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The coupling of proton tunneling to acoustic phonons in hydrogen-bonded ferroelectrics is studied. The
resultant collective modes are obtained. The presence of proton tunneling in renormalized acoustic phonons
leads to a T4 dependence of the low-temperature growth of the disorder in the ferroelectric. Also, the acoustic
phonons velocities are decreased by coupling to proton tunneling; this suggests that undeuterated ferro-
electrics will have a smaller acoustic-phonon velocity than the deuterated ferroelectrics. The low-temperature
decrease of the spontaneous polarization is shown to have a leading term, I",which results from two physical
causes: anharmonicity of the lattice forces and the decrease with temperature of the proton order parameter.

HAMILTONIANINTRODUCTION

The zeroth-order Hamiltonian for our ferroelectric
crystal is assumed to be

Bo—Q —',M, (X—„'(k)+(a„'(k)X„'(k) )
yk

+ Q C„.(k) X,(0)X,.'(k)

—1' Z (~.)'—Z Jo(~.)'(~.)~. (1)
i wj

The first term in (1) represents the normal modes of
vibration of the crystal in the harmonic approximation.
The sum over k extends over the primary Brillouin
zone, the sum over y runs over the 3X normal modes
(X is the number of atoms in the unit cell). Three of the
vibration modes will be acoustic modes with

lim (o,(k) —+ks„.

The second term in (1) represents a particular part of
the anharmonic corrections to the lattice Hamiltonian,
these particular anharmonic terms playing a special role
in our development.

The third term of (1) is the proton-tunneling con-
tribution to the Hamiltonian, while the fourth term
represents a proton-proton interaction, which favors an
ordered (ferroelectric) arrangement of the crystal
(J;;)0) . The sums i and j go over all the protons of a
KH2PO4-type crystal. The two states of the Pauli spin
operators represent the two possible positions a proton
is assumed to be able to take in its bond.

We now add a most general coupling of the lattice
distortions to the proton. First there is a term

V = Q D,, (k) (0,);X,(k), (2)
iyk

which represents a direct shift of the energies of the two
proton positions due to a lattice deformation.

The lattice deformation may also produce a correction
to the proton-proton interaction energies. Therefore we
allow the replacement

J,,~J;,+ Q J;,,(k) X,(k)+ ~ ~ ~ . (3)
yk

P. G. de Gennes, Solid State Commun. 1, 132 (1964).
2 R. Blinc and S. Svetina, Phys. Letters 15, 119 (1965).' R. Blinc and S. Svetina, Phys. Rev. 147, 423 (1966).' R. Blinc and S. Svetina, Phys. Rev. 147, 430 (1966).
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" "N recent years several workers have studied KH2PO4-
.. type ferroelectrics using a model that incorporates a
proton-tunneling Hamiltonian term. In this view the
protons exist in a double-minimum potential well, with
there existing a tunneling matrix element between the
two equilibrium sites.

de Gennes' has studied the collective proton-Rip
modes of a model Hamiltonian that includes the
tunneling integral plus long- and short-range proton-
proton interactions. He finds energy bands of elementary
excitations. But the excitation energies do not go down
to zero in the k =0 limit, as is the case in ferromagnets.
These modes have also been studied by Blinc and
Sventina. '

Blinc and Sventina, '4 using the same type of model
Hamiltonian, have performed a high-temperature
cluster series expansion for the ferroelectric's partition
function. They find that the tunneling integral term
produces a spontaneous polarization curve that rises
less rapidly with decreasing temperature below the
critical temperature than models without the tunneling
term. This is because the tunneling term is a quantum-
mechanical force tending to have the protons share
their time equally between the two sites. The tunneling
integral also offers an explanation of the substantial
difference between the critical temperatures of the
deuterated and undeuterated ferroelectrics. 4 Also, the
drastic difference in domain-wall mobility (pH/pD —10 )
can be understood in terms of the large ratio of the
tunneling integrals (Flr jFii~10') .4

