
point group. Thus this inequality indicates the manner
in which the constraints of symmetry are outstripped by
unit-cell complexity with increasing s.

For 23 of the 27 classes the inequality immediately
establishes sufficiency, since for these classes gh& 24 and
(6.7) requires that n„")0 if s)3. For the remaining
four high-symmetry classes, the highest-order cubic,
hexagonal, and tetragonal point groups (m3m, 6/mmm,
and 4/mmm) plus an additional hexagonal group (6/m),
gh takes on values from 32 to 48:

class

6/mmm

4/mmm

6/m

48 (6.8)

36.

For these cases (6.7) is not strong enough, as it stands,
to demand that $&3 —+ n„"&0, although it does im-
mediately establish that

s) 6 —& n„")0 for m3m, 6/mmm;

s&5 ~ n„"&0for 6/m;

s)4~ n ")0for 4/mmm.

(6.9)

We need to look at $=3, 4, 5 in somewhat more detail
for these classes, in order to show that n„"&0.

C. Proof of SufBciency in Three Dimensions: Crystal
Classes m3m, 6/mmm, 4/mmm, and 6/m

The lower limit expressed in (6.7) corresponds to the
situation in which the equal sign obtains in (6.4),
s(a) =0 for all a other than the identity. In order for
this condition to be satisfied, every atom must be at a
general point —no atom on any element of symmetry.
Since general positions within the primitive cell occur in
sets of g equivalent points, $ must be an integral
multiple of g for such a crystal. For the crystals re-
maining to be treated here 3&$&5 and 12&g&48, so
that this condition cannot be fulfilled and, in fact, is
missed by a wide margin.

We now, in effect, strengthen (6.7) by considering the
restrictions on the symmetry operations which may
satisfy s(n) =0 for these low s, high-synnnetry crystals.
For s=3, the only possible candidates for s(n) =0 are
n=3 and n=6. For s=4, s(n)=0 is possible for n=1, 2,
2, 4, 4. For s=5, no operation can satisfy s(u)=0.
Bearing these restrictions on n&s(n)=0 in mind, we
evaluate a new lower limit for gn„" using

gn.*'&9(s—1)— Z I
x (~) I'

a~ a(a) =0
(6.10)

4/mmm $—3'

$&4 ~

$=3:

$=-4:

$&5:

no group operators qualify for s(n) =0
so that (6.10) becomes 16 n„")18—0
so that n "&0;
(6.7) requires n„")0.

(6.10) becomes 12 n„")18—8 so that
n,

'
&0;

(6.10) becomes 12 n„")27—11 so that
n "&Q.

(6.7) requires n„"&0.

6/mmm s=3: (6.10) becomes 24 n„")18—2 so that
n -&Q

s= 4: (6.10) becomes 24n„'"& 27—23 so that
&Q

s=5: (6.10) becomes 24 n„"&36—0 so that
n -&Q.

s)6: (6.7) requires n„")0.

m3m $=3:

$—4 ~

$=5'

$&6:

(6.10) becomes 48 n„"&18—0 so that
n -&Q.

(6.10) becomes 48 n„"&27—39= —12
so that n, "&0 is not proved;

(6.10) becomes 48 n„")36—0 so that
n «&Q.

(6.7) requires n„"&0

One case thus remains outstanding, elemental crystals
of full cubic symmetry (m3m, or Oi,) with four atoms in
the primitive cell. For this situation, the new lower
limit for n„"provided by (6.10) is 0, not 1. Rather than
considering the inequality in more detail, it is simpler
now to use (4.14) to evaluate n„" directly for these
crystals, showing it to be nonzero in each case. An
investigation of the 10 space groups belonging to this
highest-symmetry crystal class reveals that there are
only two possible structures for an m3m elemental
crystal with $= 4'3:

(1) space group Pm3m (Oi,'), with one atom at a
site of m3m symmetry and three atoms at equivalent
sites of 4/mmm symmetry;

(2) space group Fd3m (Oi,~), with four atoms at
equivalent sites of 3m symmetry.

