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We consider the one-dimensional X-¥ model of Lieb, Schulz, and Mattis and study the asymptotic
behavior of each of the three correlation functions {(sofon®)=pn?, where i==x, ¥y, or 2. We study in detail
the influence of X-Y anisotropy by separately studying the correlation functions in both the isotropic and
anisotropic cases at both nonzero and zero temperatures. For nonzero temperature we derive both low-
and high-temperature expansions for all three correlations and show that these correlations go to zero
exponentially as N— . The behavior near T=0 is studied in the isotropic case by considering the N— o
limit with TN fixed, while in the anisotropic case we must hold 72N fixed as N— . In this manner we
obtain the T'=0 result that if the interaction is stronger in the » direction, then py® approaches a constant
exponentially while py¥ approaches zero exponentially as N— «. We finally show that in the isotropic case
at T=0 that py*=py¥—N-12, In all cases, at least the first two terms of the asymptotic series are explicitly

given.

1. INTRODUCTION

HE X-Y model of Lieb, Schulz, and Mattis! is a
system of 9 spin-3 particles fixed on a line with
nearest-neighbor interactions given by the Hamiltonian

H=—) (ofoir+acioi?), (1.1)
where
01 0 —1 1 0
"= ) o= ) 0'12 =
10 i 0 0 —1

are the Pauli matrices. When a=0 this model reduces
to the Ising model, whereas when =1 the interaction
is isotropic in the X-¥ plane and is a special case of the
anisotropic Heisenberg model. One reason that LSM
introduced this model was to study the effect which
the presence or absence of isotropy has on the three
correlation functions

pvi= (oo’on?), (1.2)
where 7 may be x, y, or 2. These authors found that
on® could be expressed as the product of two integrals
and that py® and py? could be expressed as the product
of two large Toeplitz determinants. They furthermore
found several bounds on these correlation functions as
N— which establish a distinct difference between the
isotropic and anisotropic cases. However, except for
pn®at T=0and a=1 the explicit asymptotic behavior of
the correlation functions was not obtained. It is the
purpose of this paper to characterize the differences
between the isotropic and anisotropic cases in as much
detail as possible by explicitly evaluating the asymp-
totic behavior as N—o of all three correlation func-

1 E. Lieb, T. Schultz, and D. Mattis, Ann. Phys. (N.Y.) 16, 407
(1961). This paper will henceforth be referred to as LSM. Our
Hamiltonian differs from these authors in several minor details.
Our « is related to their v by a= (1—v) (14+)! and we obtain
our Hamiltonian by multiplying theirs by —4(14~)~1. We have
chosen to treat the ferromagnetic case and use Pauli matrices
instead of the matrices s=34. For recent related work, see also
Th. Niemeyer, Physica 36, 377 (1967).
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tions both in the ground state and at nonzero tem-
peratures.

The correlation function py* is studied in Sec. 2
where we consider the cases (a) a=1 or #1 for 7>0
fixed and N—ow, (b) a%1 and T2N fixed as N—w,
and (c) a=1and TN fixed as N—oo. It is necessary to
consider these last two cases in order to recover the
ground-state correlation functions from the nonzero-
temperature results.

The correlation function py® is studied in Sec. 3 by
using a theorem of Szego? to asymptotically evaluate
the Toeplitz determinants. This yields the leading term
in the asymptotic expansion of py® When T>0, pn®
goes to zero as N—oo. A high-temperature expansion is
given by (3.15) and a low-temperature expansion for
a<1by (3.35). When T'=0, py® has the limit (1—a?)1/2
as N—ow [Eq. (3.36) .

In Sec. 4, we study px? for <1 by using some recent
results of Wu.? For 7>0 and N—0, we obtain a high-
temperature expansion [Eq. (4.19)] and a low-tem-
perature expansion [Eq. (4.23)7]. We also study the
approach to the ground state by studying the N—oo
limit with 72N held fixed. In the ground state, we find
[Eq. (4.28)7] that py? approaches zero exponentially
as N—oo.

In Sec. 5, we return to px® and study its behavior for
T2N fixed and N— by computing the first correction
term to the result of Sec. 3. We are then able to see that
at T=0, px® approaches its limiting value exponentially
rapidly [Eq. (5.15)]. Finally, we study py®*=py? in the
isotropic case. When 7">0, we obtain a low-temperature
asymptotic expansion [Eq. (6.8)]. In the ground state,
the Toeplitz determinants may be exactly evaluated
and we find that py* approaches zero as N—Y2 when
N—o. In contrast to all other correlation functions of

2 V. Grenander and G. Szego, Toeplitz Forms and Their A pplica-
tions (University of California Press, Berkeley, 1958). See also
E. W. Montroll, R. B. Potts, and J. C. Ward, J. Math. Phys. 4,
308 (1963).

