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Magnetic Energy Levels in an Energy Band with Inversion
Asymmetry Splitting
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We consider an energy band which is spherical except for a term giving the inversion asymmetry splitting
possible in the zinc-blende structure. This splitting is small but very anisotropic, so that the classical cyc o-
t b't th 1 t Fermi surfaces are complicated and sometimes cross. We solve for the magnetic
levels of the system when the magnetic field is along the three principle directions. The results or ( )
and (100) diGered considerably from the classical picture. The calculation supports the proposal of Groves
and Wyatt that the beating observed in the Shubnikov —de Haas eHect in HgSe by Whitsett is due to inver-
sion asymmetry splitting. The beat pattern was fairly well accounted for. A splitting parameter y of 0.085 was
found for Whitsett's 1.3)&10' -cm g sample, where qykg is the maximum radial splitting of the Fermi surface.

INTRODUCTION
' "N a recent paper, ' it was proposed that the beating
~ ~ observed by Whitsett' in the Shubnikov —de Haas
(SdH) effect in n-type HgSe can be explained by in-
version asymmetry splitting. As has been discussed
previously' '4 this splitting is due to a combination of
spin orbit interaction and the antisymmetric potential
associated with the dissimilar basis atoms of the zinc-
blende lattice. In this article we shall add to the
evidence in support of the proposal by calculating
exactly the magnetic levels for a band with inversion
asymmetry splitting.

We first summarize the experimental results of
Whitsett, some of which are reproduced in Fig. 1.
When 8 was rotated in a (110) plane, beating occurred
for directions of 8 other than (110) in samples of
sufFiciently high electron concentration. When 8 was
along (100), a single nod. e was observed in the range
of 6eld strength studied; while for 8 along (111), one
or two nodes were observed. The anisotropy of the
period was found to be quite small, which Groves and
Wyatt' showed to rule out another possible explanation
of the beating, namely a severe warping of the Fermi
surface. The one complete beat observed in the (111)
direction (see Fig. 1) had a node spacing of 28 oscilla-
tions. On the basis of a classical model the two Fermi
surface cross sections thus apparently differed by 3~%.
This indicates the order of magnitude of the eBect; we
shall revise the exact result with the present calculation.
One further point is the fact that the beats are not
evident in the lowest concentration samples. This may
be related to the k dependence of the splitting, but is
also partly due to the fact that fewer oscillations are

~ L. M. Roth, S. H. Groves, and P. W. Wyatt, Phys. Rev.
Letters 19, 576 (1967), hereafter referred to as I; S. H. Groves,
L. M. Roth, and P. W. Wyatt, in II-VI Semiconducting Com-
pounds, 1067 International Conference, edited by D. G. Thomas
(W. A. Benjamin, Inc. , New York, 1967), p. 1069.' C. R. Whitsett, Phys. Rev. 138, A829 (1965).

3 G. Drcsselhaus, Phys. Rev. 100, 580 (1955);R. H. Parmenter,i~. ioo, 573 (1955).
4 K. O. Kane, J. Phys. Chem. Solids 1, 249 (1957); in Semicon-

ductors and Semimetals, edited by R. K. Willardson and A. C.
Beer (Academic Press Inc. , New York, 1966), Vol. 1.' S. Groves and P. Wyatt, unpublished calculation discussed in
I and in the Acknowledgment of this paper.

seen in the low concentration samples. The matter will
be discussed further below.

EFFECTIVE HAMILTONIAN
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FIG. 1. Oscillatory component of magnetoresistance of Whit-
sett's HgSe sample L with electron concentration iV=1.34&(10'8
cm '. Solid curves are for 4.2'K; dotted curves are envelopes of
oscillations at 1.2'K. See C. R. Whitsett, Phys. Rev. 138, A829
(1965).

In I we introduced a simplified 2&(2 Hamiltonian to
treat the problem:

hk' Ao) c 8 yh'
X= + —+ [( ko„o„k,)k,k-„

2m* 28 2m*k&

+ (o „k, o,k„)—krak, + ((r,k, o.k,)—k,k,j (1).
Here e is a Pauli spin vector, and h is the kinetic mo-
mentum operator p+cA/c, with A the vector potential
of the magnetic field B.The 6rst term in Eq. (1) is the
unperturbed band energy, assumed spherical. The
second term is the spin energy, assumed isotropic, with
co, the spin splitting. The third term gives the inversion
asymmetry splitting. In the absence of a magn. etic field,
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LAURA M. ROTH

the eigenvalues of Eq. (1) are

Ak'

X Lk2(k 'k„'+k, 'k, '+k„'k, ')—9k,2k„2k,2)'~2, (2)

so that ye2 is the maximum (k~~(110)) energy splitting
near the Fermi level &p. Or, to 6rst order, ~~sky is
the maximum radial splitting in k at the Fermi mo-
mentum kp.