In this paper we investigate some independent
consequences of a tunneling integral term in the model
ferroelectric Hamiltonian. In particular we look at
effects on the ferroelectric at low temperatures (T«T,) .
The coupling of proton-flip modes to acoustic phonons
will play a central role in producing our eGects, so a
combined proton and lattice-vibration Hamiltonian
must be considered.
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Finally, the tunneling integral I' will be altered by a
lattice deformation

The correction to I' is assumed proportional to I', since
I' is roughly proportional to exp —

I (2mhV) "'a/Fij =e &,

where hV is a potential barrier of thickness u, and m is
the mass of the tunneling particle. Then 8r~ —r8].

Collecting all of the above lattice-proton interactions
yields the total interaction potential

I'= Z I D'v(&) (~*)'—Jv. (&) (~*)'(~.)y

there will be X~(k=p) Ap static deformations of the
lattice. The X„(0) are therefore additional parameters
to be varied in order to find a minimum-energy ground
state for the system.

At 2"=0 all of the protons are put in a spin-up state;
the evaluation of the expected value of B then gives

(&)= Q —,'M~ '(0)X,'(0)

—r sin8$1+ g G; (0)X (0)$+ cos8 g D;,(p)X,(p)
Jg

—cos 8 g PJ;;+J;;,(0)X„(0)j. (7)

We have neglected a zero-point lattice-vibration con-
tribution coming from the anharmonic lattice Hamil-
tionian term in (1).

Neglecting the lattice deformations X~(0) in (7)
yields the results of Blinc and Sventina':

GROUND STATE

Following Blinc and Sventina, ' we account for the
effect of the tunneling-integral contribution to (1) by
assuming a T=0 ground state of the system, which has
all the protons "aligned" to some direction in the
abstract (o„o,) space. Physically, this means the
tunneling integral always leads to a ground state with
the protons spending some part of their time at each
site of their bond. This ground state can most easily be
handled by rotating our abstract coordinate system in
the (o„o,) space. Then we have the transformatio

8 (&)/88 = (d/—d8) Leos'8 g J;;+I' sin8 g]=0, (8)
mj

which gives
sin8= r/2 g J;;

and
zp = fq (qJ+r'—/4Jq),

0;+cos8 p + sin80„

&z + cos8 0'z slD8 0'
p

n
where J is defined as the average proton-proton coupling
constant. Letting q be the number of proton-proton
neighbors retained in our model, then J is de6ned as

6

where 8 is the rotation angle in the abstract space. 8 is
to be varied to minimize the ground-state energy. Also,
due to the anharmonic contributions to the lattice
Hamiltonian and the couplings to protons positions,

J=(1/q) Q Jg.

Solving (7), however, for the equilibrium deformation
gives

X~(0) =LM~~'(0) 7 't'cos'8 g J,;„(0)+I'sin8 g G;~(0) —cos8 g D;~(0)j.
Inserting this result back into (7) gives a corrected equation for the ground-state energy:

(H) = —r sin8 g —cos'8 g J"—-,'g I t cos'8 g J" (0)+r sin8 g G;,(0) —cos8 g D;„(0)j'/M .&a '(0) }

(13)

The rotation angle which minimizes (B) is now some-

what altered. For example, if one assumed that D;~(0)
terms dominated the last term in (13), one would have
as a result a renormalized proton-proton coupling
constant:

(13), it is seen that the rotation angle 8 goes linearly
with the tunneling integral F for small F. If I'=0, then
8=0. The tunneling integral is the driving mechanism
for the protons to find an optimum state with 8&0.

D'. (0)»v(0)
2M~ '(0) In order to obtain the low-temperature dependence of

system parameters, the elementary excitations of theIn any case, regardless of the relative size of the terms in

ELEMENTARY EXCITATIONS OF THE SYSTEM
(14)
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Hamiltonian (1), corrected by the interaction (5), are
now obtained.