3T, T. Wu, Phys. Rev. 149, 380 (1966). Equations from this

paper will be referred to by a w after the equation or section
number.
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the X-¥ model, this approach of py? to its N—co limit
is not an integrable function of N. This implies that at
T=0 when H,(H,) is near zero that the x(y) com-
ponent of the magnetization behaves as

M~ sgn(H,)K | H, |'. (1.3)

2. CORRELATION gn*

It has been shown by LSM! that if we impose periodic
boundary conditions on (1.1) and take the thermo-
dynamic limit, the correlation function py* for N0
is given by

on?=—GnG-x if NV is odd

=0 if NV is even, (2.1)
where
Go=—(14a) [ Lpt+als,1] if # is odd
=0 if niseven, (2.2)
/2
L,=—(2/) / df [1—4a(14a)~2 sin? 12 cosnd
0
X tanh{B8(1+a)[1—4a(14+a) 2 sin2 ]2}, (2.3)

and 8= (k7). This is conveniently rewritten as
G?n—l(“)
2T
= (=1)(2m) [ dp ene[(1=ac)/ (1= ac¥) i1

0
X tanh{B[ (1—ae®) (1—ae~%) J*},

where the square roots are defined positive at ¢=m. It
is easily seen that

G—@n—1) (@) =Gana(a™),

(2.4)

(2.5)

so that

pen—1*(a) = —Gan—1(a) Gan1(a™?). (2.6)
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173

Unless 3=, the integrand of (2.4) consists of an
infinite number of poles on the real e* axis. We make
this manifest by using the partial-fraction decom-
position of tanhz to write

[(1—ae®)/(1—ae*) ]V
X tanh{B[(1—ae®) (1—ae~®) ]2} =28(1—ae™ )
X 30 [ (1—ae) (1—ae=) + 3 (2m—1)2T  (2.7)

m=1
Define £, to be that solution of
B (1—atm) (1—akw™) +in*m?=0
which obeys | & | <1. Explicitly,
Entt =} {140+ (36 1em) *FL((1—0)*+ (36 mm) )
X ((1+a)*+ (367rm)?) ]}, (2.9)

where for positive # the square root is defined positive.
Evaluating (2.4) by residues we find for n>1 and all
« and B that

G?n_l(a) = ( - 1) 71231

(2.8)

X 22 b (1= 0 om1) (fami ' —ama) ™ (2.10)
m=1
We wish to make explicit the asymptotic behavior of
on® as N—oo for those ranges of 7" and o where we will
also obtain asymptotic expansions of py* and pn¥. We
therefore consider the three special cases mentioned in
the Introduction.

A. T#0 and N> « for All «

When # is sufficiently large and 7540 all terms in
(2.10) are exponentially small compared with the first,
so that ps,—1? is asymptotically given as

Pon—17~— 45—2[ & ( a) 1/2 £ ( ol ) 1/2]2n—1[ & ( o ) —~1/2p1/2 & ( o ) 1/20[—1/2][51 a“l) ~1/2p-1/2— & ( ol ) 1/2a1/2j

When T is large, we may further expand &, as

to find for all &

X[E(e)=&(e) T [a(a™)=a(a ) T (2.10)
En=a(28/7m) [ 1— (28/mm)*(1+402) + (28/mm) (14302 +at) +0(6%) ] (2.12)
(2.13)

prnz®(er) ~— 16771 (28/m) L1~ 5(28/m) (a7 + )2+ 0(8*) 1> [1—(26/m)* (o *+-6+0%) +0(8) ]

If T is small and a5%1 we may use the expansion

£t =dar {14 o2+ (38-1wm) 2 F | 1—a? | [14 (36~ nm)*(1402) (1—a?) ~2—2a2(36~1rm) 4(1— a2) =+ 0(8-9) ]}

to obtain

(2.14)

() ~— B-4r2 o[ 1= 3 (367m)2(1+02) (1—a?) 0 (6~ I~ Tar (o1 —a)

If T is small and =1 we correspondingly find

prnr(1) =—6[1—36r-+ 3 (367m) +0(8) {1~ 1(367m)+0(5 ) 1.

X[1—3"r(1+a?) (3+o?) (1—a?)2+0(6™) ].

(2.15)

(2.16)
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B. a<1, T?N Fixed and N—®

The expansions (2.15) and (2.16) are valid only
when # is so large that only the first term of (2.10)
contributes significantly. This restriction prevents us
from setting B=o in (2.15) and (2.16). When a<1
we may study the approach of ps,—1® to its ground-state
value by defining

g<=(2n—1)p*%(1—a?)™

and considering the #— o limit with ¢« fixed. We may
then recover the ground-state correlation function by
setting g« =0. We first expand Ga,—1(a) by writing

(2.17)

Emn—1/2 — an—-1/2 exp( —_ q<1r2m2)
X[ 1+ 2n—1)=1(1—a?)—4(1-+a2) mA
+O((21—1)"m8)].

This expansion breaks down when gem?~(2n—1)12,
but when #? is this large, £,"1/2 is exponentially smaller
than &7'2 and does not contribute asymptotically.

