
MAGNETORESISTANCE IN SEM ICON DUCTING Sr Ting

a result of the small magnitude of the uniaxial deforma-
tion potential constant Z„. The reason for the small
value of Z„can be understood, at least qualitatively, on
the basis of the energy band-structure calculations of
Kahn and Leyendecker. ' If the Ti-Ti overlap is ne-
glected, the lowest-lying conduction band (As ) is Qat
along the cubic axes because the d 2 titanium 3d orbital
does not mix with any of the oxygen 2p orbitals. The
main eGect of an elastic strain along a cubic axis is to
change the Ti-0 separation, but this will not cause any
shift in the energy of the h2 band. Therefore, the defor-
mation potential, which de6nes the change in energy of
the 62 band at the X point with strain, is zero. The in-
clusion of the Ti-Ti overlap causes the lowest lying ~g.
conduction band to curve downward slightly along the
cubic axes' and this leads to a small deformation poten-
tial that is qualitatively in agreement with the expe-
rimental piezoresistance results. ~

In summary, vre have measured the vreak-6eld mag-
netoresistance coefficients in Nb-doped SrTi03 at 4.2,
77, and 120'K. The magnetoresistance results at 77
and 120'K are consistent with a band structure con-
sisting of minima along the (100) reciprocal axes. The
phase transition at 110'K does not have a signi6cant
e8ect on the magnetoresistance results, Ke postulate
that the absence of a large piezoresistance eGect in
cubic SrTi03 due to the electron-transfer mechanism is
a result of the small magnitude of the uniaxial deforma-
tion potential constant.
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The wave-number-dependent dielectric function e(q) for the zero-gap semiconductor e-Sn has been
calculated in the limit q ~ 0. Because of the speci6c symmetry of the wave functions at the point of contact
between the conduction and valence bands, ~{g) has a singularity of the form of 1/q in the long-wavelength
limit. The screening of an impurity charge by this singular dielectric function is also discussed.

L INTRODUCTION

HE response of a many-electron system to an
external perturbation can be discussed most

generally in terms of a frequency- and wave-number-
dependent dielectric constant e(q,~)."This is a very
important quantity because it contains a great deal
of information about the properties of the electron
system in addition to the system's response to external
probes. However, the actual evaluation of e(q, co) even
in the framework of random-phase approximation is
generally very dificult if the system under considera-
tion is other than a free-electron gas. Under certain
circumstances, when only the eGect of a static perturba-
tion (a&=0} is needed, the task becomes considerably
simpler. For example, the static dielectric constant
e(q) for a semiconductor has been calculated in a spheri-
cally symmetric model band structure with one param-
eter representing an average energy gap. 3

*Work supported in part by the National Science Foundation
and the Advanced Research Projects Agency through the North-
western University Materials Research Center.' J. Lindhard, Kgl. Danske Videnskab. Selskab, Mat. -pys.
Medd. 28, 8 (&9S4).

~ P. Nozieres and D. Pines, Nuovo Cimento 9, 470 (1958);
Phys. Rev. 109, 762 (1958).' D. Penn, Phys. Rev. 128, 2093 (1962).

The purpose of this paper is to calculate e(q) near
q=0 for the semiconductor O.-Sn based on the zero-gap
band model. 4 As we shall subsequently demonstrate,
the dielectric function e(q) ~1/q as q-+0. This be-
havior is a direct consequence of the nonaccidental
nature of the valence-conduction-band contact at the
zone center. Therefore, in terms of the existence of a
long-wavelength singularity in the static dielectric con-
stant, the dielectric response of n-Sn is between that
of a conventional semiconductor Le(g) —& const as
g~0j and that of a simple metal Pe(g) ~1/q' as
0~0].

In view of the existence of a new type of singularity
in the dielectric constant, we also discuss here its effects
on the formation of impurity states and in the carrier
mobility when the dominating scattering mechanism is
due to ionized impurities.

IL CALCULATION OP MATRIX ELEMENT

The expression for e(q) for a real solid in the frame-
work of random-phase approximation has been ob-

4 S. Groves and %. Paul, Phys. Rev. Letters 11, 194(1').
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tained by several authors" as the Dirac y matrices in the following explicit
representation:

g2 n, m', h;

X , (2.1)
~k+q, n' ~k, n

where the matrix element (k,m
~

e—'&' ~k+q, e') involves
the Bloch wave function ~k, e) with band index e
and reduced wave vector k, which is an eigenfunction
of the one-particle Hamiltonian for an electron in the
unperturbed periodic lattice with a corresponding
energy eigenvalue E&, . The occupation number for
the state

~
k,m) is denoted by N&, „.

We first evaluate the matrix element in (2.1), which
is just the overlap integral between the spatially periodic
part of the two Bloch functions involved. Ke evaluate
this part of the wave function by using the k y per-
turbation method.

