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test of the T' model of ferroelectrics. (The usual iso-
topic effect on phonons predicts a decrease of 1 part in
138 of the phonon frequency in the deuterated case.)
The T* law for the order parameter could possibly be
experimentally checked by doing nuclear magnetic
resonance on the protons, looking for the NMR lines
resulting from protons in the “wrong” sites.” These lines
should grow as 7" at low temperatures.
Low-temperature measurement of the spontaneous

7 Techniques for narrowing proton NMR lines will probably be
needed for such an experiment; see S. Clough and I. R. McDonald,
Proc. Phys. Soc. (London) 90, 1019 (1962).
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polarization in the ferroelectric would yield less direct
information, as we have shown that both anharmonicity
and the order parameter influence (p) with the same 7%
dependence. However, our prediction is that the 7
dependent decrease of (p) will be greater in undeuter-
ated ferroelectrics because the order parameter has no
T* dependence in the dueterated case.
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The temperature-dependent probability distribution of internal exchange fields, H, is obtained for a set
of randomly distributed Ising-model spins using a modified form of the statistical model of Margenau. The
impurities are assumed to interact via a convergent long-range potential which alternates in sign as a function
of position. When spin correlations between the magnetic impurities are neglected and a mean-random-field
(MRF) approximation is used, the probability distribution P (H) is given by a nonlinear integral equation.
For a 1/73 potential, the self-consistent probability distribution is, in the MRF approximation, a Lorentzian
with a temperature- and concentration-dependent width A(8), where 8=1/(ksT) and T is the temperature.
The function A(B) is also given by a nonlinear integral equation which is solved for very high and very low
temperatures. Using P(H) derived for a 1/7% potential, the magnetic susceptibility x(8) and the specific
heat C,(8) are obtained for all temperatures. The model gives a magnetic susceptibility which exhibits a
maximum as a function of temperature for all nonzero (but sufficiently small) impurity concentrations.
The temperature of the maximum is proportional to the impurity concentration. Possible applications of
the model to the temperature and concentration dependence of x(8) and C»(8) of dilute magnetic alloys

are discussed.

1. INTRODUCTION

HE method of random molecular fields has been

used to discuss the thermodynamic properties of
various magnetic impurities interacting via a long-range
potential. Marshall' has introduced this concept to
obtain the low-temperature specific heat of magnetic
impurities interacting via a Ruderman-Kittel-Yosida?
(RKY) interaction. Later Klein and Brout® obtained
the probability distribution of the random Ising-model
internal field for a system interacting via the RKY
interaction in the limit as the temperature approaches
0°K. An attempt to describe the variation of the proba-
bility distribution of the internal field with temperature

* Part of this work was supported by the Army Materials
and Mechanics Research Center, Watertown, Mass.

Tslf‘iresent address: Wesleyan University, Middletown, Conn.
06457.

1 W. Marshall, Phys. Rev. 118, 1520 (1960).

2 M. A. Ruderman and C. Kittel, Phys. Rev. 96, 99 (1954); K.
Yosida, ibid. 106, 893 (1957); T. Kasuya, Progr. Theoret. Phys.
(Kyoto) 16, 45 (1956).

M. W. Klein and R. Brout, Phys. Rev. 132, 2412 (1963).

as one departs from 7=0 has been made by the au-
thor.t4* However, the validity of this approach has not
been satisfactorily shown. The purpose of this paper is
to use a modified form of the statistical model of
Margenau® to derive the temperature-dependent in-
ternal field distribution for a set of randomly distributed
Ising-model impurity spins which interact via a con-
vergent long-range potential which alternates in sign as
a function of position. In the model used the formal ex-
pression for the probability distribution of the internal
field, P(H,), at a particular site 0 is given in terms of
the effective internal fields at all other impurity sites in
the solid. To evaluate the expression for P(H,), a
mean-random-field (MRF) approximation is used in
which, when calculating the probability distribution of
the internal field at site 0, all functions of the internal
field at sites other than O are replaced by their mean

4 M. W. Klein, Phys. Rev. 136, 1156 (1964).

48 A similar approach to the one taken here:was independently
developed by T. A. Kitchens and W. L. Trousdale (to be pub-

lished) to treat impurities in palladium.
5 H., Margenau, Phys. Rev. 48, 755 (1935).
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values. Neglecting spin-spin correlations between the
magnetic impurities and using the MRF approximation
and imposing a self-consistency condition gives an
integral equation for the probability distribution. For
a 1/7% potential the self-consistent P (H) is a Lorentzian
with a temperature- and concentration-dependent
width A(B) which is monotonically decreasing with
increasing temperatures. A(B) is given in a simple
power series of the temperature for low temperatures
and in terms of an expansion in the inverse tempera-
ture for high temperatures. Using the expression for
P(H), the temperature-dependent magnetic suscep-
tibility x(B8) is obtained. It is found that x(w) is
independent of the impurity concentration and that
dx(B) /4T is positive and is inversely proportional to
the impurity concentration for small 7. As a conse-
quence of this, the predicted magnetic susceptibility
has a maximum as a function of temperature for all
nonzero (but small) concentrations, where Tmax 1S
proportional to the impurity concentration. The model
also predicts a maximum in the low-temperature spe-
cific heat C,(T") as well as a maximum in 6C,(T") /0T
as a function of the temperature, where both of these
maxima are proportional to the impurity concentration.