(2.18)
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Therefore, we use (2.18) in (2.10) to find
Gopa(a)~(—1)"an8V2 (1—a2)~V2g 32(2p—1) 312

X |32+ (n= (1) 4 (1)
<

62 83 0
X (3q< P +e¢ aq—<5)] 3;1 exp[ —g<n?(2m—1)*],

(2.19)

where the derivatives in the bracket all act on the
infinite series. This series may be expressed as an
elliptic 6 function of the third kind.* However, for the
purpose of studying the behavior of Gs.—1 near g<=0
we need only use the Poisson summation formula to
write

o<}

2 exp[—ger®(2m—1)?]

m=1

Gans (@)~ (— 1) ™M (1) =2(2/m) V2(2n—1)32(142 3, (—1)™ exp(—m?/4gc) (1—m?/24<)

—3(2n—1)"(1—a2)~(1+a2) [3+2 2”: (—1)™ exp(—m?/4g<)

We expand Ge,—1(a!) similarly by defining

¢ = (21— 1) 2o — 1) =g

and using

=1(mg<) 2142 i (—1)m exp(—m/dg) ] (2.20)

Therefore,
X[3-+9(m2/2q) —9 (m?/ 292)*+ (m/ 24T H-O((2n—1)-2)}.  (2.21)
(2.22)
(2.23)

(o) i 12 exp(— g [145%(2n— 1)~ (1—a?) " (1++a2) mA-+0((2n—1)~*ms)]

to find
Gona(@™)~(—1)"HardV2 (a~2— 1) V2g 12 (20— 1)~ 2/2

X {1+ (2n—1)"1(1—a?) " (14a?) [g>0/9g>+¢>"9%/ 9571} g exp[—g>m*(2m+1)%]

= (—1)™ami (1 a?) V2(2/m) 12(2n— 1)1 { 142 3 (—1)m exp(—m/dgs) +}(2n— 1)~ (1—a?) ~4(1+o?)

m=1

X[14+2 3 (= 1)m exp(—m2/dgs) (1—4(m2/2g5) + (m%/25) 2]+ O((2n—1)2)}.  (2.24)

m=1

We finally may use (2.21) and (2.24) in (2.6) to find

pen—r*r~— o220 (2n— 1) 2 {[14-2 il (—1)™ exp(—m*/4q<) (1—m?/29<) J[1+4-2 2 (—1)™ exp(—m*/4g>) ]

+3(2n— 1)1 (1—a?) (140 [[1+2 i; (—1)™ exp(—m?/dg<) (1—m?/2g<) ]
X[1+2 Z? (—1)™ exp(—m2/4gs) (1—4(m?/2gs) + (m?/ 2g5)2)]—[1+2 2 (—1)™ exp(—m?/4gs) ]

X[3+2 3 (—1)m exp(—m?/4g0) (B+9(m2/20) —9(m?/290)*+ (m2/20) )] HO((2n— 1))} (2.25)

m=1

4 Bateman Manuscript Project, Higher Transcendental Functions, edited by A. Erdelyi (McGraw-Hill Book Co., New York, 1953),

Vol. 2, p. 355.
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This is the desired answer. We note in particular that as

¢~ goes to zero, (2.25) approaches its ¢-==0 value

exponentially rapidly. This T=0 correlation function is
a1~ — 02121 ( 2n—1)—2

X[1=3(2n—D)=(1—a) " (1+a8) +0((2n—1))].

(2.26)

This asymptotic expansion improves on the previous

result of LSM who show that ps,4* is bounded by a
constant times (2n—1)74

C. =1, TN Fixed, and N—o

When a=1 we may study the approach of ps,—1? to
its ground-state value in a manner similar to the a<1
case. The principal difference is that we must expand in
terms of the parameter

g=1(2n—1)g .

We use the expansion
En(1) 2= 14303 (2n— 1) "2+ 0 ((2n—1)"3m*) ]
(2.28)

(2.27)

in (2.10) to find
pon-1? (1) ~—16¢*n~2(2n—1)"2(et—e~9) 2
X {1=5(2n—1)7[3¢*(er—e9)
X[2(erte79)?— (er—e70)* ] =g’ (er—e9) 73 (er+¢79)
X[6(erHe )25 (e1—e0) 2T H+++}. (2.29)
This is the desired answer. We may now let ¢—0 and

recover the asymptotic expansion of the ground-state
correlation function

pan—1?(1)~—4dn2(2n—1)"2 (2.30)
This derivation is only valid asymptotically. However,

if we set =0 directly in (2.4) we see, as first noted by
LSM, that (2.30) holds as an equality for all .

3. CORRELATION gy°

It has been shown by LSM that if we define the %X
Toeplitz determinant

Gy Gonp1

G

G1 G, G_ony3

R,=| - R S (30

G2n——3 G2n-5 G__l

BARRY M. McCOY
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then for N> 1

pN"(oz) =p2n_1$(0£) =R, 1R, if NV is odd,

= pon®(a) =R,? if Niseven (3.2)

and

pv(a) =py*(a™). (3.3)
In this section, we compute the asymptotic behavior
of py® when N—co and 7' is fixed by a direct application
of Szego’s theorem.? It is convenient to multiply all
odd-numbered rows and columns by —1 and to trans-
pose the resulting determinant. We define

an= ( - 1) "G _on1

= (2m) /0 " 4 v (1—ae#) /(1 aei®) 2

X tanh{B[ (1—ae*) (1—ae~®) |2} (3.4)
to obtain
¢} a1 A—ni1
251 ap A _pi2
-Rn = . (3.5)
Ap-1 Qp2o *°°* Q