The lattice-vibration Hamiltonian becomes a quan-
tum-mechanical operator by the prescription

X (k) =[5/M~ (k)]'I'$A t(k)+A (—k)] (15)

with A„t(k) being a boson-creation operator for a
"bare" phonon of wave number k and mode y.

Keeping all the interaction terms from (5) which are
linear in X»(k) and (0,); gives a total interaction

V)„=I' Q a;„(k)X,(k) (n.);,

where

Z;»(k) = (1/I') [2 sin8 cos8 g J;;»(k) —sin8 D;„(k)

—cos8 I'G;, (k)]. (17)

Using (9), it is seen that, for small I', H;»(k) is inde-
pendent of F and is a sum of interaction coupling
constants between the protons and the lattice vibrations.

We can then write a quantum-mechanical Hamil-

tonian

a= g r, (k) [g+A„t(k)A„(k)]

+I" Q H;»(k) [5/M~»(k)]'"(o, );
elk

X[A»t(k)+A»( —k)]—I' cos8 Q (0,);
—g J;;(cos8 o,—sin8 0 );(cos8 0,—sin8 0,);. (18)

~ ~

%'e now search for the operator that creates the ele-
mentary excitations of (18) by assuming for that
operator a linear mixture of lattice-vibration operators
and proton-Qip operators

Pt= Q [a»A»t( k) +P»A»( k)]—

+ Z I ~'(~-)'+d*(~+) ], (19)

which satisfies the equation of motion

[a, zt]=zzt. (20)

u», p», c;, and dg are coefficients to be found and E is the
elementary excitation energy. 0~ are the usual raising
and lowering matrices -', (0,&io„).

Calculating several commutators gives'

fH, A, t(k)]=fur„(k)A„t(k)+I' Q H;„*(k)[5/M~, (k)]'I'(0,);, (21a)

[B,A„(—k)]= —Ra)»(k) A, (—k) —r g H;»(k) [5/M~»(k)]'I (0,);, (21b)

[II, (0 );]=(4cos'8 g J;,+2 sin81') (~ );—2 sin'8 g Js(~,)y

+I'(Q&H;»(k) [5/M~»(k)]'I'[A, t(k)+A„(—k)], (22a)

and

[II, (0+);]= —(4 cos'8 g J;,+2 sin8 I') (a+);+2 sin'8 g J;;(a,)Ij i
—I' g ag»(k)[S/M~ (k)]'I [A t(k)+A»( —k)]. (22b)

From the commutators above we can obtain equations relating the coeKcients in (19) in order to solve (20):

[E—So),(k)]n»=r[5/M~»(k)]'" Q H;»(k) (c;—d;), (23a)

[E+5a)»(k) ]P» = I'[5/M~»(k) Jl' Q H;»(k) (c;—d;), (23b)

[8 e]c;=—2 sin'8 g—Jg(c, d,)+I' g—B;»*(k)[5/M~»(k)]'I'(a» —P»), (23c)

[E+t]dj=—2 sin'8 g'J;;(c; d,)+I' g 8—;»*(k)[5/Mg»(k)]' '(n» —P»). (23d)

' We use in (2ia) the property P;~(-k) =H;~*(k).
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The energy unit & is defined by

e =4 cos'8 P J;;+2 sin8 I'

=2 (qJ+I'/4') . (24)

Solving (23a) —(23d) with the proton-lattice coupling
neglected gives, of course, the unaltered phonon modes,
but it also leads to collective proton-Qip modes first
obtained by de Gennes. ' Letting

c;= exp(Qt R;)8;, (25a)

where R; is the position of the ith proton, and

J;, explsk (R;—R;) j=J;;(k) (a Hermitian matrix),

Letting the eigenvalues of the matrix 4I'J;;(k) be called
eq(k) with eigenvectors v, "(k),

Q L4I'J;;(k) jvP(k) =e),(k) eP(k), (2/)

Looking at the shift of lattice vibration energies to
order I' only gives

M„, E'—e' ee, k

' d; has been eliminated from (26) by use of (23d).

then the elementary excitation of the coupled protons
have energies given by

Eg=l e'—cay(k)li~' (28)

in agrccrncnt with de Genncs. Thc collcctivc proton-
fhp modes of (28), though difFering in energy from the
single proton-Qip energy e, do not di6er fundan1entally
in the energy spectrum, since (28) still gives elementary
excitation energies which are finite as k~0. (This is
unlike the ferromagnetic case.)

