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Electronic Energy States of Dislocations in CdS-Type Semiconductors*
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It is shown that electronic energy bands are associated with dislocations in wide-band-gap, compound
semiconductors. The eigenvalue problem for the dislocation band edge is solved for CdS-type crystals, and
the occupation of the band is calculated. The Fermi energy is then determined for crystals containing
many deep-lying discrete levels as well as dislocation bands. It is predicted that when a crystal is illuminated
with light of appropriate wavelength and increasing intensity, the thermal activation energy governing
the electrical conductivity passes through a series of energy plateaus which are equal to the energy of the
discrete levels. In a dislocation-free crystal, these plateaus are connected by step changes, while in a crystal
with dislocations they are connected by broad transition regions, In order to study the predictions, the
thermal activation energy was measured as a function of light intensity in both deformed and undeformed
samples of CdS. In all cases, plateaus at 0.80&0.02 and 0.06&0.02 were observed. The transition
between these plateaus was sharp in the case of the undeformed samples and broad in the case of the de-
formed samples, These results con6rm the predictions mentioned above.

1. INTRODUCTION

"KAR a dislocation, changes in the energy of an
electron in a crystal may arise from lattice

dilatation and in the case of edge dislocations from
unpaired bonds. ' Heine' shows that lattice dilatation
can lead to a discrete energy level in the forbidden gap.
Kmtage, s who has treated this problem in greater
detail, concludes that this effect is overwhelmed by the
dangling bonds, and lattice dilatation is relevant only
in the case of screw dislocations.

Two important properties arise from the geometric
proximity of the unpaired or "dangling" bonds. First,
the wave function for adjacent sites should overlap
significantly, which suggests a band of energy levels.
Second, the occupation of an energy level associated
with the dislocation edge should be limited by the
Coulomb energy associated with the trapped charge
carriers.

In a treatment of these states, Read4 ' assumed that
the overlap of the wave function was unimportant, and
he concentrated on the electrostatic energy. He postu-
lated that the dangling bonds lead to acceptor states
at a discrete energy, and that their occupation is
severely limited by the mutual Coulomb repulsion of
the trapped electrons.

On the other hand, Bonch-Bruevich and Glasko'
solve the problem in terms of a quantum-mechanical
model in which a trapped hole is free to move along the
dislocation edge, and the electrostatic energy is a small

perturbation. They predict energy bands in which the
band edge is determined by the bound two-dimensional

*Research supported in part by the Once of Naval Research,
f National Science Foundation Coop. Fellow 1964-1966.

Present address: Bell Telephone Laboratories, Whippany, N. J.' W. Shockley, Phys. Rev. 91, 228 (1953).
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motion of the trapped hole in the plane normal to the
dislocation edge, and the bandwidth arises from the
unconstrained motion of the trapped hole along the
dislocation edge.

Because both of these theories have adjustable
parameters, it has not been possible to distinguish
between them experimentally. For example, Logan
et al.' obtained results on deformed Ge which they
explained in terms of Read's theory. Later, Gulyaev'
was able to reinterpret these results in. terms of a band
model. One of the reasons for the ambiguity is the
choice of material —Ge. (3ulyaev finds that the dis-
location band in Ge falls below the Fermi level, with
the result that the temperature dependence of the
dislocation occupation is similar to that of a discrete
level. In addition, since. Ge forms covalent bonds, the
binding energy of a hole to a dislocation is a strong
function of dislocation occupation. Gulyaev' Ands that
this leads to an unspecified shift in the band edge with
occupatioIl.

CdS has advantages over Ge for the study of dis-
location energy bands. These include the following:

{1) In CdS, the dangling bonds are partially ionic
rather than entirely covalent. Therefore, the dislocation
energy states are affected less by the charge on the
dislocation than they are in Ge.

(2) In CdS we often find a high density of deep
levels which are associated with various impurities
and other point defects. As we will show later these
energy levels, which will be referred to as local lt,eels
can be used as a probe of the dislocation band.

In the present work, the band theory for disloca-
tion energy states is formulated for CdS„and the re-
sulting eigenvalue equation is solved for the dislocation
band edge by using a pseudo-square-well approxi-
mation for the dislocation potential. The dislocation
occupation is then calculated as a function of the Fermi

8 R. A. Logan, G. L. Pearson, and D. A. Kleinman, J. Appl.
Phys. 30) 885 (1959).

9Yu. V. Gulyaev, Fiz. Tverd. Tela 3, 1094 (1961) LKnglish
transl. : Soviet Phys. —Solid State S, 7N l1961}j.
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FIG, 1. Geometric projections of atomic planes in CdS. For key and explanations see the text.

energy, and this result is combined with a general
description of a wide-band-gap semiconductor contain-
ing many deep levels. This derivation leads to the
prediction that in CdS with a low dislocation density
the activation energy associated with the temperature
dependence of the electrical conductivity will coincide
with a local level, whereas in CdS with a high dislocation
density the activation energy may fall between two
such levels. This prediction has been verified in experi-
ments with undeformed and deformed CdS crystals.