Structures (1) and (2) are shown in Figs. 1(g) and 1(h),
respectively. They are obtained by placing atoms at the
corners and edge centers (or, equivalently, at the body
and face centers) of the primitive cells for simple cubic
and face-centered cubic Bravais lattices. LStructure (1)
would be obtained by replacing cation and anion with
identical atoms in several cubic AB3 compounds: MoF3,
ReO„Cu3N. i4j For both structures the atoms lie on

~4 R. W. G. Wycko6, Crystal Structures (Interscience Publishers,
Inc., New York, 1963), Vol. I, p. 36.
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We have now covered every case for s&3, demon-
strating for all of them that m„"&0.This completes the
proof that the structural condition s&3 is sufhcient for
the existence of a symmetry-allowed erst-order moment.

D. Examyles

Figure 1 displays primitive cells, shown in solid
outline, for some of the s&3 crystal structures discussed
in this paper. Table II lists the corresponding crystal
symmetries and values of s, n„", and e".The structure
of Fig. 1(a), that of trigonal Se and Te,' '4 corresponds to
the 8 shown in (3.4). This has the lowest symmetry of
those shown in Fig. 1, and is the only one of these
structures which is known to occur for an elemental
crystal. Structures (b) and (c) are higher-symmetry
s= 3 crystals, the former having the smallest number of
ir-active vibrations, e"=2, possible for crystals with
s&3. The group-theoretical decomposition of the eigen-
vibration symmetries for (a) and (b) has been given in
Table I. The two cubic s=4 crystals of the preceding
section are shown in Fig. 1(g), (h), while Fig. 1(d)—(f)
show three high-symmetry e„"=1 structures to be
discussed in Sec. 78.

7. FURTHER APPLICATIONS

A. Polyatomic Crystals, Inequivalent Sites

For a polyatomic crystal, the symmetry operations
can only permute sublattices among one another which
are occupied by the same atomic species; nonidentical
atoms cannot occupy sites equivalent by symmetry.
With two atomic species we can write

s(u) =»(u)+sg(u), (7.1)

where each s, (u) describes the interchanges within each
set of identical atoms. Let us consider a diatomic crystal
belonging to one of the two most s~nmetric crystals
classes, m3m or 6/mme, so that the compound has the
same symmetry as does each of the two elemental
crystals formed by either atomic species alone. Then

many symmetry elements, e.g., for both, every atomic
site is a center of symmetry. In fact for (1), one sub-
lattice occupies a site of full cubic symmetry so that no
operation interchanges it with another; s(u) )1 for all u
and no negative terms appear in the sum. Using (4.14),
we obtain

for (1), m„"=2;
for (2), e„"=1.

TABLE lI. Symmetries and reststrahlen properties for the
structures of Fig. 1.

Crystal
structure

Flg. 1(a)
Fig. 1(b)
Fig. 1(c)
Fig. 1(d)
Fig. 1(e)
F1g. 1(f)
F1g 1(g)
Fig. 1(h)

Class

32
6m2

6/mmm

6/mmm

4/mmm

m3m

m3m

m3m

Space
group'

P3121 (D84)

P6m2 (D»')
P6/mmm (D6g')

P6/mmm (D,&1)

P4/mmm {D4gI)
Pm3m (O,I)
Pm3m (0&')
Pd3m (Op, 7)

S S 1$

3 3 5
3 1 2
3 2 3
6 1 2
4 1 2
8 1 3
4 2 6
4 1 3

a The international short symbol of Ref. 13 (with SchoenQies notation in
parentheses) .

where e„"(i)is the number of reststrahlen bands for the
elemental crystal which atomic species i forms by itself,
and where h=1 for m3m, 2 for 6/mmmm. Similarly, for
polyatomic crystals of these symmetries containing k
distinct atomic species,

m "= P e '~(i)y(P —1)h. (7.3)

B. Crystal Comylexity Comyatible with a
Single Reststrahlen Band

We have seen that the only crystals for which e„"=0
are elemental crystals with s= 1 or 2; elemental crystals
with s&3 must display at least one reststrahlen band.
(Of course, as discussed above, all compounds display
one or more reststrahlen bands. ) Let us now ask what is
the largest number of primitive-cell atoms consistent
with a single reststrahlen band, max s such that m„'*= 1
(max s such that m„"=0 is 2). Since this must occur for a
highly-symmetric structure we can use (6.7). Solving
for s, we 6nd

s& —', (gn„"+gh) .
We are interested in e„"=1:

(7.5)

Thus, for a crystal composed of k diGerent atomic
species

s xr&k (7 4)

so that one-phonon absorption is symmetry-allowed for
all crystalline compounds. Exactly the same argument
applies to an elemental crystal with atoms located at k
sets of equivalent sites Le.g., structure (1) of the
preceding section] since such a crystal has the identical
symmetry as one with diferent atoms at the inequiva-
lent sites.

