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is probably a result of the field not being accurately
aligned along the [100] axis and the relatively low
purity of their samples. They also report anisotropy
of the resistance in fields of 2-4 kQOe and attribute it to
either anisotropy of the impurity or defect distribution
in the sample, or anisotropy of the superconducting
energy gap. Measurements by Reed ef al.? on the

*W. A. Reed, E. Fawcett, P. P. M. Meincke, P. C. Hohenberg,
N. R. Werthamer, in Proceedings of the Tenth Inlernational
Conference on Low-Temperature Physics, M oscow, 1966, edited by
M. P. Malkov (Proizvodstrenno-Izdatel’skii Kombinat, VINITI,
Moscow, 1967), Vol. ITIA, p. 368.
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anisotropy of H, in niobium and NbTa alloys show
that this anisotropy is not due to the superconducting
energy-gap anisotropy and is probably due to either the
defect distribution or some nonuniformity of the
surface.
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Steady-State, ac-Temperature Calorimetry*
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A steady-state technique for measuring heat capacity using ac heating is described. Heat is applied
sinusoidally in time to a sample coupled thermally to a reservoir; the resultant equilibrium temperature
of the sample contains a term that is both inversely proportional to the heat capacity and measurable with
high precision. The effects of various corrections that must be applied to the data are considered in detail.
Measurements of the absolute magnitude of the heat capacity of indium and the field dependence of the
heat capacity of beryllium have been made and are used to illustrate the power of the method. The observed
quantum oscillations in the heat capacity of beryllium are in agreement with predictions based on other

measurements.

INTRODUCTION

OW-TEMPERATURE calorimetry often suffers
from the transient nature of the traditional mea-
surements—a characteristic that makes difficult the
use of any of the now highly developed signal-averaging
techniques to extract the wanted signal from noise.
This limitation is of little importance in the measure-
ment of the absolute value of heat capacity where other
considerations, mainly thermometer calibration, already
limit the accuracy of the measurements. In the deter-
mination of small changes in the heat capacity, how-
ever, the signal-to-noise ratio can become the limiting
factor.

Additional disadvantages of traditional techniques
stem from the necessity of thermal isolation of the
sample from its surroundings. A sample must be quite
large to minimize the effects of stray heat leaks. Helium
exchange gas or a complicated heat switch may be
required to obtain sufficient isolation during a heat-
capacity measurement and yet cool down the sample
in a reasonable length of time. A sample suspension
system trades off mechanical stability to accomplish
thermal isolation, possibly making the apparatus
sensitive to vibrations.

* This work was supported in part by the National Science
Foundation and by the Advanced Research Projects Agency.

t National Science Foundation Graduate Fellow. Present
address: NASA Electronics Research Center, Cambridge, Mass.

To alleviate the problems discussed above, a steady-
state calorimetry technique employing ac heating has
been developed.!—® This method makes possible a much
more precise measurement of heat-capacity changes as a
function of an external parameter, although the abso-
lute accuracy of the heat capacity data is no better than
that obtainable with the traditional methods. The
sample can be quite small. Neither exchange gas nor a
heat switch is required. The suspension system can be
quite rigid if the sample is of a reasonable size. The
sample is connected thermally to a heat reservoir and
so rapidly returns to thermal equilibrium after experi-
encing any extraneous heat input. Finally, a continuous
read-out of the heat capacity is possible.

In the following sections the general theory of the
method is presented and measurements are reported on
indium and beryllium illustrating the power of the
technique.

THEORY
A. Sample of Infinite Thermal Conductivity
Consider a system, as in Fig. 1, consisting of a heater,
thermometer, and sample, each assumed to have
infinite thermal conductivity and heat capacities Cy,

1 P. Sullivan and G. Seidel, Ann. Acad. Sci. Fennicae A210, 58

(1966).
2 P, Sullivan and G. Seidel, Phys. Letters 25A, 229 (1967).
3 P. Sullivan, thesis, Brown University (unpublished).
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THERMOMETER (Cg, Tg)

Ko

Kp
SAMPLE (Cg,Tg)

BATH Kh
Tb

HEATER (C}, , Tp)

T16. 1. Diagram of sample coupled to a bath, thermometer, and
heater by the thermal conductances Ks, Ko, and Ky, respectively.