We are neglecting warping, which is small compared
to the dimensions of the Fermi surface. The other
approximations we shall make are related to the as-
surnption that y(&i. Thus, although the components of
k do not commute (/k„k„j=ieB/ke), we can neglect
this fact in the y term as it contributes terms of order
yh~„where cv, is the cyclotron frequency for y=0, a.nd
is therefore always smaH compared to the level spacing.
We shall also equate the magnitude of k to the Fermi
momentum k~ wherever necessary in this term. In
particular, y depends on k in general' ' 4 and we evaluate
it at kp. The same applies to the spin term.

In Eq. (1) we are neglecting nonparabolicty, but
this is possible to modify by suitably interpreting y.
For the nonparabolic case, let us de6ne y by writing

x.= e(k2)+y(Be/Bk')g(e, k)/k+hoi. e I/28, (3)

where g(2r,k) is the contents of the square bracket in
Eq. (1).To first order in y, this can be written

AQ)g 6 8
X=& k' age, k k — —, 4

Be/Bk' 28
and we look for the eigenvalues of the argument of
Kq. (4), which is essentially identical with Eq. (1).
The interpretation of y as twice the maximum relative
splitting in k still holds. We also use the usual result
(eB/k2ck) (Be/Bk) for the cyclotron frequency.

In I we next transformed coordinates in the Hamil-
tonian Eq. (1) so that 8 is in the k2 direction, and set
k3 ——0. The resulting Hamiltonians are

Illl(100):
h'k' ~,o-3 ki' —kg'

3C= + + (oik2 —o2ki), (5)
2m~ 2 2m~kg 2

Bii{110):
f22k2 ho), o 2 k2y (2ki2 —k,')

+ +- -o2k2
2m* 2 2m*k p 2

peak pLGO 03 /PE 2 ~ 3k' k2
+ + — o2k2

2m* 2 2m*k p 3 2

1 '~2 (k22+k22)
(o.ik2 —o 2k i) . (7)

3 2

The classical orbits were depicted in I, and the 6rst.
question which arose was that of why nodes were ob-
served for the (100) case and not the (110) case, when
both sets of classical orbits intersect. From Eq. (6) for
B~j{110),we see immediately that the third term is
proportional to 0.3, so that the Hamiltonian is diagonal.
The diagonal elements correspond to orbits of equal
area which are uncoupled, even though they cross, so
that there is no beating. For the (100) case, however,
there are oG-diagonal elements, and the analysis of
these is one purpose of this paper. For 8~~{111) the
classical theory is meaningful for small enough mag-
netic 6elds; however, we have made an exact calcula-
tion here also, and we 6nd that magnetic-breakdown
eGects' occur and are important. We first discuss the
(100) case.

(1OO) CXSZ

For 8~~{100)the Hamiltonian has off-diagonal terms,
so that we first diagonahze the last term. This can be
a.ccomplished by the unitary transformation

1 ie '~ —ie'~
U=-

W2 i i

This is slightly diGerent from and preferable to the
tra, nsformation used in I, which involved the double-
valued function e'«'. As was pointed out, in I, we treat
e'& as simply a function of k in transforming the last
term in Kq. (5), but must use the operator property in
transforming thc 6I'st term. We 1IltI'oducc creation and
destruction operators for harmonic oscillator wave
func tlonsq

e~ Ac
(kia2k2),

8 2e8

with 22=at'a, and define e'& and e '~ as the operators
I '~2at and a22-'~'. The latter operators are inverses if
we exclude the n =0 state, so that U is unitary with this
restriction. The transformed Hamiltonian is then

r f22k2 iioi pi22 (k 2 k 2)

+
2m* 2 2m* 2

'k(Id' Mg) f22k2 ho~, yA2 (ki2—k22)

2m 2 2m~ 2

22+-', y (a'+ a+')
=%cog

p
, (9)

n ——',y (a'+ a+')

' M. Cohen and L. Falikov, Phys. Rev. Letters 5, 544 (I960).
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where /4= 1/2(i —&o,/40, ), with co,= eB/n4c the cyclotron
frequency, and where we have used k = kp.