~."=(1/g)Z- I:~(u)—1jl X'(u) I'
= (I/g)Z- L ( )+ ( )—1jl ~ ( ) I'
= (1/g)E. L»(u) —13I~'(u) I'

+(1/g)P- Ls (u) —1jl& (u) I'
+(1/g)Z-I ~"(u) I'

=e„"(1)+e„"(2)+h, (7.2)

s&-', (g+gh) . (7.6)

From (6.8) we see that g+gh is 96 for class m3m, 72 for
class 6/mmmm, and &48 for all other classes; so that
s&10'„for ns3ns, &8 for 6/mmmm, and &5 for the rest.

Thus far the maximum possibility is s=10, for full
cubic symmetry. Now we note the fact that the dis-
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cussion of the preceding subsection rules out the possi-
bility, for such large s, of the occupation of more than
one set of equivalent sites, since this mould require
e„"&2. With k&3, (7.4) shows that u„"&2.With k= 2

and s&5, at least one set, say i= 1, contains 3 or more
atoms. Then u„"(1)&1 so that, from (7.2), u„"&2.
Therefore me must have k= 1 in order for e„"=I to be
possible with s&5. This argument also shoms that for a
comPound the largest s compatible with e„"=1 is s= 4,
and that this occurs for a cubic (m3m), diatomic (k= 2)
crystal with sz ——s2= 2. For this case I„"(1)=n „"(2)=0,
k=1, yielding u„"=1 in (7.2).

For crystal class m3m, the largest number of equiva-
lent sites which is consistent with s& $0 is s= 8,"which
thereby provides the answer to the question placed
above:

8=max s such that e„"=1. (7.7)

For class 6/mme, the corresponding value is s= 6. For
the most symmetric classes among the other 30, s= 4 is
the largest number of primitive-cell atoms which can
give rise to only one reststrahlen band. Figures 1(f),
1(d), and 1(e) display primitive cells containing 8, 6,
and 4 atoms, for e„"=1crystal structures of highest
cubic, hexagonal, and tetragonal symmetry, respec-
tively. Statements analogous to (7.7) can similarly be
obtained for larger values of e,".

8. SUMMARY

We have shown that a necessary and suKcient condi-
tion for the existence of symmetry-allowed, one-phonon,
infrared absorption in an elemental crystal is a crystal
structure in which the primitive unit cell contains three
or more atoms, s&3. This minimum-complexity condi-
tion, more succinctly stated in (1.1)—(1.2), has been

demonstrated by developing expressions (4.7)—(4.9)
which count the number of infrared-active phonons and
phonon frequencies, and which determine the form of
the effective charge tensor, for a crystal of given
symmetry and unit-cell structure. Crystal symmetry
enters (4.7)—(4.9) through the factor-group characters,
while the structural complexity of the primitive cell
enters in the form of structure factors, s(n), specifying
the number of sublattices invariant under the symmetry
operations o,.

The proof of (1.1), s)3 as a necessary condition for
reststrahlen, follows from (4.7) and the observation that
all s=2 elemental crystals possess'an inversion opera-
tion which interchanges the two sublattices; this is
equivalent to a generalization of the Lax-Burstein
argument for the vanishing first-order moment in Ge.
The proof of (1.2), s&3 as a sufhcient condition, has
been obtained by generating a simple inequality, (6.7),
which illustrates how the constraints of symmetry are
outstripped by unit-cell complexity with increasing s,
and by a detailed treatment of the highest-symmetry
crystal classes.

In other applications, the present approach provides a
simple means for showing that a compound composed of
k atomic species possesses at least k-1 reststrahlen
bands, and that the largest s compatible with a single
reststrahlen band is 8 for elemental crystals and 4 for
diatomic compounds, both obtaining for full cubic
symmetry.
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