2. DISI OCATION GEOMETRY IN
HEXAGONAL CdS

Figure 1 shows the geometric projection of various
planes of atoms from three directions of high symmetry.
Each projection represents several superposed planes,
and atoms on diferent planes are designated by tri-
angles, circles, squares, and diamonds. Solid symbols
represent Cd atoms, and unshaded symbols represent
S atoms. In the (0001) projection, the atoms from
two of the projected planes lie directly behind atoms
from two other planes. This is indicated by a double
symbol. The dimensions indicated have the following
values: b=2.07 A; d=2.52A; e=0.84A; f 1.19A;
g= 2.39 A.

Because the (0001), (1100), and (1120) directions
can be mutually perpendicular, it is possible to con-
struct edge dislocations with their Burgers vector in
one of these directions, and their edge in another. There
are six such systems. In each of the projections of
Fig. 1, solid lines enclose the extra half-planes of the

two dislocations whose Burgers vectors lie in the plane
of the projection. The shaded areas represent atoms
that would be missing if the dislocation terminated as
indicated. Many of the geometric properties of these
six dislocation systems are summarized by Table I.

In the present experiment it is postulated that
type-6 dislocations are introduced for the following
reasons. First, the applied (longitudinal) stress formed
an angle of 45' with both the (0001) and the (1120)
directions. As may be deduced from Table I, this
maximizes the probability for the generation of the
type-6 dislocations. Second, our deformation occurred
at temperatures below 580'C, and in bending experi-
ments, $hiozawa and Jost" found that only slip in-
volving the type-6 dislocations occurred in this tem-
perature range.

Two important properties of the type-6 dislocation
should be indicated. First, as shown in Table I, these
dislocations terminate either in all Cd atoms, or in all S
atoms and therefore are either acceptor or donor type.
Figure 1 shows that the type of atom which terminates
the dislocation does not change with jogs or steps.
Whether the type-6 dislocation is acceptor or donor
type is completely determined by the sense of the
Burgers vector. Second, the edge of the type-6 dis-
location is a line of broken, partially ionic bonds which
zig-zag between the extra two half-planes. It is assumed
that there is significant overlap of the potential of
adjacent broken bonds, and the potential associated

'0 L. R. Shiozawa and J. M. Jost, Aerospace Research Labora-
tories Report No. ARL-65-98, 1965 (uIIpublished).



805

Ter,z I. Properties of principal types of dislocations in CdS.

Dislocation Burgers
type vector

I (2120)

(000j.)

(1100)

Slip
plane

fj.100)

flI00) (1120) All Cd (2)
AB S (2)
Mixed (4)

All Cd (2)
All S (2)
Mixed (4)

(1100) Mixed (2)

Dislocation Type and number of
edge extra half-planes

(0001) Mixed (2)'

Description of the edge

One line of alternating Cd and S atoms, each atom
having one broken bond.

Two lines of atoms; one of all Cd atoms, and one of
all S atoms. Each atom has one broken bond.

Two lines of alternating Cd and S atoms. Each
atom has one broken bond.

Four lines of atoms; tvro of all Cd atoms, and two of
all S atoms. Each atom has one broken bond,

Two lines of atoms; both lines are all Cd atoms, or
both lines are all S atoms. Each atom has one
broken bond.

Two lines of atoms; both lines are all Cd atoms, Or

both lines are all S atoms. Each atom has one
broken bond.

a A mixed extra balt-plane is a plane containing both Cd and S atoms.

with the edge looks like a tube of rectangular cross
section. This feature will be used later in connection
with the quantum-mechanical calculation.

3. DISLOCATION BANDS

Several theories for the electronic states of edge
dislocations have predicted bands. '~""The approach
which forms the basis for much of this paper was
proposed by Bonch-Bruevich and Glasko. ~ Their theory
is formulated in terms of holes contained in acceptor-
type dislocRtlon bRnds wlilch Rre locRted below' the
Fermi energy.

The present derivation is formulated in terms of the
electron occupation of donor bands. With simple
changes of notation, these results apply to the hole
occupation of acceptor bands. In this treatment the
charge on the dislocation is accounted for in two ways.
First, an explicit correction V, is made to the anal
derived energy levels. This correction is due to the
fact that the total Coulomb energy of all captured
holes is reduced when an electron is captured. V, is
essentially the electrostatic energy E, dehned by
Read, ' and it is approximately proportional to the
charge on the dislocation. This means that in a type-6
dislocation V, is related to thc dislocation occupation
(eg&) by

V,= —C(nn ——,'~,),
where I, is the number of atomic sites per unit length
of dislocation and C is a positive constant. The second
effect of the charge on the dislocation occupation arises
because the perturbing potential V(r), associated with
the dislocation, is charge-dependent. This means that
the wave equation involving V{r) must be solved in a
self-consistent manner. However, in CdS the dangling
bonds are partially ionic, and V{r) does not depend

"W. Guth and W. Haist, Phys. Status Solidi 17, 691 (1966).
'~A. L. Laskar and C. L. Roy, Proc. Natl. Inst. Sci. India

A29, 430 (j.963).

strongly on dislocation occupation. We will assume
that V(r) can be specified, and that the resulting energy
levels are independent of dislocation occupation.