In Secs. 4-7 a possible application of the theory to
the very recently obtained magnetic susceptibility
measurement of Cu-Mn, Au-Fe, and Cu-Fe is dis-
cussed. It is argued that the very-low-temperature
magnetic susceptibility is internal field dominated for
sufficiently large concentrations ¢o such that the average
effective internal field is of the order of or greater than
the Kondo temperature divided by the Bohr magneton.
For Cu-Mn ¢,<0.019%, for Au-Fe ¢=~0.05%, and for
Cu-Fe ¢=0.19,. It is also shown that the details of
the very-low-temperature specific heat of Cu-Fe ob-
tained by Frank, Manchester, and Martin® cannot be
explained by an internal-field model.

2. DERIVATION OF THE PROBABILITY
DISTRIBUTION

Consider a system of interacting Ising-model spins
randomly distributed in a nonmagnetic host. Let the
interaction Hamiltonian JC between the magnetic im-
purities be of the form

Je= 2 vijmiss,
<i

(2.1)

where v;; is the interaction potential between the par-
ticles located at positions ¢ and j, 7;; is their separation,
and u; and p; are the respective Ising-model spin
variables. u; may take values of == 1. Let the interaction
potential v;; be of the form
v;;=a(coskry/| coskri; |)ry™, (2.2a)
with the requirements that [yv;d*;;< o, where V is

¢ J. P. Franck, F, D. Manchester, and D. L. Martin, Proc. Roy.
Soc. (London) A263, 494 (1961).
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the volume of the solid. Let there be Ny sites in the
solid, N of which are occupied by magnetic impurities,
and let N—w such that (N/No) =c, where ¢ is the
fractional impurity concentration. This paper considers
the limiting case as the concentration ¢—0, such that
terms in ¢? may be neglected. This condition is imposed
by the use of the statistical model where multiple
occupancy of the sites is permitted, introducing an
error of order ¢2. Let R be the average distance between
the magnetic impurities. It is required that the wave
vector k in Eq. (2.2a) be such that 2R>>1, i.e., the
periodicity of the potential varies sufficiently rapidly
that an impurity j is, on the average, just as likely to
experience a positive as a negative potential from
impurity <. For this reason, in subsequent calculations
the potential given in Eq. (2.2a) will be approximat:d
by one of the form

with probability of %
with probability of . (2.2b)

Vij=a/r:"
V= —a/r",

The potential in Eq. (2.2b) is chosen as an approxima-
tion to the Ruderman-Kittel interaction in dilute alloys
to be discussed in Sec. 6. The replacement of Eq. (2.2a)
by Eq. (2.2b) will give physically incorrect results when
long-range magnetic order exists in the solid.

Let the effective field Hy at an arbitrary impurity
site 7o be defined by the expression

Hy= Zﬂojﬁi- (2.3)
J
Since 7o; and hence »(7)=w; are random variables,
H, is also a random variable. The bars over H and &
indicate that they are thermally averaged quantities.
The definition of Eq. (2.3) is thus consistent with the
usual molecular-field approximation.

The purpose of this paper is to obtain the tempera-
ture-dependent probability distribution P(Ho) of the
random variable H,. The thermodynamic functions for
the system are then obtained by integrating the thermo-
dynamic variables for a single spin in fixed internal
field H over the probability distribution of all fields.
The quantity g; in Eq. (2.3) is

Ay=tr exp(—B3C)u;/tr exp(—p3C),
where tr represents the trace over all spin operators, i.e.,

trexp(—g3C)= D > -+ 2 exp(—pc).

pr=d1 po==1 #NEl

(2.4)

The spin average in Egs. (2.3) and (2.4) is performed
for a fixed set of position coordinates. It should be
remarked that, in order to obtain the thermodynamic
variables for the system, one has to average over the
position coordinates only affer the thermodynamic
average over the spins is performed. The specific order
of this averaging is dictated by the physical require-
ment that the spins in the random system are in thermal
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equilibrium whereas the spatial coordinates of the
impurities are frozen in the solid in a definite non-
equilibrium fashion. This requirement has been dis-
cussed previously in connection with the dilute alloy
problem.?