The coupling of lattice vibrations to proton-Qip
modes will, however, lead to interesting

effects.

Following the redefinitions (25a) and (25b), we also
define

H;, (k) exp(zk R;) =H;»(k). (29)

Using the eigenvectors of (2'l), we change variables to

~i= Q'4A (30)

and Gnally redefine the matrix element of (29):

Q H;»(k) v;"=ki„(k) . —(3&)

These redefinitons give, 6nally,

[E c +sty)cy

The coupling constants k,»(k) are proportional to k for
the acoustic-phonon modes, so (33) represents a
decrease in the acoustic-phonon velocities due to their
coupling to the proton-Qip modes.

For the acoustic phonons, (33) can be simpli6ed in
the long-wavelength limit to

4ar2+ Ik»(k) P

M» „e—e,(0)

PROTON-FLIP AMPLITUDE IN ACOUSTIC
PHONON8

Because of the coupling between acoustic phonons and
proton-Qip modes the true elementary excitations
become a mixture of these phenomena. Therefore,
accompanying the thermal presence of acoustic phonons,
there will be a depolarization of the ordered protons
which has a T" temperature dependence rather than a
exp( —To/2') temperature dependence characteristic of
a finite energy gap for the excitations.

Starting with Eqs. (23c) and (23d), and making the
change of variables defined in (25a) and (30) gives

PE e+e—e, (k)/(E+e) $c„'

=I'I 5/M~ (k) /12k *(k) (~ —p ) (35)

But from (23a) and (23b) we have

P, = Il E-i', (k) 1/LE+5, (k) jIa,. (35)

The normalization of thc elementary excitation defined
by (19) requires that

in the k~o limit, where the c; and d; contributions go to
zero. This leads to n» —P =I~ (k)/Ej'I' so (35)
becomes

$E» e+ee,/(E»+e—) ]c„'=I'(f'i/M»E» ji"k„»*(k). (38)

Neglecting E» on the left side of (38), we have

I ~,' I'=I'(~/M»E»)
I k„(k) I'(I/I ~ ~. I'). (39)

From the change of variables (30) and the ortho-
gonality properties of eigenvectors of Hermitian
matrices, it is evident that

Z I ~.' I'= 2 I &' I'= 2 I ~' I'.

The squares I c, I' represent the probability of the ith
proton being Qipped when an acoustic phonon is present,
so the average depolarization of a proton in the presence
of the y acoustic phonon is

2 ~ I'%2 j.
8{0.)=——Q I k„,(k) I', . (4l)

q i M,E»(k)
"'

I
e —e, I''

Comparison with (34) yields a connection between the
acoustic-phonon velocity change and the proton dc-



polarization. Let bs~ be the velocity decrease of an
acoustic-phonon mode. Then

(42)a(o, }-=(1/q)SZ,/. ,

where bE~= —Skis~. So

S(o,)= —X,k (43)

Evaluating this at low temperatures gives

with X~——Qs„/oq. At low temperature, the acoustic
phonons are present with a density

&,(k) =Eexp(Ãk& ) —11 '~ exp( —~&k~v) . (44)

The total depolarization of the ordered protons is then

8(o,) = —Q X, Q k exp( —PSks,) . (45)

The first term in (49) is evaluated using (15):

(X,.'(k) )=$25/M, oI,.(k) ]P+n, .(k) ). (50)

Since C».(k) is the coefficient for a Hamiltonian term
representing the y' normal coordinate squared, if y'
represents an acoustic mode, then C» (k.) must be
quadratic in k for small k. Using co7. =ks~., we have

n, (k) exp( —PSks, .)

for the acoustic phonons; the anharmonic contribution
to X~(0) is then seen to lead to T4 temperature de-
pendence. We have already shown in (46) that (o,)
decreases as cT4, s—o the additional terms in (49) yield
also a T' temperature dependence of the spontaneous
polarization.