In O,-Sn the conduction and valence bands make
contact at the zone center and the degenerate band edge
has r,+ symmetry. Therefore the structure of the k p
Hamiltonian in the vicinity of this degenerate state
is the same as that for the valence-band edge of Ge
or Si. It is well known that the k y Hamiltonian II
associated with this band edge can be represented by
a 4&4 matrix for sufFiciently small values of k.' The
form of this matrix is given by several authors, ' which
we reproduce in the following:

0 a
(u= 1, 2, 3)—a 0

0 I
Z I 0

where I is a 2&(2 unit matrix and the three a 's are the
Pauli spin matrices, a3 being diagonal. Using these y
matrices, we can rewrite (2.2) as

Z=Ak'+-'B[(k. '+k ' 2k'')p' —v3i(kg' —k„')y']-
+i(N/v3) (k,k„y'+k„k,y' —k,k,yg) . (2.3)

The eigenvalues of II can be obtained easily as

W(k) =2k'
&$B'k'—C'(k.'k„'+k„'k,'+k, 'k.')]'~', (2.4)

each being doubly degenerate as required by Kramer's
theorem. The constant C' is related to 8 and E as
follows:

C'= 38'—-'-1V'

where

Ip
2

H= 0
E~

0 R
~E —5*

V'+sQ
R 0

5

0
V'+sQ

and its magnitude determines the degree of warping
(2 2) of the surfaces of constant energy. Corresponding to

each energy eigenvalue E+(k) or E (k) in (2.4), we have
two linearly independent eigenfunctions expressed by' spinor" functions as

E=22k'+B(k, '+k '—2k'')

Q=Ak' —B(k '+k„'—2k,'),
E= —(N/~3 (k,—ik„)k„
5= —(1/2VB)[3B(k '—k ') 2iNk, k—„]

The symmetry of the state under consideration requires
the use of three constants A, 8, and E in the matrix.

We find it convenient to write H in (2.2) in terms of

'H. Ehrenreich and M. H. Cohen, Phys. Rev. 115, 786
(1959).' For the valence-band edge in Si or Ge, this means that EC'k}—E{0) should be small compared with the spin-orbit splitting.
For n-Sn, however, the energy difference E(l'8+) —E(I"& ) is
smaller than the spin-orbit splitting and it replaces the latter as
the criterion for determining the region of k in which the 4)&4
k p Hamiltonian is approximately valid.

7 G. Dresselhaus, A. F. Kip, and C. Kittel, Phys. Rev. 98, 368
(1955);E. O. Kane, J.Phys. Chem. Solids 1,82 (1956).The relative
phases of the basis functions are chosen differently in these two
papers. We follow here Kane's choices. However, the ordering
of the basis functions in setting up the matrix is different from
either of the two papers.

where both N~ and N2 are two-component "spinors. "
Using the Hamiltonian H in (2.3), we can immediately
write down two coupled equations for N~ and N2 as
follows:

LAk'+-', B(k '+k„'—2k,'))N ++ 'L ——,'%3B(k '—k ')
+ (N/43) (k,k„oi+k„k,o 3+ik,k,)ju2+

=M(k) ui+, (2.5)

(ATE'

—-'B(kg'+ 0„'—2k,'))N2++ iL:',v3B (kg' —k„')0 2

—(N/v3) (k.k„~rye„u.~,—ik.u.)jN,+

=M(k) N2+.

From the structure of the coupled equations in the
above it is evident that for each of the energy eigen-
value E+(k) or E (k) there are two linearly independent
eigenvectors and they can be expressed in the following
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way (except for a normalization factor):

j. 0
Z+(k): QI+= 0, fp+= 1

Here 8 and P specify the polar and azimuthal angles,
respectively, of k with respect to g; q has been taken
as parallel to the (001) direction for simplicity.

III. CALCULATION OF DIELECTRIC CONSTANT

~o

~(k): A= 0, 6=A. A.

(2.6)

0

The operators 4+ can be obtained from Eq. (2.&) as

h.+=i[W{k)—Ak'a-', B(k,'+k„'—2k.')g '
Xfa-,'vZB (k,'—k„')o p

% ($/V3) (k,k„oI+k„k,opaik, k,)j (2..7)

Using (2.6) and (2.I), it is a straightforward matter to
obtain the normalized eigenfunctions for the two energy
eigenvalues involved. However, we choose to write
them down explicitly only for the special case where the
constant C in (2.4) is equal to zero (or E=+3B).P
Expressed in terms of the spherical coordinates (k,8,$)
of the wave vector k, they are given by the following:

We can now evaluate e(ll) based on (2.1), using the
matrix element in (2.9) and the energy spectrum for
the two relevant bands given in (2.8). However, since
the matrix element is evaluated by the k.y perturbation
method and is only valid for states in the immediate
vicinity', of the band edge, we only calculate p(q) in the
limit of q

—+ 0. If we change the summation over k in
(2.1) into~an integration over k, with 11 in the (001)
direction, and use the integration variables p, =cos8
and x=k/q, we have

$e2

p(q) =1+
s.(A+B)q p

x'(1—II')
X

(1+2xp+x') (1+2xII+gx')

rI= 2B/{A+B),

E+(k)= (A+B)k':
t -',V3 sin8

0
—cos8 e'&

.——,
' s1n8 e"&.

E (k)= (2 B)k'—

0

leap+

=
p Csin 8'
z sln8e 2'&

.—cos8e '&.