We may immediately apply Szego’s theorem to the
determinant (3.5) when a<1. This gives as n—c0

Ru~Gr exp( 32 mbwbtn), (3.6)

m=1

where

G= exp(2r)! / d6 In{[(1—ae—) / (1—aei#) 2

X tanh[B((1—ae®*) (1—ae—*) Y27} (3.7)
and
S° Beimt = In{[(1—ae#) /(1—ae#) 2

X tanh[B((1—ae™) (1—ae@) Y27}, (3.8)

We may obtain a more explicit evaluation of G if we
use the infinite-product representation of the hyper-
bolic tangent to write

[(1—ae ) /(1—ae*) J* tanh {f[ (1—ae*) (1—ae~®) J?} =B(1—ae™*)

X ﬁ [(2877)2(2m) Pakon (6% — fam) (€7 — £om) ] 11 L(28771)2(2m—1) Pakom 17 (6% — Eam1) (€7 —Eam1) ],

m=1

(3.9)

where we have used the definition of £, [Eq. (2.8)]. Using this expansion in the integral of (3.7) we find that

6=8 T1 L8 7(2m)"atn] / T [(2809%(2m—1)tatn- 71

(3.10)
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We may also use (3.9) to obtain an explicit formula for &, by first rewriting (3.8) as

i kme™ = InB-+ i {In[ (287 2(2m— 1) 22 Eom—1 |— In[ (28771)~2(2m) % bom |} + In(1—ae™%)

m=1

+ 21 In[[(1—me) (1= Eame™) (1~ Eam16™) 7 (1~ bame™) '], (3.11)

Since | x| and | a| are less than 1 we may expand
each term of (3.11) in a power series and obtain
for m>1

kn=m"1 i (b —Ea™),

=1

(3.12a)

bem=—m"om+ zi (bam—Eua™) ], (3.12b)
-1

We may then combine (3.6) with (3.10) and (3.12)
to obtain as n—o

R,~G"P, (3.13)
where
P=T1 [(1—atms) (1—aten) ]
m=]1
X f;[l ﬁ1 [(1— Eombamr—1) 2(1— Egmboms)
X (1—Egmabom—) 1] (3.14)

When T is large, it is trivial to use (2.12) to expand
the infinite products and find

pvo~{BL1—3(1+a?)B*+0(8*) J}V[1—3a+0(8%) 1.
(3.15)

This is valid for O<«<1 but is useful only when «8<1.

In the low-temperature case, this expansion breaks
down. We now must asymptotically expand G and P by
first rewriting them in terms of contour integrals. This
procedure is somewhat different in the isotropic and
anisotropic cases. We treat the anisotropic case here
and return to the isotropic case in Sec. 6.

A. Expansion of G

To convert the logarithm of the infinite product
(3.10) into a contour integral, we note that because
the products in the numerator and denominator con-
verge separately we may write

InG=Ing+ 3 (—1)m In[(28x1)2(2m) ~2eu].

m=1

(3.16)

We then convert this series into a contour integral
by using the fact that cscwm has poles with residue
(—1)™/x at all integral values of 7. Therefore,

InG= Ing+ (23)1 f dm cscam W[ (287 mtatn1],
(o]
(3.17)

where the contour C encircles all poles at positive values
of m once in the counterclockwise direction. We now
deform the contour of integration to the path Rem=0
where 0<6<1. The integrand has no singularities
between these two paths and the contribution from the
two arcs at infinity clearly vanishes. Therefore,

ioo+0
InG = Ing— (2i)~1 f dm cscrm{In(28r1)?
—ic0+4

+ lnm2+4 Ing[14+a2+ (387 'rm)?
+L((1=a)?+ (3871rm)?) ((14-0) 4 (56~ wm) 2) ]H2 ]}
(3.18)
The residue of the last term at m=0 is zero. Now
oot
(20) f dm cscrm nm=—3n(x/2), (3.19)
—icoH

so the first three terms of (3.18) cancel. Rewrite the
remaining term by letting m =1y and let 6—0 (keeping
y1in the lower half-plane whenever there are singularities
on the real y axis) to obtain

InG=— (2§)-1 f " dy cschry Ind {14a?— (36-1my)?