As was pointed out in I, the oB-diagonal terms in
Eq. (9) produce a field-dependent coupling between
the two elliptical orbits, so that we can expect a re-
versed magnetic breakdown e6ect. However, we shall
be interested here in actually solving for the eigenvalues
of Eq. (9). To this end we find it convenient to make
a scale transformation so that one of the elliptical orbits
turns into a circular orbit. This can be done exactly,
but we need the result essentially only to first order
in y. To this order we let a —+ a+41ya+, a+ ~ a++ 14ya.

The new operators have the same commutation rela-
tions as before to first order in y. The transformed

Hamiltonian is then

~(&+v')'"+ le/~'+~')
3C =Aco

p n

Here we have put in the factor (1+y')'/' to force the
eigenvalues of the two diagonal terms to be exactly
equal in order to avoid any spurious beats for larger
values of N.

We see that the y term couples states with the
quantum numbers n and v~2. If we take matrix
elements of Eq. (10) between harmonic oscillator func-
tions, we are led to consider an infinite matrix with
2&2 blocks given in the vicinity of e by

K"—Abc's, = ha),)

(n 4) (—1+y')' "

12~)(n— 2) (n—3)]—»2

0

n —4—X! 0
!

0 ! (n —2) (1+y')'/' —X

!
0 ! -', yLn(n —0)]
0 ! 0

0 ! 0 0
0 ! 0 0

,'p[n(-n 2)]—'/2 0
n 2—X! — 0 0

!

I
2n(1+v')'"

S—

The nondiagonal matrix elements are seen to be close
to the diagor}al, and because of this it is possible to find
a recursion relation for D„, the determinant truncated
after the 2&2 block corresponding to e. If we truncate
Eq. (11)and then expand in terms of 2&(2 minors from
the last two columns, and their complements, using
Laplace's development, the following relation results:

D = {(n —X)(n(1+y')'"—X)—/4'}D
—{4p'n(n —1)(n —2—X) (n —X)}D 4. (12)

In order to calculate the eigenvalue X, we must find
the roots of D, for nj sufficiently greater than X.
Actually, it shortens the computation to truncate the
determinant below as well as above the eigenvalue.
This is readily accomplished by setting D„, 4——D„, 4

——j.

to truncate at eo. The calculation was carried out on the
General Electric time-sharing computer, and for each
range of eigenvalues &so and n~ were varied until con-
vergence was obtained. We shall discuss the results after
considering the (111)case.

to give

/~e
—'

0)
& 0

(13)

(111) CASE

Essentially, the same method can be applied to the
(111) case. We first simplify the (oik2 —0.2ki) term in
the Hamiltonian by making a unitary transformation
with

A2k2 s Ph2 2 1/2 3k 12 k22—Aa&,+ + k2
2 2m*kg 3 2

A2 k'

2 m*kp 2@3

A2 k'

2 no*kg M
$2k2 ~s +It,2 2 2 3k1 k2

k2
2m 2 2m*kg 3 2

n p+ (2)1/2(1'r)z(aSn I/2 —n 1 —2a+4)
=A ~

yn/2%3

yn/2VS
(14)

ny p (2 )1/2 (1py) j(a3n—1/2 n 1/2a+3)—
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FIG. 2. Deviation of magnetic
energy levels for a band with inversion
asymmetry splitting from those of a
spherical band, plotted in units of Ace,

against the magnetic quantum number
n, for B~~(100). The two curves repre-
sent two sets of levels. The node in the
SdH amplitude is shown by the arrow.
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lated the eigenvalues for y —0.1, ir —0.5 (i.e., no spin
splitting), for rs up to about 200, at which point the
capacity of the computer was reached. The eigenvalues
are close to successive integers and we can label them
et(n) and es(N). For y= 0, we would have et(ts) =- es(rs)
= (n+ ,')hte„ —the double degeneracy being due to spin
splitting. A simple way of representing the levels is to
plot versus e the di6'erence between the levels and the
y=0 values:

�

is—fr+ (-,')yi(usN '"—rs '"u+s) yk/2VS
=AM

mrs/2v3 is+p
(15)

This Hamiltonian has much the same structure as
the (100) case, except that the coupling is between I
and v~3. The infinite determinant analogous to Eq.
(11) has nonvanishing elements in the same places, and
the expression for the determinant D„ truncated at g
is readily found:

Here we have canceled one k= (2eBn/hc)'~' against kp. to the (100) case, then give the eigenvalues of Eq. (15)
Once again we wish to transform one of the orbits to a to the desired accuracy.
circle, This time we simply do so to 6rst order in &, as
the large n case has beats already so that we do not RESULTS AND DISCUSSION
need to equate the eigenvalues of the diagonal terms.