If the energy of an electron in the conduction band
ls related to lts momentum 'tlllollgll E(p), 'tllell 111 the
eGective mass approximation the "e6ective" Hamil-
tonian for the electron is E(—ihV). When this electron
is also in the field of a dislocation, the effective wave
equation ls

LE{—ihV)+ V(r))%{r)= W% (r). (2)

The eigenvalue 5' represents the change of the energy
of the entire crystal due to the interaction of a single
electron with a dislocation.

Following Bonch-Bruevich and Glasko, ~ an approxi-
mate form of Eq. (2) is obtained by expanding the
function E(y) to quadratic terms about (0,0,p,).
It is assumed that E(p) has an extremum along this
line so the 6rst derivatives in p, and p„vanish. By
choosing a coordinate system in which s is along the
dislocation edge, and the x-y submatrix of the effectivc-
mass tensor is diagonal, the expansion of E(y) becomes

It~ d' h' d'
+V(x,y) &(x,y) =XP (x,y), (5)

254g g l4 28$g3f

E(P.Pe P )=E(00 P*)+ P*'+ P' (3)
25$+g 28$gg

If the dislocation does not disturb the periodicity of
the crystal fIeld along the dislocation edge (s direction),
the wave function and dislocation potential can be
written as

k(r) =E(x,y)e-'I"

V(r) = V(x,y) .

Combining Eqs. (2), (3), and (4) and simplifying yields
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where 'A is defined by

~=—W —E(o,o,ak). (6)

where a and p are the half-widths of the we11 in the x
and y directions. This potential can be compared to two
intersecting streets at a level V=o which run between
buildings of height V=

~
V ~. At the intersection of these

streets there is a hole of depth V= —
~
V~. Using this

potential, @sEq. (5)"can be written in separated form:

PP d x
+U — —(X—b) X(x)=0, (Sa)

2fs~g dS cL

y+U — bV (y) = 0, (Sb—)
2zzzgy dy P

where b is a separation parameter which is real. Let

Equations (5) and (6) can be interpreted in terms
of multiple energy bands. To see this we define the
zero of energy at the conduction-band edge. The
function E(0,0,tzk) then represents the kinetic energy
of an electron, in the conduction band, moving in the
2 direction with momentum hk. Since this energy has a
quasicontinuum of positive allowed values, the total
energy 8' can have a quasicontinuum of values above
a band edge at 'A. For any negative value of I, these
energy states constitute a band of allowed states which
overlap the forbidden gap. If X is positive, these states
represent the scattering of free electrons by the
dislocation.

In order to obtain an approximate solution to Eq. (5)
for the eigenvalues X, it is assumed that, as mentioned
earlier, V(x,y) has the form of a rectangular "square
well. " (This is a crude approximation to the actual
potential and its use with the effective-mass approxi-
mation is not expected to yield very rigorous results, but
it should be helpful in estimating the number of bands
which will be bound. ) Within the well the potential is
—

j V ~, and outside it is zero. The diagram of the type-6
dislocation (Fig. 1) shows that the potential of the
broken bonds may extend over about three times the
separation of the (1120) planes in one direction, and
over most of the length of the hexagonal cell in the
other. Thus 6 by 8 A is a reasonable estimate for the
size of the well.

To render Eq. (5) separable, a further approximation
must be made. Here the "square well" is replaced by
the following potential:

V(*,y) = U(*/ )+U(y/P),

(8b), these two equations become dimensionless and
formally identical. By letting X(x) and Y(y) ~ H(w),
E„and E, -+E, y and y, +-pin Eqs. (8), they can be
written in the regions (w( &1 and (w( )1 as follows:

d'H(ze)
—= s'H (ze)

d 2

d'H (ze) = —tzH(ze),
i w( (1

(10)

H(ze) =Aze'"

H(ze) =A e'™+Be "~

H(ze)=Bze '
—1&re(+1 (12)

w)+1.
For the logarithmic derivatives to be continuous at
m = —I and m =+1, the following relationship must
apply:

e
—if g e+iE

s=B
Aze "+Bze+"

Age+"—Bye "
S= —Zt

e+~t+B e
—A'

(13)

Equations (13) can be put in the form of two homoge-
neous equations in A2 and 82. For a nontrivial solution
of these equations to exist, the following condition
must be satisfied:

0= e "(s—zt) —e "(s+it)'

For this equation to have a solution with s real and
positive, t must be real. Depending on the value of t
there are two different solutions to Eq. (14) for s(t):

s=t tan(t), zzzr&t&(zz+zz)zr zz=0, 1, 2
s= t ctn(t), — (15)

(~+-,')x«&(~+1)~ ~=0, 1, 2

These two solutions can be combined in a single
relationship:

whe«s and t are defined as follows

=(1/»C-:IVI-E3'", t=(1/y)Ll(V(+Ey. (»)
Since V and E are real, s and t cannot be complex, but
they may be entirely imaginary or entirely real. They
are by definition positive.