+ [(1—a)?— (387 my) D[ (1+4a) >~ (36 1wy) 2] 12},
(3.20)

The square root is defined positive when y=0. Since the
real part of the logarithm is a symmetric function of y,
it gives no contribution and we readily find

2(1+a)

InG= In tanh[B(14a) ]—Br— f di cschig

2(1—a)
X arctan{[ (32— (1—a)2) ((1+a)2— 1) 12
X[1+a2—312T1. (3.21)

This reduction is exact. The second term of (3.21) is
negative, so if we ignore it we obtain the upper bound
on py® of

ov*< constX tanh¥[B(1+4a) ],

which was obtained by LSM.
In the low-temperature regime the first term of (3.21)
is exponentially smaller than the second term and must

(3.22)
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be discarded. To obtain an asymptotic evaluation of
the integral as f— we note that if a<1l we may
replace cschB? by 2¢~% and if a0 we may replace the
upper limit by . Make the change of variable

st=t—(1—a) (3.23)
and expand

arctan{s[ Q(1—a)+s?) (da—2(1—a)s—s*) 2
X[2a—252(1—a) — 1) = o A0, (3.24)
where the first few terms are i
Af=[2(a—1) 1",
A0 =V20732(1— )"V 3a+ (4—3a) (1—a)2].
(3.25)

Then if we integrate term by term we find the desired
expansion

G~ exp{— (2mB)~"* exp[—28(1—a) ]

X 303500+ (2mA-1) (48) 46}, (3.26)

B. Expansion of P

We convert P into a contour integral in a manner
identical to the foregoing. The double products in P are
converted into double integrals. The contributions to
these integrals of the poles at m=0 and m’'=0 are
single integrals which cancel the single integral arising

BARRY M. McCOY
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from the single product. Therefore, we obtain
toot-0 ioo+0

P=(1—a?)"exp G:/ dm
—icoH

dm' cscrm cscrm’
—3c04+4

X 01 ) (1) (1) (1) 1])
3.27)

Only the real part of the logarithm contributes to the
integral and we find
2 1+a)

P=(1—a?) " exp (1;-“262 f di
2

(1—a)
2(14-a)
X dt’ cschBt cschBt' P(t, ¢/ )) , (3.28)

2(1~a)

where

o H{BOBE)[1—A) AW T
P ¢ =In <1—{B(t)B(t')[l—A<t>A<t’>]—2}”2> ’

(3.29)
A() =}(aHa—1a7P), (3.30a)

and
B(t) =1o (48— (1-2)"J[(1+e)*=if]. (3.30b)

We obtain a low-temperature expansion by using the
substitution (3.23) and expanding

P(s,s') = In[(s+s) (s—5') 1P
155 353 APt (3.31)
m=0 m/=0

We then find for 0<a<1

P~(1—a?) 4 exp (7r'243,32 exp[—48(1—a) ] /m ds /m ds’ exp[—2B(s?+5%)]
) 0

Xss'{In[ (s+s') (s—s) 1 P+ss’ i 5.: Am,m:*’szms’”‘}) . (3.32)

m=0 m/=0

The first integral may be evaluated by transforming to polar coordinates as

B /‘; “ ds /0 “ds’ exp[—28(s*+s2) Jss’ In[(s+5") (s— )1 2= :11

Therefore, we obtain asymptotically at low temperatures

/2
df cosf sinf In | (cosb+ sind)/(cosd— sind) | =15 .

0
(3.33)

P(1—a2) ¥ explexp[—48(1—a) T[4+ (28) 3o S ApmP(48)—m3:5+ + - (2m4-1) X3:5++ - (2m/'+1) T},

m=0 m/=0

(3.34)

C. Asymptotic Behavior of gy®
We now may combine the expansions of the preceding two subsections to obtain the explicit asymptotic be-

havior of py® as N—, 0<a<1, and T is small:

py~(1—a?) 12 exp{— N[ (276)*/* exp(—28(1—a)) j::o 3:5++ (2m+1) (48) ™ A4n]}

X exp{r—t exp[—48(1— ) T8-+HB1 3o 3> ApmP (48) 3.5+ + - (2m+1)35 -+ (2m'+1) ). (3.35)
m=0 m/=0
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In this asymptotic expansion N and B are independently
large. We may therefore keep NV large enough so that
this asymptotic expansion is valid and take the 7—0
limit to find that in the ground state®

lim py*=(1—a?)2,
N>

(3.36)

4. CORRELATION gp¥ FOR «<1

When 0<a<1 the asymptotic expansion of pn¥ is
more complicated than the expansion of py® carried
out in the previous section. We need to evaluate
R, (a™) for <1, and it is not possible to do this merely
by use of Szego’s theorem. This difficulty is the same
one encountered by Wu? in his analysis of the Toeplitz
determinants which arise in the correlation of two spins
on the same row of the two-dimensional Ising model.
Wu’s very clear analysis is developed in sufficient
generality that we need not repeat it here but will
simply quote the needed results and refer the reader to
his paper for proofs.

The evaluation of R,(a!) for <1 parallels Wu’s
evaluation of Sy for 7> T, (Sec. 2w). We first define

ci=aj1=—(2r)™! /2" dp e (1—ae) /(1—ae#) JH2
0

X tanh{B[ (1—a ) (1—ale~#) 12}, (4.1)

where the square roots are positive at e =—1. Call the
nXn determinant formed from the ¢’s

Co e Coppl

< . (4.2)

=
~
)
L
N
I

Cn-1 °*°** Co

We extract a (—1) from each element of (4.2) and
apply Szego’s theorem to (—1)"R,. The only difference
from the expansion of R, of the last section is that 8 is
replaced by Ba~l, so if we explicitly indicate the de-
pendence on S,

lim (—1)"R,(a, B) = lim Ry(e, Ba™). (4.3)
We define x», by »
Clm®%m =010, (4.4)
m=0

1—at
1—af?