Cs, and C,, respectively. These components are inter-
connected by thermal conductances K, Ky, and K as
indicated in the figure. If heat is generated in the heater
at the rate Q=@Qo(cosiwt)?, then the thermal equations

for the system are
ChTh= Qh= QO(COS%th—Kh(Th—’ Ts) 3

C8T8=QB=Kh(Th— Tﬂ)_Kb(Tﬂ_ Tb)
o —Ko(Te—To), (1)
CoT'e=Qo=Ko(Ts—Th).

If the temperature variations are sufficiently small, the
various heat capacities and thermal conductivities may
be considered constant. The steady-state solution for
Te of these simultaneous equations consists of two
terms, one a constant that depends upon K, and the
other an oscillatory term inversely proportional to the
heat capacity of the sample. The expression for T’ is

1 1-6
To= Tb*f'%Qo{—K—b'l"ECOS(wt"a) ’ 2
where
C=C+Co+Ch,
792(1+2K0/Kb)+Th2(1+2Kh/Kb) 1
1—3=[1 } -
Ts2 w21..2
C+Cr\? C+Co\?
+w2[( ) 702+< ) Th?
c C (3)
T02Th2/ Ky(Ke+Kn)+KoKn }
142 )
T \ K2

C‘c 2—-1/2
+w4702‘rh2<—> :l ,
C

and « is a phase angle of little interest, approximately
equal to 37 under the conditions discussed below. The
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relaxation times in Eq. (3) are defined as
Ts= C/Kb y

To=Cs/Ky, 4)

and
72=Cn/Kp.

If (a) the heat capacities of the heater and ther-
mometer are much less than that of the sample, (b) the
sample, heater, and thermometer come to equilibrium
with a time constant much less than the inverse of the
frequency w, more specifically, w?(r+72)<1, and
(c) the frequency is much larger than the inverse of
the sample-to-bath relaxation time, i.e., wr>>1, then
to first order in w?(r¢?+712) and (wrs)~2,

1—=[14+1/ri+(ré+m2)] " (5)

(6)

and
a=~arc sin[ 14 {1/wr,—w (ro+74) } 2112,

B. Sample of Finite Thermal Conductivity

The discussion of the preceding subsection cannot be
applied to a real system without considering the in-
fluence of the finite thermal conductivity of the sample.
To determine the effect of finite conductivity consider
the case illustrated in Fig. 2. A sample in the form of a
slab of thickness L and cross-sectional area A4 is heated
uniformly on one side (x=0) by a sinusoidal heat flux
d(0,8)= (Qo/24)e**. The other side of the slab (x=L)
is coupled uniformly to a bath at constant temperature
T through a thermal conductance K. Let the thermal
conductivity of the sample be «, its specific heat ¢, and
its density p. The thermal diffusivity # is defined by the
relation #=x«/pc. The characteristic length Jo= (21/w)'/2
and its reciprocal =1/l are also introduced.

For the purpose of this discussion of the influence of
the finite conductivity of the sample, the heater at
#=0 and the thermometer at x=L are assumed to be
coupled to the sample with very short relaxation time,
ie., w*(r?+7#)<K1, as considered in the preceding
subsection.

K W/cm deg

c J/qg deg

P g/cmd

Ky, W7eK
i ,éo iwt
q(o,?)-a—\- e
BATH
AREA= A ' XL Tp=const.
X=0

Fi16. 2. Slab-shaped sample of thickness L thermally connected
through the conductance K to a bath at x=L and having a
sinusoidal heat input per unit area ¢(0,#) at x=0.
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By the application of the matrix method of expressing
the temperature and heat flux at one point in terms of
these quantities at another point,? the oscillatory tem-
perature dependence of the sample at the position =L
is found to be

A/Ky

TEG(LJt)=Q(O7t\ b (7)
 cosh+ (kK 8/ A L) sinh8

where 6=EkL(141).