For Eqs. (10) to have bound solutions, the wave
function must vanish for large values of m. This require-
ment is satisfied only if s is real. Using this boundary
condition, the solution to Eq. (1) can be written in
three regions:

a=y/p, E,=b, y, z = tz'/2zzz„„Pz.

E„=X—b, y„'= tzz/2zzz, n'; t=o+-', ax, s= (e+,'~x) tan(e)

0&0&-,'~, ~=0, 1, 2 (16)

When these definitions are substituted into (Sa) and A set of parametric equations, which specify X as a
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function of parameters of the well, are obtained by
combining Eqs. (9), (11), and (16):

V= y '(Oi+mi-'n-)'(1+tan'Oi),
0&8g&-,'x eg=0, 1, 2

E~= -', y~'(Oi+N i,'~)'(1 t—an'Oi)

V= y.'(Og+ng-', m-)'(1+tan'Op),

0&8,&-,'~ e,=0, 1, 2

K=
g y.'(Op+my-,'m )'(1—tan'Og),

X=8„+E,.
Equations (17) can be solved for the maximum

well dimensions (di, d~) which give negative values of
X, i.e., dislocation bands as a function of well depth V.
The resulting parametric relationship between dy and
d~, with V as the parameter, gives the locus of X=0. In
Fig. 2 this solution is shown for the lowest value of A.

(mi ——0, n~ ——0), at several. values of V. This figure shows
that at the dimensions assumed for the potential well

(6 by 8 A), the well must be almost 2.5 eV deep for
even one dislocation band to exist. For more than one
band to exist, the well must be much deeper. An energy
of 2.5 eV is close to the band gap in CdS, and corre-
sponds to the minimum energy difference between a
bound and a free electron in a perfect lattice. This is a
reasonable upper limit for the potential associated with
a broken bond. Therefore CdS should contain no more
than one dislocation band.

A second way to represent the solution to Eqs. (17)
is to assume a value for the well depth, and then plot

26—

26

24

22—

A 12

~10

I I I I I I I I I I I I I

2 4 6 8 10 12 14 16 18 20 22 24 26

NELL D1llENsioN-&g ( k )

FxG. 3. Parametric curves showing the well dimensions which
give identical values for the dislocation band edge in a pseudo-
square-well which is 2.5 eV deep. The parameter indicated on
these curves is the value of the dislocation band edge. In making
these calculations a value of 0.2 was assumed for the eGe ti
of the electron.

or ee ec ivemass

the parametric relationship between the widths of the
well (di, d~) using the band edge X as a parameter. In
Fig. 3 a well depth of 2.5 eV is assuaged, and the well
sizes which give various binding energies between 0
and 1.8 eV are plotted. In the calculations for Figs. 2
and 3, a value of 0.2m, was used for the effective mass
thiis is an average of the experimental values reported

~ )

for the effective mass of the electron in the conduction
band of CdS." '~

20—

16—
~.14—
A ]2

10—

where

8'p —Ep--'
f~(Wr)= 1+exp

kyT
(18)

4. OCCUPATION OF DISLOCATION BANDS

To find the occupation of a dislocation band, it is
assumed that there is little interaction among the
captured electrons, and their distribution is given by a
Fermi function

Wr ——X+X (0,0,hk) —V„ (19)

3.1
I I I I I I I I I I I I I

2 4 6 8 10 12 14 16 18 20 22 26 28

WELL DIMENSION —d, ( P, )

FIG. 2. Parametric curves showing the minimum well dimensions
for which a dislocation band will exist. The parameter indicated

these
on these curves is the depth of the pseudo-square-well I k'

calculations a value of 0.2 was assumed for the effective mass
of the electron.

and both W~ and Ei are measured (positive up) from
the conduction-band edge.

"W. W. Piper and R. E. Halsted, in Proceedings of the Inter-
national Conference on Semiconductor Physics, 1960 (Czecho-
slovakian Academy of Sciences, Prague, 1961), p. 1048.