The remaining product in (4.13) may be rewritten as

e — (2ri) 9[ dt g (

g [(1— o) / (1= Eam) TP= (1— )~ exp (-— 26r- /

where

E() =da{1+at— 12— [ (= 1)*—12) (a4 1)*— 1) ]2,
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so that _
: Ry=(—1)"R11%n. (4.5)
Wu shows that if
c®= lZ ot (4.6)

is such that InC(¢) is continuous and periodic on the
unit circle, and if we may write for | £| =1

[CEHT*=P(HQE (47)

such that P(£) and Q(£) are both analytic for | £| <1
and continuous and nonzero for | £ | <1, then

= (2i) 1 f dEE-P(ENQ(E)™,  (48)

where the integration is around the unit circle. Here
the symbol == means that if we fix <1 both sides of the
equation have the same asymptotic expansion as
n—oo. For our case C(£) is given by

C() =—G(1—ae) TT (1—EEom) (1— Ham)

m==1

X (1= %m) (1—Eom)"L (49)

Here £, and G are obtained from ¢ of (2.9) and G of
(3.10) by the replacement f—Bat. We may there-
fore choose

P(8) =—G1(1—af)~ fI (1= ams) (1= EBom) 1

(4.10)
and

0 = Ij (1= Hany) 1= g (410)

to obtain

e — (2ri)—1G1 7( dt £1(1— 1)1

X fIl[(l_E_lghn—l) (1—=E%m)™
X (1""£§2m) (1'—{5.2"»—1)_1]. (4.12)

This may be rewritten, using the infinite-product
representation of the hyperbolic tangent (3.9), as

2 o
) coth{fa [ (1—af) (1—at" 1)]1/2}g[(l—égzm)(l—ﬁgm—l)_ﬂz- (4.13)

2a"L41)

dt cschBt Im In[ (1— ££(¢) )(1—0:5)"1]) , (4.14)

(@™ 1-1)

(4.15)

5 This limit is closely related to the end-to-end correlation function in a chain with free boundary conditions given in (2.79) of LSM.
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st = (20 f eI (1=ad) (1—a ) T2 coth | B[ (1—a8) (1-at) 17

X exp (—— 21 /
2

20a 141y

(a71-1)

dt cschpBt Im In[ (1—££(%) )(1—a£)‘1]>] . (4.16)

It remains to obtain an asymptotic expansion of (4.16) for large #. To do this, we use the partial-fraction decom-
position of the hyperbolic cotangent and note that the only singularities of the integrand inside the unit circle

are simple poles at £= &, and o to write
2(u-l+l

2= —f o (01— )" exp (—— 20871 /
2

(a™1-1)

X exp (— 271 /

2(a~1-1)

2(a~ 1)

) ©
dt cschft Im In[ (1—of(#) )(1—a?) “1]) —B712 D B (B — ) !
=1

dt cschBt Im In[ (1— £xE(2) )(1—&;,0:)‘1]) . (417)

When 7'>0 is fixed and #—o the second term in (4.17) is exponentially smaller than the first and does not con-

tribute to an asymptotic expansion. We then obtain

PNU~GN 2 +23-2( f[ [(1—afom)/ (1—afoma) ] ﬁ ﬁ [(1—Zomfom—1) (1—Eombom) (1= Eomrfomr—1) "L]}2.  (4.18)

m=1 m=1 m/=1

When T is large, we expand (4.18) as

pv~{B[1— (a7 *+1) 36*+0(8%) }¥[1—3a~%6*+0(8%) 1.

(4.19)

This is identical to the corresponding high-temperature expansion of px* [Eq. (3.15) ] with the replacement a«a,

When T is small, we asymptotically expand (4.14) as

o<}

m=1

where 4, are defined by

II (1—aken)/ (1~ afmr) = (1—a?) 712 exp{— (2mBa ") ™/2 exp[— 28(a'—1) ] ;;20 3:5+++ (2m+1) (4a7 1) ™ An},

(4.20)

zn: ApWstmH= arctan{s[ 2(1—a)+s2)(da—2(1—a) s?—s*) V[2(1—a) +2s(1—a) s>+s11}.  (4.21)

The first two 4,® are

A0 =[2a/(1—a) T,
Ay = —2VIa 12 (1— ) ~32(3+2a—90?).

Thus for T small

(4.22a)
(4.22b)

oy~ 418-2(1— &) 92 exp{ — (N+2) [ (2ra~16) 250 3" 3.5. .« (2m+1) (4a6)"4,T}
m=0

X exp{—[(2a/mB)"? exp(—28(a'—1)) 2 3-5¢++ (2m+1) (4o 18) "4V}, (4.23)

This is to be compared with (2.15) and (3.35).