Under the conditions that wr,=2«k2LA/K>>1 and
that the sample dimension L is small with respect to
the characteristic thermal length Jo(RL<K1), the tem-
perature variation can be expressed as

- LT o

G(0, If) k@*LkK b02\
The expansion of coshf does not need to be carried to
as high an order as that of sinh@ since 4L/xK6°<1.

Then
LG Ky \* 28I+ 2LKyT2
Tuw(Li)~ 1+< )+ : I
@ L \owrird) ' 45 34«
—iQ‘oe’.“"r K 2 L2 2
()
24wpcLL " \wpcLA (90)!2
QLK 47U
] ©)
34k

Note that r,=cpLA/K5 and Cs=pcLA. If in the third
term of Eq. (9) we make the substitution

Tine="L/(90)"n,

where 7ins can be associated with the time in which the
sample attains thermal equilibrium, the magnitude of
T a0 becomes

I Too(Lyt) | ~

Qo 2LK 712
I:H- ‘|’w2'l'mt2+"——:l . (10)
2wC w?r 34

K

A comparison of this last expression with Eq. (5)
shows that the finite thermal conductivity of the sample
results in one correction term of the same form as that
arising from the finite thermal conductances between
the sample and the thermometer and heater. (This
similarity extends to the phase correction of the tem-
perature oscillation as well.) For the case of the sample
with finite conductivity, however, there exists a fre-
quency-independent correction term 2LK ,/34x=2K,/
3K, (K, is the thermal conductance of the sample),
which does not occur in the treatment of the sample
with infinite conductivity. This correction is a geo-
metric term in the sense that its magnitude depends
upon the position in the system at which the tempera-

4 H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids
(Oxford University Press, London, 1959), 2nd ed., pp. 110f.
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ture is calculated. The position along the sample chosen
in this calculation is that at which correction is a
maximum.

The ratio of the frequency-independent to frequency-
dependent correction term in Eq. (10) is

(2LK/34k)/w?Tin=60n/w?L?r,.

At low temperature where typical values for a sample
could be L=1 cm, 7,=1 sec, and #=10* cm?/sec, this
ratio is greater than unity for frequencies less than 100
Hz. Using these same values the frequency-independent
correction

2LK y/3Ak=2K /3K = 2L*/3nr,

is less than 10~* and can safely be neglected in the
measurements discussed here. In the experiments at
higher temperatures, such as those reported by Handler
et al.,’ the thermal diffusivity of the sample may be
poorer by many orders of magnitude, e.g., 107! cm?/sec,
and consequently for the same value of 7, the sample
thickness must be decreased by several orders of mag-
nitude to keep the correction small.

Since the ac temperature technique may be of use in
studying the behavior of the heat capacity of a sub-
stance in the neighborhood of a phase transition, the
dependence of the correction terms on specific heat is of
interest, the thermal conductivity assumed to remain
constant. The correction 2LK /34« does not change in
the vicinity of a transition, whereas the frequency-
dependent term w?ri,¢® < cL* varies as the specxﬁc heat
for a given sample thickness. However, the increase of
the correction with increasing specific heat can be more
than offset by a decrease in the thickness.

MEASUREMENTS

A. Apparatus

A comparison of Egs. (2), (5), and (10) shows that
the amplitude of the ac temperature variation of a
slab-shaped sample of finite thermal diffusivity coupled
to a bath, heater, and thermometer with finite con-
ductivities can be expressed in the form

Qo
Tac— —_|:1+

2w

2Kb —1/2
+atrit ] ,
K

szl s

where various time constants have been lumped into
T2, T8=71¢+ i+ T2 and 7y is the sample to bath
relaxation time 7, of the previous section.