3 ' X, (ksT)4
B(o,}= ——, Q—;,= cT'—

~ ps~'
(46)

The Hamiltonian (18) has a term

We conclude that the ordering parameter (o,) should
therefore obey a T4 temperature law for the low-
temperature growth of disorder.

The protons themselves probably contribute very
little to the polarization of the crystal. This is because
the movement of the protons along their 0—H ~ 0
bonds is almost perpendicular to the axis of the observed
spontaneous polarization of the crystal. The polariza-
tion is most likely due to movement of the K and P ions
under the influence of the ordered protons.

Vfithout knowing in detail which ions contribute
most to the spontaneous polarization, we can in general
write an expression for the polarization,

y= P 81XI. (47)

But the x~ can be reexpressed in terms of the normal
vibration modes, and (47) can then be written as

y= QX, (0) ~,. (48)

Knowing the static deformation of the crystal yields the
polarization. To obtain the low-temperature dependence
of the X~(0), we must return to the energy expression
(7). When ('7) was minimized it gave (12) for the
static deformation parameters.

We nlllst modify (7) 'to include tile allllal'Illolllc tel'Ill
of the Hamiltonian. To (7) we must add the (o,)
factors which were suppressed when evaluating at T=0.
Equation (12) is then

X,(0) =LE~, (O)g-L+ g C„.(k)(X,.(k) }
ylk

—cos 8 g J;;(o.,);(o,),+ cost g D;;(0) (o,)~+ ~ ~ j.

V'= —sin 8 g J';;(o,);(o,);.

This perturbation can excite pairs of protons from the
totally aligned state. However~ lt ls seen that V ls of
second order in ISI and therefore of second order in F.
Consequently (52) produces a correction to the order
parameter which is of order F'. This correction does not
change our previously obtained low-temperature results
for (o,), (y), etc.

SUMMARY OF RESULTS

The essential purpose of this work was to study the
general consequences of coupling the proton Qip modes
in a hydrogen-bonded ferroelectric to the acoustic
phonons. Considering the general coupling of this type
we obtained the following results:

(1) The acoustic-phonon frequencies are decreased
by an amount proportional to F', where F is the proton-
tunneling integral between the two hypothesized sites
available to each proton in the crystal.

(2) The ferroelectric order parameter (o,), which
represents the fraction of protons properly positioned in
their bonds, has a low-temperature dependence j —cT4
with c proportional to F'.

(3) The spontaneous polarization of the ferroelectric
is dependent on both the order parameter (o,) and on the
anharmonicity of the crystal forces. Both these in-
fluences on (y) lead to a T' low-temperature quenching
of the polarization.

These theoretical results suggest certain investigations
in the normal and deuterated ferroelectrics.

Due to the fact that the tunneling integral is ex-
ponentially dependent on the hydrogen mass, it is
presently believed that F& 0, while FII may be of
moderate size (VII—0.1J}.Therefore, effects discussed
above should be absent in deuterated ferroelectrics.
Comparison of the acoustic-phonon velocities in the
two isotopic varieties of ferroqlcqtrics could provide a



K. NORDTVKDT, JR.

test of the I' model of ferroelectrics. (The usual iso-
topic e6ect on phonons predicts a decrease of 1 part in
138 of the phonon frequency in the deuterated case.)