{2.8)

and the upper limit x„=k /q, k being the radius of a
sphere in k space which is equal to the Brillouin zone in
volume. The double integral in (3.1) is evaluated as a
power series in 1/x like

Cp+Cl(1/x )+ ~ ~

cos8 e '~
——', sin8 e"o
~%3 s1n8

0

—sin8 e 2'4'

cos8 e'&

0
.SVS sin8

If the warping of the energy surfaces is neglected,
the E+(k) and E-(k) in Eq. (2.8), with B)&)0,
represent the energy spectrum for the", conduction and
valence bands, respectively, near the degenerate edge
of Ir-Sn. Tile splllol fllllctlons 111 (2.8) 'tllell desc11be
the spatially periodic part of the Bloch function for
those states in terms of the four basis functions of the
matrix H in (2.2).' Therefore from (2.8) we can obtain
the overlap integral between the spatially periodic
part of two Bloch functions belonging to the valence
band with wave vector k and the conduction band with
wave vector k+q as follows:

with
p(q) = pp(1+X/q), q

—+ 0

h fo 5t@

(3 2)

(3.3)

q sin8 e™
{k,pie-'&'ik+Il, e)=-;43 {2.9)

Lk'1 q'+2kq cos8]"'
8%'e take %=38. For the case N= —38, the eigenfunctions

should have different phases from the ones in (2.8).
9 The explicit form of the four basis functions can be found in

Ref. 7.

where we have put A+ B=h'/2m, *and B—A =k'/2Irla*,

m,* and vs~* being the electron and hole effective mass,
respectively.

For O,-Sn, taking the density-of-states eBective masses
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0.6-

X pq
4

0.2-

Fro. 1. The impurity potential is modi6ed from the Coulomb
form. The modulation function F(x) is shown here.

m,*=0.024m ' my*=0.26m "and k~=0.85 A ' we get
op=0.88 and X=0.18 A '. Since ~p&I, it looks as if the
electrons would antishield any external charge. How-
ever, the value for ~p must be modified because of the
contributions from other bands as well as from regions
of h space not covered by the k y expansion. This will
be discussed in Sec. IV.

(4 1)

Since we are interested in the tail of the screened po-
tential, the dielectric function e(q) in (4.1) can be taken
as that given in (3.2). Then (4.1) leads to the following:

V(r) = —(e'/ear)F (kr), (4.2)

where the function Ii is given by

F(x)= cosxL1—(2/x) Si(x)j+ (2/~) sinx Ci(x) . (4.3)

In (4.3), the functions Si(x) and Ci(x) are sine and
cosine integrals dehned by

* sint
Si(x)= — dh

p

"cost
Ci(x) = — dt—

"E. D. Hink1ey and A. W. Ewald, Phys, Rev. 134, A1261
(1964); B. L. Booth and A. W. Ewald, ibid. {to be published)."R. J. Wagner and A. W. Ewald, Bull. Am, Phys. Soc. 11,
829 {1966);R. J. Wagner, Ph. D. thesis, Northwestern University,
1967 (unpublished).

IV. SCREENING OF IMPURITY CHARGE

Now we discuss the screening of the impurity charge.
If we assume a donor impurity with one excess charge,
we can obtain the screened Coulomb potential by mak-
ing the following Fourier transform:

We plot in Fig. 1 the function F(x). We can see that
F(x) is a slowly decreasing function of x. In other words,
the screening is really not very e6'ective.

In O,-Sn, the contributions to the dielectric constant
from other inter band couplings remove the anti-
shielding discussed in Sec. III and make 6p about 24."
Hence the actual value of the constant X should be
around 0.0066 A '. By looking at Fig. 1, the value of
F(x) at x=1 is about 0.4. In other words, at a distance
of 150 A away from the impurity site the strength
of the Coulomb potential is only reduced by a factor
of about 2. We have previously studied the problem of
formation of impurity resonances in a zero-gap semi-
conductor with the impurity charge screened only by
the dielectric constant eo (plus a 8-function interaction
representing the central-cell correction"). Owing to the
ineGectiveness of the additional screening that we are
discussing here, we do not anticipate any major modi-
6cations to the qualitative conclusions that we have
reached there.

The 1/q singularity in the dielectric screening should
also eGect the transport properties in the low-tempera-
ture region when the ionized-impurity scattering domin-
ates the phonon scattering. For example, we can expect
the electron mobility to depend on the donor concentra-
tion. As the donor concentration decreases, the dielectric
function (less the contribution from free carriers)
approaches the form eo(1+X/q) described in this paper.
This means that the screening of bare impurity form
factors is enhanced relative to what is expected from a
free-carrier model as pertains in an ordinary semi-
conductor with sufficient doping to produce a degenerate
carrier distribution. As a result, we expect a concomitant
increase in the carrier mobility. An experimental study
of the concentrational dependence of the carrier mobility
in a-Sn has been made by Lavine and Ewald. '4 How-
ever, the data were analyzed phenomenologically on the
assumption of a concentration-dependent diel. ctric
consta, nt. Nevertheless, their results strongly suggest
that just such a sharp mobility enhancement was
observed.

Part of this work has been reported elsewhere. I5
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