The results reported below were obtained by passing
current at frequency 3w through a wire resistance and
detecting synchronously the voltage variation at the
frequency w developed across a resistance thermometer
through which a dc current was maintained. The ther-
mometer consisted of a piece of Allen-Bradley carbon

5 P, Handler, D. E. Mapother, and M. Rayl, Phys. Rev. Letters
19, 356 (1967).
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resistor ground down to a thickness of approximately
0.003 in. and glued to a thin slab of sapphire for
backing. The sapphire was in turn glued to the sample
as was the heater wire. The thermal link of the sample
to the bath was affected by an appropriate length of
copper wire or sapphire rod to obtain a sample-bath
relaxation time of approximately one second. Since the
calculated frequency-independent correction was ex-
tremely small, no careful consideration was paid to
sample geometry as required by the discussion of the
preceding section. The sample-bath relaxation time was
experimentally determined by measuring the rate at
which the dc temperature of the sample returned to
equilibrium upon a change in the rate of heat input.
With 7, known the value of 7, was deduced from mea-
surements of the frequency dependence of T, Experi-
mentally measured values of 7, ranged from 0.5X1073
to 5X 1072 sec, the variations arising primarily from the
quality of the thermometer-to-sample bond. At the
lowest values of 72, 7ins made a significant contribution
to the relaxation time.

A block diagram of the electronics® used to make
absolute heat-capacity measurements is given in Fig. 3.
An oscillator at frequency 3w supplies current to the
heater. Two other oscillators, one at frequency 3w and
another at w, synchronous with the heater source,
supply stable voltages for an ac potentiometric volt-
meter, which can be calibrated by an ac/dc thermal
transfer standard to 2 parts in 10% The lock-in amplifier
is used as a null detector for absolute measurements
and to provide a dc readout for recording changes in

AND G. SEIDEL 173
heat capacity. The over-all electrical noise of the system
is approximately 10~7 V per Hz bandwidth. This system
can detect ac temperature variations of less than 10~7°K

at 1°K with the thermometers used.

B. Indium

To demonstrate the usefulness and accuracy of the
ac temperature technique, a measurement was made
of the heat capacity of indium. A 9-g sample of indium
in the form of a 0.5-in. cylinder having a stated purity
of 99.99999%, and a measured resistivity ratio of 11 000
was studied in the liquid-helium-temperature region. A
trace of the heat capacity of this sample as a function
of magnetic field at 1.86°K appears in Fig. 4. The change
in heat capacity in the vicinity of 175 G is due to the
transition from the superconducting to the normal state.
The increase in heat capacity with magnetic field is to
be expected in the superconducting state below the
critical field. The transition is smeared by poor sample
geometry.

Absolute measurements of the heat capacity were
made using an ac temperature modulation at 10 Hz of
4 mdeg peak-to-peak. The results of these measurements
appear in Table I along with the results of previous
measurements performed by traditional techniques.
Relaxation time corrections [71=2.5240.1 sec, .= (0.7
#0.3)1073 sec | were small and could be safely neglected
in the calculations. The main source of error, aside from
the thermometer calibration, resulted in the electronics;
first, from the fact that the supply for the thermometer

EDC ELECTRONIC
PRECISION GALVANOMETER
VOLTAGE 1 T 1\
SOURCE No—| TRANSFER LINDECK
STANDARD mV SOURCE
w/2
roscuu\roa Y
w/s2 syne | Lo VOLTAGE
OSCILLATOR CIRCUITS DIVIDER
L‘ w __.___}
0SCILLATOR
HEATER CURRENT | MONITOR HI, REFERENCE
CONTROL HY oy LOCK-IN
AMPLIFIER
TACS
\ l COUNTER I
[Heater |
RECORDER
SAMPLE
THERMOMETER
THERMOMETER

CURRENT SUPPLY

Fi16. 3. Block diagram of the electronics used to measure absolute magnitude of the heat capacity.
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was not a strictly constant current source, and secondly,
from loading of the ac potentiometer by a guard circuit.
The estimated limits of error at 19, and as can be seen
from the table, these measurements are in satisfactory
agreement with previous work.