In order for this last expansion to be useful, we must
have 8(1—a)>>1. However, if for large but fixed », 8
becomes too large, the approximation of neglecting the
infinite series in (4.17) no longer gives the correct
asymptotic behavior. We study this regime where »
and (8 are comparable as we did in Sec. 2 by defining

(4.24)

where [ ] means the greatest integer contained in the

brackets, and letting # and 8—« with g, held fixed. In
this limit, all the integrals in the expression for

lim (—1)"R,

n—->0

and in (4.17) are exponentially small and do not con-
tribute to the asymptotic expansion. The expression
for R,(a1) then simplifies to

R,(a)~(1—a?) M3 ar (ol —a)t
+2 3 B (B~ Ew) ). (4.25)
k=1
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We follow the procedure of Sec. 2 and obtain

Ry(at)~(1—a?)~M4(qy/mn) o

d 02
X[ 1rirta) (-0 (s +i0 )]
v v

X[g+2971 3 emton], (4.26)
m=1
From this we use (3.2) to obtain the desired answer:

pi~2(1—a?) = IN-1aV ([142 3 exp(—m?/4g,) T

m=1

— AN (1e?) (1—a) 142 3 exp(—m/dg,)]

X[ 142 2 exp(—m?/4g,) (1+2(m?/2q,) — (m?/24,))]
+O(N-%)}. (4.27)

It should be noted that while the two terms explicitly
shown here have the same dependence on N regardless
of whether NV is odd or even the O(N—?) term will
depend on the evenness or oddness of N. Finally, we
may let g,—0 and we obtain the 7'=0 correlation

on¥~2(1—a2)V2g=1N=1gN

X[1—=3N"(140?) (1—a®)'+O(N-2)]. (4.28)

5. CORRELATION gy®* NEAR T=0

In Sec. 3 we were able to recover the N—oo limit of
pn® at T=0 from the nonzero-temperature result but
were unable to recover the approach of py® to this
limit. We may recover this second term in py® at T=0
from the nonzero-temperature case by using the methods
of Sec. 3 of Wu’s paper to evaluate the second term in
the expansion of py* when N and f—» and

qz= %”3_2(1-—042)—1
—1[3(N+1) 162 (1—a)1=a"2g,

is held fixed.
To compute the first correction to Szego’s theorem,

(5.1)
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it is convenient to write R, as

o d cee d-n+1
a o cer Gpys

Rn(a) =G . . coe . , (5_2)
Gp1 Qug **+ G

where G is given by (3.10) and
2 o)
n=G"Y,=(2m)7 | dg ein¢(1—ae=¢) ]| [(e%—tam)
0 m=1

X (€% —bom) (64— Eam) (€ —Eam1) 1], (5.3)
We already know from (3.36) that if N—o and g—o

in any fashion, then R,(a)—(1—a2)14 so we find from
Wu’s Eq. (3.4w) that

Ru(a) = (1—a2) 4 TT #o(m),

m=n

(54)

where x(m) is the zeroth component of the m+1
component vector defined by

(5.5)

i p—j2%; = Opo.
=0
Wu shows that (3.13w)
ro(m) 1= (2i) § de Q(6) P(§)
X § & PE)OE-)1E—07, (50)

where the path of the £ integration is indented outward
at{=¢and

3 dnim=P(5)-Q(EN) (5.7)

m=—c0

for | £| =1. The functions P(£) and Q(f) have the
same analyticity properties required in Sec. 4 and for
this application are specifically given as

Q) =(1—ad)~ IL [(1—tm-s) (1~ tm) 7] (5.8)

and
P(g)= I=11 L(1—toma) (1— )], (5.9)

We use (5.6), (5.8), and (5.9) in (5.4) and expand the
infinite product to obtain asymptotically

Rt (1=a) {14 35 no(m) =10} = (1=a®) 4 (14 (202 § e r(1—ag )

m=n

X ]_1 L= &%) (1= £ m) (1~ Em) (1— Em1) ] f dg’ (=87 "(1—at™)

X T 0= ¥t (1= ¥t 11— 200 (1—5'-152%1)-1]) . (5.10)
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We may use the infinite-product representation of coth and (4.14) to rewrite this as

Ro (1)t { 1+(2) G § dE PL(1—ab) (1ot ™) T coth (A (1—a8) (1—aE) 1%

2(1+a)
xexp{=29et [ dtcscht Im L (1-0) (1 —a) 1]} f £ (¢ =9 1L(1—at) (1=at 1 ]

(I—a)

2(1Ha)

X coth{B[ (1—at’) (1—af1) ]2} exp {——231:'“‘/2 dt cschBt Im ln[(l—é"lg(l))(l—af’”l)—‘]}} . (5.11)

(1—a)

In the N, B— o limit, the integrals and the factor G® in (5.11) are asymptotically equal to 1. We then use the
partial-fraction decomposition of coth to find

Ro= (1—a®) M[1428%02 3" Eon™ (gt )

X 21 Eamr™ 2 (Eamr ™ — Eom) "2 (Eamr— EomY) 1 (1— o) (1— ko) ] (5.12)