Using the standard molecular-field approximation,
the Hamiltonian given in Eq. (2.1) is expressed in
terms of the effective fields at the individual sites. Then

5e=— 2 i 2ouiiky),

L=~ Zﬁiw, (2.5)
where H; is defined in Eq. (2.3). Thus Eq. (2.4) be-
comes

__ trexp (B i) i
F™ exp (B iws)

For a fixed set of spatial coordinates, Hy as well as
the Hs are constants. The distribution of H, arises
from the requirement that the positions of the particles
are random variables. The probability distribution of
H, is calculated as follows. Fix an impurity uo at the
origin of coordinates, site 0, and average over an en-
semble of systems, each containing NV spins, where the
impurities in each member of the ensemble have their
position coordinates fixed, but where different mem-
bers of the ensemble have the coordinates fixed in
different positions. The density of the ensembles is
determined by assuming a random distribution of the
N impurities on the N, sites. The consequence of this
procedure will be that average thermodynamic quan-
tities (like specific heat, magnetic susceptibility, etc.)
are those obtained from calculating the thermodynamic
quantities of a single spin in an internal field arising
from a fixed spatial configuration of the surrounding
spins, and then averaging over all possible spatial
configurations of all spins except that at the origin of
coordinates.

To find a formal expression for the probability dis-
tribution P(H,), the method of Margenau® is used and
each of the 3N-dimensional configurations which con-
tribute to Hy is multiplied by unity, whereas configura-
tions which do not contribute are multiplied by zero.
For this purpose the well-known §-function trick® to
express P(Hy) is used. Thus

PH)=Y f 8(Ho— D_vo;it;)

YN VTN

=tanhgH;.  (2.6)

XP(ro, 1o, *++, tox) d*ron, (2.7)

where ), is the sum over each of the potentials
w;==a/r;" as given in Eq. (2.2b), giving a total of
n such sums, [,, indicates an integral over a 3N-
dimensional volume, and P(7q, 70y, * * *, 7on) d*ron is the
joint probability for particle 1 to be in the volume of
d’ry at n, particle 2 to be in d®; at r,, and particle NV
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to be in d%y at 7y. Rather than summing over discrete
sites in the lattice, integration is used. This is expected
to be valid for the very dilute case, for the model is
restricted to sufficiently low concentrations such that
the average interparticle distance is much greater than
a near-neighbor distance.

It is now assumed in Eq. (2.7) that the positions of
each of the particles are independent random variables
which are uniformly distributed over the volume V of
the solid with probability 1/V. Thus the probabilities
factorize and

P(ry)=(1/V)N. (2.8)

Rewriting Eq. (2.7) using Eq. (2.8) gives

P(Hy) = (2r)— f dp expiplly)

<[ M1 = [V exp(—ipom)drol)-

N j=1 woj==a/rojn
(2.9a)
Using Eq. (2.2b) in (2.9a) thus gives
N-—-1
(L) = [dp exp il 11 / BCion

X [exp (ipagz;/ro;") +exp(—ipag;/ro;*) Jdroj. (2.9b)

Equation (2.9) cannot be evaluated because f;=
tanhBH ;= tanhB( D _wwji) is explicitly a function of all
the position coordinates separating the impurities at 7;
and 7, and implicitly a function of the distances
between all other impurities via the f’s. Therefore,
the evaluation of Eq. (2.9) will have to be done using
an approximation, the details of which are described
below.

The function exp(—ipw;i;) for a fixed v, depends
upon the field ;. Now, consistent with the initial
postulate of a probability distribution of the field
P(H,) at site 0, a probability distribution of Hj,
P(H,), is also postulated. (This is equivalent to
evaluating P(H,) over an ensemble of systems in
which an impurity is fixed at site j and other impurities
are randomly distributed.) Using this P(H;),
exp(==1pvy;;) for a fixed w,; is approximated by re-
placing it by its mean value over the distribution of
fields at site j, P(H;). Thus

MRFA - -
exp(sipas/n®) ——> [PUL) exp(==ipat/ror) Al
(2.10)

This approximation will be denoted by the mean-
random-field approximation (MRFA) and is indicated
by MRFA over the arrow in Eq. (2.10). At the moment
no assumption is made about P(H;) except that it
exists. P(H;) may, for example, be a conditional
probability distribution with the condition that H, is
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specified. However, later on, P(H;) will be required to
be the same for all 5.

It is appropriate to draw a comparison between the
MRF approximation and the usual Weiss molecular-
field approximation. In the Weiss molecular-field ap-
proximation all fields are replaced by a mean field
which is the same at each site in the solid. Here, in
order to calculate the distribution of fields at site 0,
functions of the internal field at sites other than O are
replaced by their mean values, obtained by averaging
over a distribution of fields. Thus in a sense the MRF
approximation goes one step beyond the Weiss molec-
ular-field approximation.