C. Beryllium

The heat capacity of a pure single-crystal metal will,
at low temperature, exhibit quantum oscillations with
magnetic field in a manner similar to the de Haas-
van Alphen oscillations in the susceptibility. Both
phenomena owe their origin to the variation of the free
energy of the metal with the passage of the Landau
levels through extrema of the Fermi surface. The
calculated magnitude of the heat-capacity oscillations
is quite small, well below the sensitivity of traditional
techniques. To demonstrate the precision of the ac
temperature method and its sensitivity to small changes
in heat capacity, the heat capacity of beryllium has
been studied as a function of magnetic field.

Measurements were performed on a single crystal
beryllium sample in the form of a cylinder 0.07 in. in
diameter, and 0.75 in. long. It weighed 82X 10~ g and
had a resistivity ratio of 80. The axis of the cylinder was
within ==1° of the crystallographic ¢ axis, and it was in
this direction that the magnetic field was applied.

The total heat capacity of the beryllium sample was
less than 20X 1077 J/°K at 1.0°K. An absolute measure-
ment of the heat capacity at 1.4°K yielded a result
which agreed to within 89, with the data of Ahlers,®
who worked with a sample 10? times larger. The large
error in these measurements could certainly be de-
creased considerably, for it arises entirely from un-
certainties in the correction for the heat capacity of the
addenda, which amounted to almost 409, of the total.
These data indicate that, were it to prove necessary,
absolute heat capacity measurements could be made
with considerable accuracy on very small samples using
the ac temperature technique.

The ability of the ac temperature technique to mea-
sure small changes in heat capacity is illustrated in

TasLE I. Specific heat® of indium at 1.860°K.

Normal Superconducting
state state Error

ac temperature

technique 12.86 12.59 +0.15
Clement and

Quinnell® 13.07 13.15 +0.13
Bryant and

Keesom® 13.48 12.82 =+0.26
O’Neal and

Phillipsd 12.96 12.78 +0.13

2 In units of mJ/mole °K.
b J. R, Clement and E. H. Quinnell, Phys. Rev. 92, 258 (1953).
;C. A, Bryant and P. H. Keesom, Phys. Rev. 123, 491 (1961).

H. R. O'Neal and N. E. Phillips, Phys. Rev. 137, A748 (1965).

¢ G. Ahlers, Phys. Rev. 145, 419 (1966).
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INDIUM
T=1.86°K
30 SEC TIME CONSTANT

43

| |
o 50 100 I5|0 200 250
MAGNETIC FIELD (GAUSS)

Fi16. 4. The heat capacity of indium as a
function of magnetic field.

Figs. 5 and 6, where the heat capacity of beryllium is
recorded as a function of magnetic field. Quantum
oscillations are clearly discernable. The noise level of the
system and the precision of the measurement is illus-
trated by the retrace of the single oscillation in Fig.
6(b). The maximum deviation between the two traces
15 0.04%, and can be attributed entirely to the 3X 10~4°K
instability in the bath temperature during the measure-
ments. A reduction in the drift in the bath temperature
would increase the precision accordingly since the noise
associated with the electronics is at worst 0.019,
referred to the signal.