~ ~ ~ ~ ~ y ~-'4 W. W. Piper and D. T. F. Marple, J. Appl. Ph s. 32 2237

"M. Cardona, J. Chem. Phys. Solids 24, 1543 (1963).
'6 J.J. Hop6eld and D. G. Thomas, Phys. Rev. 122, 35 (1961).

p. A. Kroger, H. J. Vink, and J. Volger, Philips Res. Re t.
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To 6nd the average number of captured electrons
per unit dislocation length (III), Eq. (18) must be
summed over all allowed values of k. As usual, this
summation is replaced by the following integration:

Using Eq. (1) to eliminate V, in Eq. (26) gives

en =K/EI P.+—I2Cn-, CI—In]"',
(2&)

(20)
Equation (27) establishes an implicit relationship be-

where E(0,0,kk) is assumed to be a symmetric function
of k F uatIon (20) can be Inte rated b arts . the usual relationship between the occupation n; of a local

integrated part vanishes with the result
'

energy level at E; and the Fermi energy:

kd fp(W r) e;=E; 1+exp
kgb

E(0,0,hk) =k'k'/2 IN,

To solve Fq. (21) tlm usual free-electron relationship where X; is the density of these levels. In both Eqs.

ls assumed: (27) and (28), the occupation (nn or II;) is determined
when the Fermi energy is specified.

where m is the eGective mass for motion in the s
direction, For convenience we make the following
definitions:

f(s)=(1+") '

Sp—Ep
—-DI—Vq Eg+ k'k'/—2m j,

PENT

kyT

S. FERMI ENERGY IÃ A CRYSTAL
CONTAINING DEFECTS

In a crystal containing defects the Fermi energy is
determined by the temperature and the number and
type of defect levels present. An analytical relationship
between e~, I;, and Ep can be derived from the equa-
tion of charge neutrality, and from continuity equa-
tions for the local levels and the dislocation bands

The function f(s) is a conventional Fermi function in
which the energy s is translated to the origin, and the
argument 2' is expressed in units of k~T. The only case
considered here is that of the Fermi energy within the
dislocation band, i.e., that of positive 8. Combine
Kqs. (21) and (23):

2-2m
eg) =— kgT

m. A' a

df
(a+8)"'(—ds (24)

Nn = k I,TB — 1 B'+ ~ ~ ~——
sr h2 25

(23)

If the Fermi energy is more than a few kgb above the
band edge, the dislocation occupation can be approxi-
mated by 'tile fiis't tel'Ill 111 Eq. (25). ColllbllllIlg 'this

approximation with the definition of B LEq. (23)j gives

Ig& (Ep——+—V,—X)l".
vr h'

(26)

Since the derivative of f(s) looks like a b function, the
value of this integral is determined near the origin.
Thus the integral can be approximated by expanding
(a+B)II2 in a power series about the origin, and replacing
the lower limit of integration by —~. The integrals
in the resulting series can be evaluated explicitly:

&.+p~=&~ (30)

(31)

P II.+Q ng I;+g e——s+P IIg, (33)

where e; is the number of electrons occupying the level
nearest the Fermi energy, p IIII is the number of
electrons occupying local levels below E; (E; is the
energy of the jth level), and P n~ is the number of
electrons occupying levels above E;. Combining Eqs.
(31), (32), and (33), and using (30) to eliminate g nil
yields

Q III"s+II =Q Ng+Ng&(e nn)+M (34)—

where n, represents electrons occupying acceptor sites,

pq represents holes occupying donor sites, Xll represents
the density of dislocation lines, and IIn and pII represent
the electron and hole occupation of the dislocation
bands.

By applying Kq. (30) to each of the donor levels, and
then summing over all donor levels, g pq can be
eliminated from Eq. (29):

—e—Q II.+p+Q Sg—Q ng+plllVn=0, (32)

where g Xq represents the total number of donor levels
in the crystal The term. s p II,+p II&, which represent
the number of electrons occupying all of the local
levels, can be rewritten as
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k~. +Eg
f

Frc. 4. Solution to
g Sg+ny=g ar.+sr~(+,—n~)+u
for hypothetical crystal.

5

g + N~(~, - ~~)
~ea

NNY DISLOCATIONS

~FS DISLOCATIONS
~ ~

NO DISLOCATIONS

E»

where P Ss is the total number of local levels lying
below EI, and 3f is dined by

M= p+P ps —rs —P eg. (33)

M is the difI'erence between the number of holes in
local levels below E; and the number of electrons in
levels above E,. Since E; is the local level nearest the
Fermi energy, and because of the sharpness of the
Fermi function, both of these quantities are small.
Therefore M is small.

An implicit equation for E~ can be obtained by
combining Eqs. (27), (28), and (34). To obtain the
Fermi energy explicitly we plot the left- and right-hand
sides of Eq. (34) independently, as a function of Ez,
using Eqs. (27) and (28) to determine how e; and rl&
depend on EJ. The Fermi energy for the crystal is
given by the intersection of these two curves. Because
of the steplike nature of the Fermi function, the left-
hand side of Eq. (34) is essentially constant between
the local levels, and at E, it decreases by X; over an
energy of a few kbT The right-h. and side of Eq. (34)
is dominated by the constant term Q Sz, however, in a
crystal containing dislocations, the term mn [Eq. (27)j
gives it curvature.