With the approximation in Eq. (2.10), Eq. (2.9)
becomes

Py = (2m)* [ dp expliptle)

S (a0 oir Pa;
XH(/de/ P(H;)V? Cos_d370j> . (2.11)
—oc rojn

=1

It should be noted that, since each H; and g was
assumed to be independent of all other A’s, the MRF
approximation neglects spin-spin correlations between
the impurities. Such an approximation would be phys-
ically incorrect if a long-range correlation between
magnetic impurities existed. It is only because, on the
average, the spins are only correlated over a short
region® of space that the model presented may have
applicability to experiments performed on dilute mag-
netic alloy systems. It should also be remarked that
even though the method goes beyond the usual Weiss
field approximation, in that it permits the internal
fields to have a probability distribution, only upon
repeated comparison with experiment can one gain
confidence that the model may have applicability to
real physical systems. _

Equation (2.11) gives P(Hy) in terms of the P(H;)
at all other sites. In principle, each random variable
H; may have a different probability distribution. At
this point, however, as a self-consistency condition it is
imposed that each P(H;) has the same functional form.
Therefore the subscripts on Hy and H; are dropped in
Eq. (2.11), and Eq. (2.11) becomes

PH) = (27r)“1'/_oo dp exp (ipH)

=2 _ _ [ 7 N-—1
x(v— / P()dA / cosﬂ‘dsr) . (2.12)
—o — 4
Let
y= f f“’ P(H)dﬁ(1—cos?f§)dsr. (2.13)
V /-
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Then Eq. (2.12) becomes

Py = ey [ dpesptiol) (1= 1)

=(nf " dpexpl (o)~ (V/ V)V, (2.14)

where V' is given in Eq. (2.13) and N —1 was replaced
by N.

Equation (2.14) is a nonlinear integral equation for
P(H) and is the central result of this section.

Next V' is evaluated:

V’=4’n-'/’c° P(ﬁ)dﬁfw (l—cos %{Z) 72dr.
— 0

Let

Z=|apml/r, (2.15)

where the vertical bars indicate absolute values. Then
Eq. (2.15) becomes

4 o o o 1 —cosZ
r__ 0 n o Iy
V= » | pa |3 /;w P(H)dH | g | o ZGtmin az

(2.16)
and Eq. (2.16) is to be used in Eq. (2.14).
3. EVALUATION OF P(f) FOR A 1/r* POTENTIAL

Next Eq. (2.16) is evaluated for a 1/ potential.
Equation (2.16) becomes

1—cosZ

V/=%7r[p|/::P(ﬁ)|E|dH'/;m =z
=3 pal| |l 2]l 3.1)
where
el =/ pam gl an, (3.2

with g given in Eq. (2.6). Substituting Eq. (3.1) into
Eq. (2.14) gives

P(H)=(1/m) {A(B)/[AB)*+H]},  (3.3)

where
AB)=3x|a|nc|| gl =vellrll, (3.4

where y=3#2 | a | 1 and depends only upon the strength
of the interaction at a distance of a lattice constant
and the number of sites per unit cell 7. It is expected
that this model gives too large a probability for ob-
taining high fields from what one would expect in an
actual physical situation. The reason for this is that in
a real solid the maximum field is limited by the nearest-
neighbor distance between the impurities, whereas here
no restrictions were placed on the distance of closest
approach. Equation (3.3) is an integral equation
defining P(H) via Egs. (3.4) and (3.2).
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F1c. 1. Values of ||u(x) || as a function of BA(x), where
B=1/(kgT), T is the temperature, and A() is the width of the
probability distribution function at 7'=0. The circles show the
machine-calculated values, whereas the solid lines give the low-
temperature approximation Fi(x) and the high-temperature
approximation Fy(x) given in Eqs. (4.5) and (5.2), respectively.

A. Solution of A (@) for Low Temperatures

The temperature-dependent solution for A(8) may be
obtained by finding approximations to the integral
equation

Izl =2 / " P(f) tanhgHdH. (3.5)
0

Expanding Eq. (3.5) in terms of A/A(g) gives

| 2ll =1—[4/(xA(8))]
o exp(—28H)
0 1+exp(—26H)

1= )+ )+
=1~ (x5 (@) 1) (2 8@ T
x3 L e S

e
+o([BAB) T} (3.6)
Equation (3.6) gives
!lgigllﬂll =1 (3.7)
In Eq. (3.4) let
AB)=A(=) [ &(8) I, (3.8)

where A() is the value of A(B) at B-»w. Using
Eq. (3.6) in Eq. (3.5) gives

[|a(8) Il =1—(g/B) —(g/8)*—0(g/8)?,

g=In4[xA() ] (3.10)

It is found that in the MRF approximation, for a set
of spins for which spin-spin correlations between im-
purities are neglected, the temperature-dependent
probability distribution is a Lorentzian with a width

3.9

where
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A(B) which is proven in the Appendix to be mono-
tonically decreasing with temperature. The expression
for the width for low temperatures is given by Egs.
(3.8) and (3.9).