The qualitative behavior of the field dependence of
the heat capacity of beryllium can be understood in
terms of the nature of the Fermi surface. The long
period oscillation, one complete period of which is not
shown in Fig. 5, results from the beat of the oscillations
arising from the “hips” and ‘‘waists” of the electron
cigars, which have almost equal de Haas-van Alphen

T=146°K

!

e T
g 0%
g 4
o
b=
¥

b
1 1 1 1 L 1
212 23 214 25 216 27 218

FIELD IN KILOGAUSS

Fic. 5. The heat capacity of beryllium as a function of magnetic
field. The field is parallel to the hexagonal axis. The 20-G shift of
the two curves is a result of excessive time constant on the lock-in
and slight hysteresis in the magnetic field for which no correction
has been made. Trace (a) was taken with decreasing field, and
trace (b) with increasing field. The lock-in time constant equals
10 sec and dH/dt=0.2 G/sec. Part of the apparent slow field
variation of the heat capacity is due to temperature drift. The
large harmonic content of the high-frequency oscillations in the
nodal region is similar to that observed in the magnetothermal
effect.
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F16. 6. The heat capacity of beryllium as a function of magnetic
field. The difference in relative amplitudes of the slow and fast
oscillations in Figs. 5 and 6 is due in part to time constant effects
and to the slight change in temperature. The magnitude of the
quantum oscillations is extremely temperature-dependent in this
temperature region. Trace (b) is of the one quantum oscillation
indicated by the arrow in trace (a). For (b) the lock-in time
constant equals 30 sec and dH /dt=0.04 G/sec.

frequencies. The high-frequency oscillation having a
period of approximately 50 G at 21 kG is the average
of these two frequencies, while the resolved structure
occurs because of the large harmonic content of the
two oscillations. When the oscillations are out of phase
at approximately 21.5 kG, they do not completely
cancel, and appreciable harmonic content, particularly
the second harmonic, is observable.

The dependence of the heat capacity of a metal upon
the magnetic field can be calculated from the Lifshitz-
Kosevich expression for the grand canonical potential.
The calculation proceeds from the relation

T<a2ﬂ)
Couuag=—T|— .
o.p,H oT _

The difference in heat capacity at constant pressure or
volume and constant chemical potential or particle
number is of no significance to these considerations. In
the notation of McCombe and Seidel” the field-depen-
dent heat capacity arising from a single extremal cross-
sectional area of the Fermi surface [area @(E;)] may
be written as

AC=—H2 3 r=32P, exp(—rX/Tx)

r=1

2nr f 2rT coshrT/Tx
X cos< - 21r77:F—1~1r) { _
H Ty sinh%T/T

rT \% 14+cosh%T/Ty
-—(—) —————————-—} . (12)
Ty/ sinh*%T/T,

7 B. McCombe and G. Seidel, Phys. Rev. 155, 633 (1967).

—1/2

PR(EF)
cos(rmgm.*/2my);

P.=—2Vkg(e/hc)¥?|———
ok2

z

m

Ty=B*H/2n%3s, X is the scattering or “Dingle” tem-
perature, f=c#Qn(£r)/2me is the de Haas-van Alphen
frequency, (*=e#/m.*c is twice the effective Bohr
magneton, where m.* is the cyclotron effective mass,
g is the effective g value, m, is the free-electron mass,
7 is a phase constant which may have any value between
0 and 3 depending on the dispersion relation £ (k), and
the other symbols have their usual meaning.

The temperature dependence of the #th harmonic of
the heat capacity at constant field is contained in the
function

coshy 21+cosh2y

b(y)=2y y :
sinh2y sinh®y

(13)

where y=7T/Ty. This function is plotted in Fig. 7. The
oscillatory field-dependent heat capacity vanishes at
T=0°K as it must be the Nernst theorem, and it also
vanishes at high temperatures where the thermal energy
is much larger than the separation between the Landau
levels. The intermediate zero arises from an averaging
of the oscillatory density of states over the Fermi dis-
tribution of occupied and unoccupied levels.