In Fig. 4, solid and dashed curves represent the
left- and right-hand sides of Eq. (34) which are plotted
for a hypothetical crystal with various dislocation
contents. In the dislocation-free case the solid and
dashed curves are parallel everywhere except very near
the local levels. Thus the intersection must occur very
near one of these levels. However, in the crystal with
dislocations, the two curves are no longer parallel and
intersections can occur between the local levels. For
example, in Fig. 4, the Fermi energy is near E6 in the
dislocation-free case, as well as in the case of few
dislocations, but with many dislocations the Fermi
energy is between E5 and E6.

C=eqp=1V. gp exp[Ep/kbT], (37)

where q is the charge on an electron and p is the mobility
and the zero of energy is defined at the conduction-
band edge. Combine (36) and (37):

lnC= (1/kgT)E,+lnN,qg'
—in[E;/(Q 37g QSs+M)-1—). (38)

By definition, '8 X, is proportional to 7+3~2 and experi-
mentally, " between 80 and 700'K, the mobility in
CdS is proportional to T 3~', hence pÃ, is temperature-
independent. In addition, as mentioned earlier, M is
small, so its temperature dependence can be neglected
in the last term. Therefore, in a dislocation-free crystal,
the slope of a plot of lnC versus 1/kqT, i.e., the "acti-
vation energy, "will be E;.

For a crystal containing dislocations, the case in
which the Fermi level is near a local level must be
distinguished from the case where it is between two
local levels. Figure 4 shows that in the former case the

~8 R. H. Bube, Photoconductizity of Solids Qohn Wiley Bz Sons,
Inc. , New York, 1960).

"W. E. Spear and J. Mort, Proc. Phys. Soc. (I ondon) Sl, 130
(1963).

Kith these graphical solutions in mind, appropriate
approximations can be made to obtain an analytic
expression for E~. First, consider the dislocation-free
case. Letting ED=0, combine Eqs. (34) and (28), and
solve for Ep..

Er =E; kqT in[a—,/(g Xg—P ilrs+M) 1]. (36)—

Equation (36) can be used to determine the acti-
vation energy which governs the temperature depend-
ence of the electrical conductivity. In the case of CdS,
which is an e-type, wide-band-gap semiconductor, the
electrical conductivity is given by
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exact value of E~ is determined by the variation of e;
with energy, and e~ can be treated as if the intersection
were at the local level. In this case Ep is given by

Ep E; ——kgT—ln(N, /
fg N, —g N +M+N, N—(E;)j 1).—(39)

By comparing this result to Eq. (36), we can see that
the activation energy is again E,.

%hen the Fermi energy falls between two of the
local levels, e; is either 0 or Ã;, and it is not a strong
function of energy. In this case EI; can be found by
combining Eqs. (34) and (27):

Er =7+ PZNg+Nnn, +M' ZNs]'—
IC'Sg)'

local levels. On the other hand, in crystals with dis-
locations, these two curves are not parallel and as the
dashed curve moves up, their intersection can move
continuously between the local levels. However, be-
tween these transition regions, there will be ranges of
light intensity over which the Fermi energy is very near
one of the local levels.

We conclude that in dislocation-free crystals, the
activation energy, when measured as a function of light
intensity, will change discontinuously between energies
corresponding to the local levels. In a crystal containing
dislocations, the activation energy will have plateaus
at energies corresponding to the local levels, and there
will be continuous transition regions between these
plateaus.

C
[ZN, + ', N n-.+M ZN—,j, (40)

E~

where 3II' is de6ned by

M'= M —m; (E), i E—E, i )kgb. (41)

In this case the activation energy is equal to E& and it
will be between two of the local levels.

6. EXPEMMENT TO TEST THE PREDICTIONS

I,ight with energy less than the band gap changes the
distribution of charge carriers by exciting electrons to
levels above Eg and holes to levels below Ep. This can
be described in terms of a change in the value of M with
light intensity. According to the quasi-Fermi-level
concept'0 only recombination centers are sufFiciently
far from either band to experience a signi6cant de-
parture from the thermal equilibrium distribution of
charge carriers. Therefore the charges that occur in M
when the crystal is illuminated are primarily caused by
changes in the occupation of the recombination centers.
CdS contains recombination centers (sensitizing centers)
which have the property that their occupation by
holes increases with light intensity. '0 It is likely that
holes accumulating in the sensitizing centers will be
the dominant contribution to M. Therefore, in CdS
eve would expect M to increase with light intensity,
and since the occupation of the sensitizing levels is not
strongly aGected by changes in Fermi energy or tem-
perature, "M should not depend on E~ or T.