B. Evaluation of A(3) for High Temperatures

For high temperatures and low internal fields lef
tanhBH~BH —% (BH )3+ (2/15) (BH)® and separate the
integral in Eq. (3.5) into two parts:

w2 el
|]ul|~7r/o

[xy—3(xy)*+(2/15) (xy)*]dy

2 el oy
+7r/uzll;7|[2+y‘z[1 2 exp(—2xy) Jdy,

(3.11)
where x=8A(). For a very small value of x the above
equation becomes

1~ (w/m) In[1+(x || & |]) 2]+ (73/45m) 240 (),
which gives a solution
|| & || A~Lexp(n/x—173/45) —1112/x.  (3.12)

Equation (3.12) shows that the width of the Lorentzian
decreases proportionally to exp[ —wk7/2A(%)] for
high temperatures.

Solutions to the integral equation for}|| u || 'were ob-
tained by solving Eq. (3.5) using a computer.tIn Fig. 1
the values of || z|| are plotted as a function of the
temperature divided by the width of the Lorentzian at
B—, A(). In the same figure the low-temperature
solution Fy(x) = || ]|, as given by Eq. (3.9), and the
high-temperature solution Fo(x)= || z||, as given by
Eq. (3.12), are also shown. It is found that Fi(x) and
Fy(x) approximate quite well the solutions for || ||
obtained by machine calculations.

4. MAGNETIC SUSCEPTIBILITY

In this section the magnetic susceptibility at low
temperatures is calculated. The single-impurity parti-
tion function Zj, in the presence of an internal field H

and an external field Ht, is
Z,(8, H, Hext) = 2 exp[—B(H+Hex) 1]
p=tl
=2coshB(H+Hexs).
The magnetization of the single impurity M (A, B) in
an effective field H is

(4.1)

My(H, ) = lim (0 InZ,/08Hxs) =up tanhBH, (4.2)
H x>0
where up is the Bohr magneton.
The magnetization is, on the average,
M(8) =Nous | PUT) tanhplall,  (43)

where Ny is the number of sites per unit volume. The
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magnetic susceptibility x(8) is

x(8)= lim Necus8 f P()

Hex 0
2

6 Y —
X m InZ,(8, H, Hext)dH (4.4)

— NocBus® / * P(T) sech2Hddl. (4.5)

Next the magnetic susceptibility, Eq. (4.5), is evaluated
for low temperatures, neglecting the change of P(H)
with external magnetic field,®

] (8 s0(8)].

A
limx(8) =2Nocus?/mA(w) =2NwP(0) us?,

B>

x(8) =

where P(0) is the probability density at H=0. Since A
as given by Eq. (3.5) is proportional to the impurity
concentration, Eq. (4.6) shows that x(e) is inde-
pendent of the impurity concentration. This result has
already been obtained previously.” The slope of the
magnetic susceptibility near 7'=0 is given by

;im(ax/aT) =—(1/ksT?) (3x/98)

4 w?
q[1+—q ~

_ 2NoCkB[J.B2
B 6A(»)%q

7A(w)

0@ |, @
where ¢ is given in Eq. (3.10). Substituting for ¢ gives,
for very low temperatures,

ksT
A(e)

Ix _
oT

4Nocpupkp In2 [ ( s 4 1n4)
[rA()] 12 In2 T

+0(T2>]. (48)

Equation (4.8) shows that the initial slope of x(T)
versus T is inversely proportional to the impurity
concentration and is positive for small temperatures.
A necessary consequence of this result is that the model
gives a maximum in the magnetic susceptibility for all
nonzero concentrations® To determine the temper-

%a Note added in proof: We have_since shown that in the MRF
approximation the change of P(H) with external field gives no
contribution to the magnetic susceptibility.

7J. Friedel, J. Phys. Radium 23, 962 (1962); M. W. Klein,
Phys. Rev. 141 489 (1966).

(1;2;)6 ]the quahtatlve arguments of S. Liu [Phys. Rev. 157, 411
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ature of the maximum, one has to solve the equation

O 2 [ H(BA'+24) — A (pA)
aﬂ ™/
(4.9)

(H2+ A2)2
where A’=9A/dB. It should be noted that for temper-
ature #T~~A, Eq. (3.9) is no longer valid, making the
analytic solution of Eq. (4.9) difficult.

sech’8HdH= 0,

A. High-Temperature Magnetic Susceptibility

Equation (4.5) is conveniently rewritten in the
form

Nex || ag|P
m[A()/c] /) Il B 1124y?
where x=(A( ). Equation (4.10) can be evaluated by
using a contour integration in the complex plane.
Closing the contour in the upper half of the complex
plane with an infinite radius R, the integrand has a
first-order pole at y=: || & || and a set of second-order
poles at y=(2n-+1)iw/2x, where » is any positive
integer. The residue at y=1 || g || is [2¢ cos?(|| u || ) T,
and the residue at (2n+1)ir/2x is

(2n+1) i/ 23
[l [P (@n+D)m/22)
Evaluating the contour integral, Eq. (4.10) becomes

x(B) = sechxydy, (4.10)

B NO#Bz X
x(B) = A(w) /e [cosz(“ all %)
e [(2n+1)/2x]r
% (IIﬁll2—{[(2n+1)/2xl7r}2)2} -

For kpT>A(), Eq. (3.12) is used to find the ap-
proximate value of x(8):

(32 g

+0 [exp (— 2116(]3: ))]} . (4.12)

Equation (4.12) gives a leading term for high-temper-
ature magnetic susceptibility which is the same as for a
paramagnetic Ising system, with corrections pro-
portional to 1/72.