The magnitude of the quantum oscillations in the
heat capacity of a typical metal calculated from Eq.
(12) is about one part in 10¢ of the ordinary Sommerfeld
electronic heat capacity at low temperatures. For
beryllium the curvature of the electron cigar Fermi
surface is very small and the normal heat capacity is
relatively low. Consequently, with the magnetic field
parallel to the hexagonal axis at 22 kG and 1.5°K the
calculated value for the relative variation of the heat
capacity due to the hip and waist extremals is several
percent of the total heat capacity. This estimate from
Eq. (12) is of little value, however, because of the added
complication of the magnetic interaction problem in
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beryllium,® and another method is necessary to predict
the magnitude of the quantum oscillations in the heat
capacity of this metal.

Adiabatic temperature oscillations—the change in
temperature of a metal as the magnetic field is varied
adiabatically—can be used to estimate the amplitude
of the oscillations of the heat capacity AC by the relation

From the magnetothermal measurements of Halloran®
the estimated peak-to-peak amplitude of the high-
frequency heat-capacity oscillations ranges from 0.25
to 0.49, while the estimate for the slow oscillation is
less than 19,. Considering the very large uncertain-
ties in these estimates from the published data, the
agreement with these measurements is considered
satisfactory.

8 See J. H. Condon, Phys. Rev. 145, 526 (1966).
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CONCLUSIONS

An ac temperature technique for measuring heat
capacities has been developed which possesses several
advantages: (1) The sample may be coupled thermally
to a bath; (2) the method is a steady-state measure-
ment; (3) changes in heat capacity with some experi-
mentally variable parameter may be recorded directly;
(4) extremely small heat capacities may be measured
with accuracy; and (5) the method possesses a precision
an order of magnitude better than existing techniques.
Heat-capacity measurements are reported that have
an absolute accuracy of 19, and no serious problem
appears to exist in improving on this figure to the limit
imposed by the accuracy of the thermometer cali-
bration. The sensitivity of the present measurements to
changes in heat capacity is 0.049, with a lock-in time
constant of 30 sec. This precision was limited entirely
by thermal noise which can easily be reduced by an
order of magnitude with improved dc temperature
regulation.
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Energy Bands and Fermi Surface of Scandium*

G. S. Fremine AND T. L. Loucksti
Department of Physics and Institute for Atomic Research, Iowa State University, Ames Iowa 50010
(Received 18 March 1968)

The energy bands for hexagonal close-packed scandium have been calculated using the augmented-plane-
wave method. From these calculations, the Fermi surface, density of states at the Fermi energy, and elec-
tronic specific-heat coefficient were determined. An important feature of the Fermi surface is the existence
of large relatively parallel portions perpendicular to the ¢ axis. This feature has also been reported for Y,
Lu, Er, and Dy and in the present case can be related to the wave vector of the periodic moment arrangement
occurring in alloys of Sc and Th. Comparisons with the limited number of experimental data are made.
There is no indication that the electronic specific-heat coefficient enhancement (due to electron-phonon
and electron-electron interactions) is significantly greater for Sc than for Y and the heavy rare earths.

1. INTRODUCTION

ALCULATIONS have been made of the electronic
energy bands and Fermi surface of Sc using the
augmented-plane-wave (APW) method proposed by
Slater! and reviewed by Loucks.? The atomic structure
of Sc is 3d4s?, and the hexagonal close-packed crystal
structure is considered here.? In the next section some

* Work was performed in the Ames Laboratory of the U. S,
Atomic Energy Commission. Contribution No. 2279,

1 Alfred P. Sloan Research Fellow.

1 Present address: Science Center, North American Rockwell
Corp., Thousand Oaks, Calif,

17, C. Slater, Phys. Rev. 51, 846 (1937).

3T, L. Loucks, Augmented Plane W ave Method (W. A. Benjamin,
Inc., New York, 1967).

3 For previous applications of the APW method to the iron
transition metals and hcp structures see, for example, L. F.
Mattheiss, Phys. Rev. 134, A970 (1964); A. J. Freeman, J. O.
Dimmock, and R. E. Watson, Quantum Theory of Atoms, Mole-
cules and the Solid State (Academic Press Inc., New York, 1966),
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