M appears on the right-hand side of Zq. (34), so in
Fig. 4 the dashed curves move rigidly upwards as the
intensity of the light is increased. The amount of this
displacement is related to the number of holes trapped
by the sensitizing levels. In dislocation-free crystals,
the solid and dashed curves are parallel everywhere
except near the local energy levels. Thus as the dashed
curve moves up, the intersection which determines the
Fermi energy must move discontinuously between the

'o R. H. Bubc, I.Phys. Chem. Solids I, 234 (195'7).

t. EXPERIMENTAL PROCEDURE

In order to standardize the defect content as much
as possible, all samples studied were cut from one large,
single crystal of CdS. This crystal was not intentionally
doped, and appeared clear and of uniform color. This
crystal was cut into rectangular parallelepipeds, each
measuring approximately 2&2&5 mm'. These samples
are oriented so that the (1100) direction is along their
length, and the (1120) and (0001) directions are along
the diagonals of their ends. Prior to deformation, the
conductivity of the samples fell in the range 3.5&10 "
to 7.4&& 10 " (Q cm) ' at 119'C.

The samples were deformed to strains of between 1
and 22/o by the application, a't 400 C, of a static
longitudinal stress of between 1.0 and 3.0 kg/mm'.
The crystals were heated under these stresses, in a
helium atmosphere, to 580'C. Although the change in
dislocation density with plastic strain in CdS is not
known, the relation is expected to be monotonic for
the strains used in these experiments. During these
deformations, a second sample (reference crystal) is
placed close enough to the crystal being deformed to
be at the same temperature.

The optical experiment proposed earlier was accom-
plished by measuring the conductivity of the crystals
as a function of temperature under different amounts of
illumination. The crystals were illuminated with light
from a 500-W incandescent lamp (G.E. type DHJ).
An interference 6lter with a peak wavelength of
7000 A and a bandwidth of 280 A was used as a mono-
chromator. Neutral density Alters were used to control
the light intensity.

By comparing the absorption of a slab of CdS and the
absorption of various neutral density filters, it was
determined that the CdS had an absorption length
(distance required to reduce the intensity by a factor
of g ') of 1.94 mm at the wavelength used in these
experiments. Since the thickness of the samples tested
was 1.8 to 1.9 mm, it follows that the light is absorbed
throughout the samples, hence we observe bulk effects
and not surface effects.
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The illumination was varied over a Aux range of 10"
to 10" photons/cm' sec. At the lower intensity limit
the activation energy was generally unchanged from
its dark value, and at the upper limit, the amount of
optical excitation into the conduction band became
so large that it was impossible to determine accurately
the activation energy of the thermal process.

Ohmic, soldered indium contacts were used on all
samples. To reduce the possibility of contact error, all
measurements were made with 30&0.3 V applied to
the sample. The sample conductance was measured
in a series circuit which consisted of a regulated 30-V dc
power supply, a Keithley Model 610A Electrometer,
and the sample. The thermal activation energy was
determined from the temperature dependence of the
sample's conductance, during a heat-cool cycle, between
room temperature and 127'C.

For measurements made in the dark, a plot of lnC
versus 1/T was found to be linear over the entire
temperature range. However, the determination of the
activation energy from measurements made with
illumination is complicated by optically excited elec-
trons. This is because the relationship between E~
and C, given by Eq. (37), applies only to thermally
excited conductance; if the optically excited conduct-
ance is included then Eq. (37) defines the quasi-
Fermi-level. " Thus in illuminated crystals these two
contributions to the conductivity must be separated.

Figure 5 shows the data for a crystal under illumi-
nation. The observed relationship between conductance
and 1/T (solid curve) has a minimum which arises from
the difference between the temperature dependence of
the conductance due to the optically and thermally
excited electrons. At high temperatures the thermally

(CRYSfAL 1i F,V, 350)

]p 11

excited electrons dominate, and the conductance in-

creases exponentially with increasing temperature
(thermal activation). At lower temperatures, optically
excited electrons dominate, and the conductivity de-
creases with increasing temperature (thermal
quenching).

These two contributions to the conductivity are
separated by a self-consistent analysis. To do this a
line is drawn which approximately 6ts the thermal-
quenching portion of the data. Values of the conduc-
tivity on this line are subtracted from all data in order
to estimate points on the thermal activation curve.
A line is then drawn through these points and values of
conductivity from this line are subtracted from the
original data to obtain a better estimate of the thermal
quenching curve. After several (usually three) repeti-
tions of this process, the original data can be separated
into two straight line segments. The dashed lines in

Fig. 5 represent the results of this decomposition
technique. The activation energies obtained in this
manner are accurate to +0.02 eV.

8. RESULTS

The experiments discussed above have been con-
ducted on nine samples (five deformed, four reference).
In Figs. 6—9 the thermal activation energy for these
nine samples is plotted as a function of relative light
intensity. An intensity of unity corresponds to a Aux

of 10"photons/cm' sec. The activation energy plotted
in these figures is the average of two values: one calcu-
lated from data taken on heating and the other from
data taken on cooling. When these two values differ

by more than the experimental uncertainty of 0.02 eV,
error brackets are included.