The T4 law for the order parameter could possibly be
experimentally checked by doing nuclear magnetic
resonance on the protons, looking for the NMR lines
resulting from protons in the "wrong" sites. ' These lines
should grow as T4 at low temperatures.

Low-temperature measurement of the spontaneous

polarization in the ferroelectric would yield less direct
information, as we have shown that both anharmonicity
and the order parameter influence (p) with the same T'
dependence. However, our prediction is that the T4-

dependent decrease of (p) will be greater in undeuter-
ated ferroelectrics because the order parameter has no
T4 dependence in the dueterated case.
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The temperature-dependent probability distribution of internal exchange 6elds, H, is obtained for a set
of randomly distributed Ising-model spins using a modiied form of the statistical model of Margenau. The
impurities are assumed to interact via a convergent long-range potential which alternates in sign as a function
of position. When spin correlations between the magnetic impurities are neglected and a mean-random-ffeLd

{MRF) approximation is used, the probability distribution P (H) is given by a nonlinear integral equation.
For a 1/r' potential, the self-consistent probability distribution is, in the MRF approximation, a Lorentzian
with a temperature- and concentration-dependent width h(P), where P = 1/(k~T) and T is the temperature.
The function d, (P) is also given by a nonlinear integral equation which is solved for very high and very low
temperatures. Using I'(H) derived for a 1/r potential, the magnetic susceptibility x(P) and the specific
heat C&(P) are obtained for all temperatures. The model gives a magnetic susceptibility which exhibits a
maximum as a function of temperature for all nonzero (but suKciently small) impurity concentrations.
The temperature of the maximum is proportional to the impurity concentration. Possible applications of
the model to the temperature and concentration dependence of x(P) and C, (P) of dilute magnetic alloys
are discussed.

I. INTRODUCTION

I' &HE method of random molecular GeMs has been..used to discuss the thermodynamic properties of
various magnetic impurities interacting via a lang-range
potential. Marshall' has introduced this concept to
obtain the low-temperature speciGc heat of magnetic
impurities interacting via a Ruderman-Kittel-Yosida'
(RKY) interaction. Later Klein and Brout' obtained
the probability distribution of the random Ising-model
internal Geld for a system interacting via the RKY
interaction in the limit as the temperature approaches
O'K. An attempt to describe the variation of the proba-
bility distribution of the internal Geld with temperature

*Part of this work was supported by the Army Materials
and Mechanics Research Center, Watertown, Mass.

t Present address: Wesleyan University, Middletown, Conn.
06457.' W. Marshall, Phys. Rev. 118, 1520 (1960).

2 M. A. Ruderman and C, Kittel, Phys. Rev. 96, 99 (1954);K.
Yosida, ibid. 106, 893 (1957);T. Kasuya, Progr. Theoret. Phys„
(Kyoto) 16, 45 (1956).' M. W. Klein and R. Brout, Phys. Rev. 132, 2412 (196$),

as one departs from T=O has been made by the au-
thor. ' 4' However, the validity of this approach has not
been satisfactorily shown. The purpose of this paper is
to use a modiGed form of the statistical mode) of
Margenau' to derive the temperature-dependent in-
ternal Geld distribution for a set of randomly distributed
Ising-model impurity spins which interact via a con-
vergent long-range potential which alternates in sign as
a function of position. In the model used the formal ex-

pression for the probability distribution of the internal
Geld, P(IIO), at a particular site 0 is given. in terms of
the effective internal fields at all other impurity sites in
the solid. To evaluate the expression for E(Bp), a
mean random fieLd -(MRF) approximation is used in
which, when calculating the probability distribution of
the internal Geld at site 0, all functions of the internal
Geld at sites other than 0 are replaced by their mean

4 M. W. Klein, Phys. Rev. 136, 1156 (1964).' A similar approach to the one taken here was independently
developed by T. A. Kitchens and W. L. Trousdale (to be pub-
.lished) to treat impurities in palladium.

'H. Margenau, Phys. Rev. 48, 755 (1935).