The magnetic susceptibility, Eq. (4.5), was cal-
culated using a computer and the results are shown in
Fig. 2. There is a maximum in the susceptibility at
1/[BmaxA(0) 04, or kpTlma>0.4A(o)=0.4vc,
where v is given in Eq. (3.4). Thus the maximum in
x(B) is proportional to the impurity concentration.
Also note from Eq. (4.10) that the susceptibility is only
a function of x=8A (), and the temperature at which
the maximum in x(8) occurs is given by x0.4,

N oC,UB

x(8) = T
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£ thus x(Bmax) is independent of the impurity concentra-
28 tion. The behavior of the high- and low-temperature
M- p magnetic susceptibility is summarized in Table I.
o
E » (j )
B-g 5 : 8 5. SPECIFIC HEAT
€& g : S = g . .
<8 5 8 8 & The low-temperature specific heat for the system is
=g s ’g E 'g now obtained. The entropy .S; of a single impurity in
X ) ) & an effective field H is®
% = S S
\"/'5 S1=k3(,8U+]nZ), (51)
=5 where
Br—
© 8 " InZ=In Z exp(—pBHp) =In2 coshBH
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order not to count each interaction in Eq. (2.1) twice.
P(H, B) is given by Eq. (3.3). It is seen from Eq.
(5.3) that the entropy is a function of 7" only. Thus
the specific heat C, is

C,=dQ/dT=T(3S/dT)

=(—1/ksT)(35/98). (5.4)
Let

F(H,B)=8H(1—tanhGH) +In[1+exp(—28H)].
Then

(), -ve ], (rno

+F(H,B8) or(H, m m)dH. (5.5)

Integrating the second term of Eq. (5.5) by parts gives

/ F(H, 8) aP(H) HzéA_
x [ P, ﬁ)HF(H 0w (5.6)

where A is given in Eq. (3.4) and A’=9A/dB. Sub-
stituting Egs. (5.5) and (5.6) into Eq. (5.4) gives

Co=NocksT / " P(x/8) 4 secha[14-8A"/ATdx,  (5.7)
0

where x=8H. For very low temperatures

BA’/A=(q/B)+2(q/B)*+0(g/B)?,

where ¢=In4/wA(). Using this result in Eq. (5.7),
the very-low-temperature specific heat becomes

= a3~ a6
x|~ 2t 2 orkar/at= 3] 69

Equation (5.8) shows that the very-low-temperature
specific heat is linear in 7 and independent of the
impurity concentration. This is in agreement with
previous internal field calculations with a 1/7% po-
tential.13¢ However, Eq. (5.8) also predicts that
C,/ T has a positive slope for low temperatures, a result
which has not been obtained before. Thus Eq. (5.8)
gives a maximum in C, as well as in C,/7T. The temper-
ature of the maximum in both of these quantities is
predicted to be proportional to the impurity con-
centration. The maximum in C, is obtained by dif-
ferentiating Eq. (5.8) with respect to 7" and setting
the result equal to zero. The approximate condition
for the maximum in C, is kpTmax/A()1/7 or
k5T maxx0.32v¢c. The maximum in C,/T is again found
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by differentiating (C,/T) with respect to T" and setting
the result equal to zero. For this case kpTmax~
A() {20 In4/[ 77— (100 In4/7) ]}=0.16yc. Thus the
temperatures of the maxima in C,/T and C, are, from
the model, roughly £ and §, respectively, of the temper-
ature of the maximum in the magnetic susceptibility.
All three of these temperatures are proportional to the
impurity concentration. The results on the low-temper-
ature specific heat are summarized in Table I. Equation
(5.8) also shows that the specific heat per impurity
is a function of BA(), and since BA() is a constant
at T'=Tyax, the predicted C,/Tmax is proportional to
the impurity concentration.