To give the over-aii behavior o t e eve s, we ca cuh -iibh ' fth 1 I, 1We have, therefore,

D '= ( (n+fr —X)(I—1i—X)——,', y'e'}D„s'
—(-,'y'(n —1)(n, —2) (I+1r—X)

&( (rs —3+p. —) )}D„,'. (16)

The roots of Eq. (16), truncated in a manner similar

In Fig. 2, we have plotted 8t and lie for the (100) case.
The nodes in the SdH effect occur for b~ —8&

———,', modulo

1, in which case the two sets of levels are interleaved.
Ke see that there is only one actual node, marked by

1

I

(Ioo&, y =.I, p=.5

a 0

2,

FIG. 3. SdH amplitude versus magnetic
quantum number n, compared with
Pippard network result. Notice wobble
representing partial reverse magnetic
breakdown.
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FIG. 4. Deviation of magnetic
energy levels for band with inversion
asymmetry splitting from those of a
spherical band, plotted in units of
Ace, against the magnetic quantum
number I, for Sii(111). The two
curves represent two sets of levels,
and nodes in the SdH amplitude are
shown by arrows.
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an axrow, so that the region of "reverse magnetic
breakdown" is rather small. This is what we had sus-
pected 1n I from an exaDUnat1on of the reverse break-
down parameter. However, for large n, a rather cleax'

cut example of partial breakdown appears, i.e., a wobble
in the levels, and so in the de Haas-van Alphen dHvA
amplitude, with a long period. Since the total diGerence
in area between the (100) inner and outer orbits in
Fig. 1 in I is 2y/n- relative to the original area, the
co«esponding beat period is w/2y oscillations= g5.7 for
p= 0.1.The period of the wobble 1n I'ig, 2 ls 128 oscllla-

tions, which is very close to 125.6 ox eight times the
above total area difference beat period.

It is perhaps more interesting to look at the Sdl
amplitude i.tself. The modulation of the fundamental
amplitude~ due to inversion asymmetry splitting is
given by the function

A „=cosw(ht —82) . (&g)

This is plotted in I"ig. 3 and we see that the period of
the amplitude variation is 64 oscillations or four times
the total area difference beat period, which is the same

Fn. 5. SdH amplitude versus
magnetic quantuID number s for
B~~(100); where not indicated,
p=0.5.

0

X= i/20

0
0 l0 30

~%e are assuming that the dHvA results for the fundamental amplitude apply to the SdH eRect. For the general theory of
these cRects and for further references, see L. M. Roth and P. N. Argyres, in Semiconduc$0rs oed Sens&nefals, edited by R. K.
%illardson and A. C. Beer (Academic Press Inc., New York, 1966), Vol. j..
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Pro. 6. SdH amplitude versus
magnetic quantum number n for
B~~(111); where not indicated,
y= 0.5.
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ype o analysis breaks down.
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same parameters is also the 9'KB t e f
ison wl t, e present calcula- Turnin n

tion. We see that the results are rather similar for the
partial breakdown region, but quite diA'erent for veu qui e i erent «very are now many nodes, marked by arrows. We see that

an $'sis glvcs an for lar earge m, the nodes are becoming equally spaced, and
that the straight line portions of the plot, which are

I I I l

c assical, are becoming more dominant. Actually the

—.Of

classical picture would consist simply of straight lines,
but there is a switching over from one set to another due

r~ &a
to t e coupling. For the region of experimental interest,
we notice a serious departure from the classical result