The results shown in Figs. 6—9 have the form pre-
dicted. Both the reference crystal and the deformed
crystal show two ranges (plateaus) where the activation
energy is essentially independent of light intensity.
The "transition region" between these two "plateaus"
is sharp in the case of the reference crystals and broad
in the case of the deformed crystals. The plateaus
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correspond to light intensity ranges over which the
activation energy is equal to the energy of a local
level, and the transition region corresponds to intensity
ranges over which the activation energy is between two
local levels. Since these samples were all cut from the
same single crystal they are expected to contain the
same local levels, and the activation energy plateaus
should occur at the same energy in all nine samples.
The average value, for all samples, of the points on
the upper plateau is 0.804&0.019 eV and on the lower

plateau it is 0.658&0.012 eV. The error indicated
represents one standard deviation, and is slightly less
than the measurement uncertainty (0.02 ev). These
plateaus, therefore, constitute evidence for two different
discrete levels in CdS.

Several features of Figs. 6-9 warrant mention:
Figlre 6. Samples 4 and 18 were deformed together,

under the same stress, and the results obtained on them
are nearly identical. Thus they apparently have similar
dislocation content, due to similar strain hardening.

Figure 7. The reference crystal has one measured
point for activation energy within the transition region.
The fact that no such points were detected for the other
reference crystals may be evidence that they contained
fewer dislocations.

Figure P. The activation energy of the deformed
crystal is above the lower plateau at the brightest
light tested. This indicates that this sample contains
a very high dislocation density, and the maximum light
intensity used was not sufhcient to reach the lower
plateau.

From Fig. 4 we can see that the range of the param-
eter 3/I over which the activation energy is between
two local levels increases with dislocation content.
Since N increases monotonically with light intensity,
and the dislocation content increases monotonically
with plastic strain, the range of intensities over which
the activation energy is between the two local levels
should be a monotonically increasing function of
plastic strain. Figure 10 shows a plot of the observed
length of the transition region as a function of the
amount of plastic strain. The relationship between these
variables is linear within the range tested.

9. DISCUSSION AND CONCLUSIONS

A quantum-mechanical treatment of the electronic
levels associated with dislocations, and a statistical
treatment of dislocation occupation were carried out.
It is concluded that bands of energy states are as-
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sociated with edge dislocations and the occupation
of these states can be predicted from a knowledge of
the Fermi energy. Sy combining this derived dislocation
occupation function with a general description of a
wide-band-gap semiconductor containing many deep
levels and a donor dislocation band, we were able to
predict that by measuring, in illuminated crystals, the
thermal activation energy associated with the electrical
conductivity, as a function of light intensity, energy
plateaus will be detected in all crystals. In crystals
with a low dislocation density, these plateaus will be
connected by sharp transition regions, and in deformed
crystals, these plateaus will be connected by broad
transition regions.

The experimental data reported in the preceding
section agree with this prediction. Indeed, in the refer-
ence crystals the transition extends over a change in
illumination intensity of 1.7)&10" photons/cm' sec or
less, whereas in the deformed samples, as seen in Fig. 10,
the range is between 2.8X 10"and 13&&10"photons/cm'
sec. These results are consistent with the band formula-
tion of electron energy states associated with dislocations
in CdS. Further, we can conclude that in the crystals
investigated, the Fermi energy falls within a donor
dislocation band.

Since the Fermi energy for the samples tested was
about 0.8 eV below the conduction band, and it fell
within the dislocation band, we can conclude that the
dislocation band edge must be more than 0.8 eV below
the conduction-band edge. From the solution of the
"square-well" dislocation potential (Fig. 3), we can

see that for the dislocation band edge to be more than
0.8 eV below the conduction-band edge, a well 2.5 eV
deep must extend over an area of 10 by 10 A or more.
These dimensions are to be compared with values of
6 by 8 A which were estimated from geometric consider-
ations. In light of the approximations made in this
theory, this is considered to be reasonable agreement.

In addition to dislocations, plastic deformation may
introdude point defects into the solid. According to the
analysis of Sec. 5 these point defects may introduce
new plateaus in the activation energy versus light
intensity relationship, but they cannot cause a broad
transition region. Experimentally, we observed broad
transition regions in all deformed crystals, but we
found no evidence for new local levels. Therefore, we
conclude that in these experiments we are seeing
eGects due to the energy states associated with dis-
locations, rather than effects due to point defects
introduced during deformation.

We conclude that dislocations in CdS have donor
bands associated with them and the donor band edge
lies more than 0.8 eV below the conduction band.
Further we have shown that it is possible to use local
levels (in this case at 0.80 and 0.66 eU) as a probe of the
dislocation band, and we have verified that it is possible
to observe continuous changes in the location of the
Fermi energy as the occupation of the dislocation band
is increased by optical excitation. Finally, we note that
the results shown in Fig. 10 indicate that the range of
light intensity over which the activation energy is
between two local levels is proportional to plastic strain.