6. POSSIBLE APPLICATION TO DILUTE
MAGNETIC ALLOYS

Dilute concentrations of magnetic impurities dis-
solved in nonmagnetic metals show various anomalies
in their specific heats, their resistivities, and their
magnetic susceptibilities.” The purpose of this section
is to discuss conditions under which the model presented
may have applicability to dilute alloys. The assump-
tions that the spins interact via an Ising-model Hamil-
tonian and that the magnitude of the impurity spin is
fixed at a temperature-independent value impose
severe restrictions on the temperature region in which
the model may have applicability. Recent experi-
mental and theoretical considerations indicate!!?
that for antiferromagnetic J there is a Kondo temper-
ature Tx at which the impurity conduction-electron
system becomes unstable to the formation of a singlet
pair state which compensates (i.e., reduces) the ef-
fective impurity spin, in which

ksTx~2D exp(—3er/| T ), (6.1)

where D is an energy of the order of magnitude of the
Fermi energy er of the host metal, and J is the s-d
exchange interaction, assumed to be a constant. In
fact, experiments! indicate that at very low temper-
atures the spin compensation is close to complete.
Therefore, the assumption of a rigid impurity spin .S has
no validity below Tk but may have limited validity
above Tx. For Cu-Fe, Tk is indicated to be somewhere
between! 6 and 15°K. The value of Tk is, however,
very rapidly varying with J, as is found from Eq.
(6.1). Even though Tk for dilute Cu-Fe is of the
order of 10°K, for some other material Tx may be
several orders of magnitude smaller. Above 7Tk, and
for sufficiently large impurity concentrations, internal
field effects may be of importance and, if so, the

0 G, J. van den Berg, in Progress in Low Temperature Physics,
edited by C. J. Gorter (North-Holland Publishing Co., Amster-
dam, 1964), Vol. 4, and references therein.

nA J. Heeger and M. A. Jensen, Phys. Rev. Letters 18, 488
(1967) ; M. A. Jensen, A. J. Heeger, L. B. Welsh, and G. Gladstone,
zbui 18 997 (1967).

D Daybell and W. A. Steyert, Phys. Rev. Letters 18,
398 (1967)
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Fic. 3. Magnetic susceptibility of dilute alloys as a function of
the impurity concentration. Results of Dreyfus ef al. (Ref. 15).

magnetic susceptibility should be determined by these
internal field effects. Whenever this is the case it is
believed that the internal field arises from a RKY?
interaction and the results derived in the previous
section for a 1/7% potential may apply. It is appropriate
to remark that, at temperatures much below Tk as
well as for concentrations sufficiently low that internal
field effects are unimportant, the very-low-temper-
ature magnetic susceptibility x(8) per unit volume
arising from a set of independent spins is expected to be
proportional to the impurity concentration. This was
recently found to be so by Hurd.’® However, at very
low temperatures, x(8), which is dominated by in-
ternal field effects, is independent of the impurity
concentration. The magnetic susceptibility and the
low-temperature specific heat of Cu-Mn, Au-Fe,
and Cu-Fe are next discussed.

Cu-Mn

There are very recent experiments on Cu-Mn which
may have relevance to the present work. In one of
these, Careage ef al.* measured the low-temperature
magnetic susceptibility of dilute Cu-Mn in the con-
centration range 0.0186 to 1.899%, manganese in the
temperature range from 0.1 to 4°K. They found that,
for concentrations ranging from 0.0186 to 0.196%,
x(0.1°K) is approximately independent of the im-
purity concentration, that (dx/0T)r—o.1cx increases
with decreasing concentration, and that x(7") exhibits
a maximum where Tmax Increases with concentration.
The approximately concentration-independent very-
low-temperature susceptibility of Cu-Mn as measured
by Careage ef ¢l may be interpreted as showing that

18 C, M. Hurd, Phys. Rev. Letters 18, 1127 (1967) and references
therein.

1A, J. Careage, B. Dreyfus, R. Tournier, and L. Weils, in
Proceedings of the Tenth International Conference on Low-Tempera~
ture Physics, Moscow, 1966 (Proizvodstrenno-Izdatel’skii
Kombinat, VINITI, Moscow, 1967).
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the susceptibility is internal-field dominated. For con-
centrations higher than 0.99, manganese, Careaga
et alX find that x(0) is no longer independent of the
impurity concentrations but increases with concen-
tration. This may be due to effects arising from the
¢ term, which was not considered in the statistical
model. Part of these results are reproduced from .a
paper by Dreyfus et al'® and are shown in Fig. 3.
Further possible evidence that the properties of Cu-
Mn are determined by internal field effects may be
found in the radically different resistivity of Cu-Mn
and Cu-Fe at low temperatures, as was found by
Steyert et al.,* that Cu-Fe does not exhibit a low-
temperature resistivity maximum whereas Cu-Mn
does.’? This maximum has been discussed as arising
from internal field effects.’®

Au-Fe

The low-temperature magnetic susceptibility of
Au-Fe (T'=0.05°K) as a function of the impurity
concentration has been obtained by Dreyfus et al.
and is reproduced in Fig. 3. It is to be noted that, for
concentrations between 0.08 and 0.49%, x(7) is ap-
proximately concentration-independent. However, for
¢<0.08%, the susceptibility drops with temperature.
Qualitatively one may interpret these results as in-
dicating that at ¢=0.19, or greater the internal
fields are sufficiently large that at very low temper-
atures the energy of the magnetically (short-range)
ordered state is lower than that of the Kondo compen-
sated state. As the concentration is further lowered,
those impurities which experience very low internal
fields will have a Kondo spin-compensated state and
will thus lower the magnetic susceptibility. Again,
Au-Fe at and above 0.19, concentrations exhibits a
maximum in the resistivity which can be interpreted
in terms of internal field effects, as was discussed
before.!s