(ffl) / a down effect. This is ordinary magnetic

hd

rea own. The separation of the fi t trs wo no es ls

~0
Just ouble the classical value. This finding therefore in-
validates the classical picture which we dwe use previous y
to determine y, so that our result for that parameter
will be diferent. In I we defined a br kda rea own parameter
s'

t see the paragraph containing Eq. (11) and also

d we can calculate this parameter for theBlount'~ and

&i00& i, /
(111) case, giving s'=6 '"trebly/It&e. For s' .large we

have classical results. For the case of Fig. 2, s' becomes

''l ~

1 at about R= 50' so that lt ls not surprising that wc arc

t0
—0

in the breakdown region 4

~0 40 SO 6O In order
ll~

er to compare our results with experiment w' e

Pro.ro. 7. Comparisorl of theory and e~.perimerlt for MH am lj- sev r
calculated the amplitude function K .ion ~ q. (18)] for

p e al values of y and for n&. I00 Th h

p, . 8n) to a@pro. imate therma] damping. ~ ~ ~

ca e ~ - a s wi ~, t e position of the nodes changing

plot against magnetic quantum number is equivalent to plottin ~
e ee ec

of including a finite, negative g factor, and the result for

s A. B.Pippard, Proc. Roy. Soc. (London) A2M, 1 (1N2). I E.I.SIount, Phys. Rev. 126, 1636 (i962).
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p=0.6 is shown in the dashed curve. We see that the
nodes are shifted slightly by the spin splitting.

In attempting to match the experimental results of
Khitsett's sample I. as shown in Fig. 1, we found that
the parameters y=0.089, p=0.53 gave the correct
positions (n=21 and 49) of the nodes in the (111)case,
w'bile the 100 node turned out to be at m=32. This is
between the two (111) nodes but is too low by five
oscillations. Thus the theory gives the correct result
qualitatively but is not in complete quantitative agree-
ment with experiment. A compromise calculation is
shown in Fig. 7 for the parameters y= 0.085 and p =0.55.
We have also plotted the amplitude including an ex-
ponential damping factor to aid comparison with the
experimental results as show'n.

A possible reason for the discrepancy between the
(100) and (111) results lies in the neglected anisotropic
terms in the Hamiltonian, i.e., the warping terms and

g factor. In connection with the g factor, Booth and
Kwald" have found from the splitting of SdH peaks in

grey tin that the g factor for the conduction band of
that material varies considerably with magnetic 6eld
direction. For a concentration of 2.5&(10" cm ', the
magnitude of the g factor changed from 17.0 in the
(100) direction to 7.5 in the (111) direction. Since
carrying out the present calculation we also became
aware of the work of Slick and Landwehr" who studied
the dHvA effect in HgSe using high magnetic 6elds for
B~~(100).They found a g factor of about 12 in magnitude
for this concentration sample, which with m*=0.049m
corresponds to ii=-,'(1—9m*/2m)=0. 65, if we assume
that g is negative. The above results suggest that we
should be using a larger value for p, , and possibly
diferent values of p, for different directions, alth;. ugh
this goes beyond the limits of our theory. If we simply
increase g to 0.65 for the (100) case, the node is moved
by several oscillations in the right direction. It would
be desirable to include anisotropy in the theory, but
we have thus far not succeeded in doing so.

As for the magnitude of y, if we take the compromise
value of 0.085, the result implies that the maximum
radial splitting of the two energy surfaces is 4.2%. The
area difference between the two classical orbits in the
(111)direction is found by numerical integration to be
0.80', or 6.8%, which is about double that expected
from using the classical theory. In I w'e quoted a result
for the maximum energy splitting for the same sample
of 5% of the Fermi energy or 7 meV. This was, it
turned out, in error by a factor of 2 and should have
been 2P%. The calculation quoted showed that in this
range of carrier density the percentage energy splitting
is about equal to the percentage area splitting, rather
than double it, due to nonparabolicity. Our result for
the maximum energy splitting is therefore 4 to 5%,

B.L. Booth and A. W. Ewald Phys. Rev. 168, 805 (19'8).
~' L. M. Blick and G. Landwehr, in II-VI Se~ricondgcting Com-

Poends, I%67 International Conference, edited by D. A. Thomas
(W. A. Benjamin, Inc. , New York, 1967), p. 879.

TABLE I. Positions of nodes in Whitsett's' SdH
measurements for n-type HgSe.

Electron
concentration

(cm-3)
kp

(10' cm ')

n value of nodes
($11) (111) (100)

Node 1 Node 2 Node

8.46X10"
1.34X 10'8
4.52 X 10'8

2.92
3.40
5.10

16
21
b

b 35
49 38
47 36

& Sf' Ref. 2.
b Beyond experimental range.

'~ S. H. Groves, R. N. Brown, and C. R. Pidgeon, Phys. Rev.
161, 779 (1967)."D. G. Seiler and W. M. Seeker, Phys. Letters 26A, 96 (1967).

which, in fact, about coincides with the result originally
quoted.