Cu-Fe

The very-low-temperature, very-low-concentration
Cu-Fe is definitely not internal field dominated. This
is seen from the magnetic susceptibility obtained by
Dreyfus et al. shown in Fig. 3. However, at concentra-
tions of 0.19, and above, internal field effects become
important. It should also be noted that in Cu-Fe
there is no concentration-independent region as in
Cu-Mn and Au-Fe, possibily indicating a more compli-
cated behavior than in Cu-Mn and Au-Fe. It should
also be remarked that the specific-heat maximum in the
internal field model is proportional to the impurity
concentration as is exhibited in Table I. This is not
observed for very-low-concentration Cu-Fe. This

15 B. Dreyfus, J. Souletie, J. L. Tholence, and R. Tournier, J.
Appl. Phys. 39, 846 (1968).

165, D. Silverstein, Phys. Rev. Letters 16, 466 (1966); R. J.
Harrison and M. W. Klein, Phys. Rev. 154, 540 (1967).
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shows that the low-temperature specific heat Cu-Fe
cannot be explained by internal field effects alone. The
previous specific-heat results of Cu-Fe" were derived
from the knowledge of P(H) near T'=0, and the more
complete P(H) derived here shows that the con-
clusions drawn from the limited knowledge of the
P(H) curve were incorrect. Before concluding, a brief
discussion of the relationship to previous work on the
magnetic susceptibility? and the effect of correlations
is in order. Previously?, the probability distribution
of the internal field near B—« was obtained and the
following semiquantitative argument was used to
derive the temperature of the susceptibility maximum.
At any one temperature the impurities were divided
into two groups, one for which usH >kpT and another
for which upH <kpT. The impurities of the latter
group were assumed to contribute like a set of para-
magnetic impurities, whereas the former were con-
sidered to experience large internal fields and thus
give an exponentially small contribution to the mag-
netic susceptibility. The above physical reasoning
gave the qualitative behavior of the experimentally
obtained magnetic susceptibility of Cu-Mn and
predicted a temperature of the maximum, Tmax, Which
is proportional to the impurity concentration. The
present paper agrees with, and justifies within the ap-
proximation used, the previous qualitative arguments,
at least as far as the maximum in the magnetic sus-
ceptibility is concerned.

It is also to be noted that the qualitative results are
not expected to depend upon the appropriate consider-
ation of spin-spin correlations (provided only short-
range correlations exist). However, quantitatively the
correlations will tend to reduce the probability for
small internal fields and increase the probability for
obtaining large internal fields. This is expected to result
in a decrease in x(7'=0) and in

imC,(T)/T
-0

and an increase in Tax for x(7°) as well as for C,(7).
A quantitative comparison between theory and ex-
periment will be made elsewhere.

7. SUMMARY AND CONCLUSION

The properties of a set of randomly distributed
Ising-model spins were examined. The probability
distribution of the internal field as a function of temper-
ature was derived in the limit of zero concentration,
using a MRF approximation. The low- and high-

17 M. W. Klein, Phys. Rev. Letters 16, 408 (1963).
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temperature values of the magnetic susceptibility, the
specific heat, and the width of the probability distribu-
tion were obtained. The magnetic susceptibility
obtained has a temperature-dependent maximum
where Tmax<¢ and x(Tmax) <. The specific heat
C,(T) as well as Co(T)/T obtained from the model
have a temperature-dependent maximum where ZTmax
is in both cases proportional to the impurity concentra-
tion. The results for the detailed temperature and
concentration dependence of these quantities are sum-
marized in Table I in terms of a parameter v, where
y=%x?| a | m, where | a| is the strength of the inter-
action between two impurities at a distance of one
lattice constant, and #, is the number of sites per unit
cell. no=4 for a face-centered-cubic lattice.
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APPENDIX

The purpose of this Appendix is to prove that A(g)
is a monotonically increasing function with increasing
B. From Eq. (2.5), AB)=All&|l, where A=
272 | a|me. Thus, it is sufficient to show that
|l zll/dg>0.

e =2/ ?Z%Fﬁ tanhgdi, (A1)
where d|lwll/d8=B(B)/[1-CB)], (A2)
B(B) = % i Wm’%ﬁ sech?8HdH > 0.

cw=2 [ Eia
m_AMNRID: _ hegag. (as)

o LAl al)*+HF
Using the definition of || Z|| in Eq. (A3), Eq. (A2)
becomes

AWl _ ( pg o
5 = raen

Xsech’6HdH / 2 / - rA[P(H,8) ]t tanhGHIH >0,
0
Q.E.D.