At this point, it is interesting to discuss certain
features of the experimental results in the light of the
theory. First, the n value of the nodes as a function of
concentration is presented in Table I. We see that there
is not a drastic dependence upon concentration, the
largest change being in the first (111)node. This change
is probably partly due to a decrease of p, with increasing
concentration which is in turn due to a decrease of the
magnitude of the negative g factor. But the indication
is that y is also decreasing with increasing concentra-
tion. This may be evidence for a linear dependence on
k in the inversion asymmetry splitting. Such a linear
dependence is possible if the band structure of HgSe is
of the grey tin type, "4" for which there is some
evidence. " It would be interesting to see a more com-
plete experimental study of the concentration depend-
ence of the nodes.

For lover concentrations, clear-cut nodes were not
observed. However, e only goes up to 16-18 for the two
lower concentration samples (Figs. 2 and 3 of Whitsett's
article' ), so that for (100) we certainly do not expect a
node. For (111) there is a fattening of the curve in the
vicinity of 16 which may be the beginning of a node and
this merits further investigation. In the (100) sample EE
(A=3.47X10" cm ') there occurs a minimum in the
amplitude at m=8. It is possible that this is related
to the fact that when a negative g factor is included,
the amplitude increases for small it (see Fig. 6), and this
coupled with thermal damping may produce a mini-
mum. Unfortunately, thIs does not explain why the
effect does not occur for sample LV (Ã= 2.08X 10"cm ').

In conclusion, the exact calculation of magnetic
energy levels in a band with inversion asymmetry
splitting shows that this effect can explain the beating
observed in the SdH eGect in HgSe. Recent measure-
ments of the oscillatory magnetoresistance in GaSb
by Seiler and Reeker" show a similar beating pattern,
v hich is also believed to be due to inversion asymmetry.
Ke hope to present an analysis of these res.sits in the
near future. ft will be interesting to see whether the
eEect is observed in other materials.
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Transitions in Gallium Arsenide
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The infrared absorption in n-type GaAs has been studied as function of carrier concentration, tempera-

ture, and uniaxial stress. The data have established that the lowest secondary minima are located at the
3rillouin-zone edge along it j~ (001), 0.43%0.015 eV above the fr =0 minimum at 80'K. An observed structure
near 0.7 eV has been assigned to transitions into a higher-lying (100) minima 0.'78&0.05 eV above the

primary minimum. The spectra revealed no evidence of transitions to (111)minima.

INTRODUCTION

I
'HE exploration of secondary conduction-band

minima hRS RttI'acted considerable lntcl. est for
two reasons. First, such miniIna can be important for
high-6eM transport properties, and second, an experi-
mental determination of their position in energy and
k space is valuable in the comparison with band
calculations. The conduction band in GaAs is charac-
terized by a lowest minimum at k=0 and by sets of
cqulvalcnt minima Rt X RQd I of thc zone boundary.
Diferent types of band calculations' ' indicate that
these secondary minima occur 0.2—0.6 eV above the
primary minimum. A separation of 0.36 to 0.38 -eV

between primary and Lowest secondary minimum has
been derived from transport Ineasurements, 4 6 whereas
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infrared measurements by Spitzer and Whelan' (SW)
werc llltel'pl'c'tcd by HRga alld Klmura (HK.) 'to give
a separation of 0.44 eV. The inQuencc of uniaxial stress
on Gunn CGect' and some properties of Gahs GaP
alloys, e.g., Gunn CGects and optical absorption edge '0

have established that the Lovrest secondary minimum is
locRtcd Rt X) tIlc optlcRl studlcs 1QdlcRtlng R sepR-

ration of 0.4 eV." It is further known that a set of
valleys with symmetry X3 have extremum energies
0.33 eV above the lower Xl minima. ' So far, there has
been no experimental determination of the position of
the I valleys, but dependence of the Gunn threshold
on high L111]uniaxial stresss seems to indicate that
these valleys are located at least 0.j. cV above the Gunn

active valleys. "
In this paper wc shall report on measurements

similar to those of SW, i.e., studies of near-infrared
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"A. R. Hutson has pointed out that the small dimensions
parallel to the stress used in Ref. 9 lead to uniaxial strain rather
than uniaxial stress. When inserting appropriate elastic constants
it is estimated that a I 111jstress yields a volume change of 0.60
rather than & times that of a similar hydrostatic pressure. This
removes the discrepancy mentioned in Ref. 9, and there is no
evidence of a crossing for high L111j stresses between the X
valleys and the lowest I valley.