We now expand this expression for fixed ¢, using the methods of Secs. 2 and 4 and use the result in (3.2) to obtain
the desired answers:

d pen~ (1—02) 2 {144 (2n) “a? (a1~ a) a7 [F1— (14-a?) (1—a®) 71 (2n) 7 'Fo+0((20)72) ]} (5.13a)
an
pona~(1—a2) 12{142 (2n—1) 22 (@ 1— ) “2p1
X [(at =Y Fyt (2n—1)=2(a'— &) Fi— (a+a )2 (a-1—a)Fy ]+0((2n—1)2) |}, (5.13b)
where
Fi=[1+2 2 exp(—m2/4q,;) [1+2 }: exp(—m?/4q,) (1—m?/2q,) ] (5.14a)
and

Fy=3[142 2 exp(—m?/4¢:) {5+ 21 exp(—m?/4q,) [9—3(m?/2q.) — T(m?/242) >+ (m?/245)*]}

—3[1+42 5'_'; exp(—m?/4q.) (1—m?/2¢) | — 5+ f: exp(—m?/4gs) [— 5+2(m?/2q.) + (m¥/20.)7]}.  (5.14b)

These results should be contrasted with the comparable results for py? given by (4.2) and for px* given by (2.25)

when <1, and by (2.29) when a=1.
We finally are able to obtain asymptotic behavior of the ground-state correlation function by setting g,=0.

We find
pen~(1—a?) V2{1+4+4(2n) o (a1~ a) a7 [ 1—F(14a?) (1—a?) 7 (20) 7+ 0((21) ) ]} (5.15a)
and
pona®~(1—a2)12{142(2n— 1) 22 (01— ) 21!
X [et+a 4 (2n—1)"[2(a'—a) —%(at+a™)2 (a1 —a) 1 +0((2n—1)"2) ]}.  (5.15b)

6. CORRELATIONS g»® AND gn® FOR a=1 asymptotic behavior in the isotropic case when T is
fixed and N—c. When 7'>0 this may be done by

The foregoing low-temperature asymptotic expan- applying Szego’s theorem as we did in Sec. 3. In
sions of py® and py? have been restricted to the aniso- particular, we obtain a valid expression for R,(1) if we
tropic case. We now wish to study the corresponding let a—1 in (3.13). Furthermore, expression (3.21) for
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G is still valid if we let a—1. However, the expression
for P in terms of an integral given in Sec. 3 is not
particularly suitable for taking the @—1 limit. Instead,
we choose to set @=1 at the outset and obtain

P=p"1exp {(2,8/7r)2 / ” dt csch4t / ” dt’ csch4pt’

X In | [(1— #3141/ (1 £) V2] (1£) l} , (6.)

where the square roots are defined positive at £ and =0
and the contours of integration are in the lower half-
planes. When T is small, we expand the integrand of
(6.1) about ¢, #'=0 as

In | [e(1—22) 141/ (1—2) ] (e44) 7 |

=1 3 B L wPemi- (6.2)

me=1 m=]

-

where
10,0P=1 and 11,0P=Io,1p=%.

(6.3)

Then, if we integrate term by term we obtain the
asymptotic expansion

Pt exp(— 35 35 (= 1) (/) D

X (8mm’)=1(22m—1) (22" — 1) BouBowr ImmF},  (6.4)

where we have used an integral representation of
Bernoulli’s numbers® Bj,.

We obtain a useful low-temperature expansion for
G(1) by first defining I,,¢ by

arctan{2e[ 1— a2 /[ 1— 2024} = > 421,98, (6.5)
m=1

where the first two I,,¢ are given by

16=2, [o=1. (6.6)
Using this in (3.21) we find
G(1)~ exp{— 3 (m/48)2m=1(—1)mH(2m)—
m=1
X (22m—1) BowI %}, (6.7)

6 Reference 4, Vol. 1, p. 39.
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We therefore obtain, when N—o with 7' small and
fixed,

ov=(1) =pw!( 1)~ exp{— N 3. (— 1)t

m=1

X (/48)*1(2m) 71 (2*—1) BenIn ]}

X exp{— i i (—1)mtn! (7 /48) 2mtm!=D) (4gppp” )1

m=1 m/=1

X (20m—1) (22" —1) BonBomImm®} . (6.8)

This isotropic low-temperature asymptotic expansion is
to be contrasted with the corresponding anisotropic
expansion [ Egs. (3.35) and (4.23)].

We finally obtain the ground-state correlation
functions by noting that at T'=0 the determinant
R,(1) is the determinant exactly evaluated in Sec. 4 of
Wu. Using the asymptotic expansion given there
we find as N—

pn®(1) = py¥ (1) ~4l/222/8 4~6 =112
X[1= (= 1)¥N-24--.], (6.9)

where 4 =1.2824. - -is Glaisher’s constant. This is to be
compared with the previous result of LSM which said
that py®(1) was bounded by a constant times N—0:4053,
In marked contrast to all other correlation functions
of the X-Y model, this correlation approaches its
N—>co limit in a nonintegrable fashion. It has recently
been shown by several authors” that if at some tem-

perature
oyt — N—@-2n,
N->o0

where d is the dimensionality of the system and <2
then, at that temperature, when H,—0 the magnetiza-
tion M ; of the system is given by

sgn(H;) K | H; |1?, (6.10)
where K is some constant and
=—142d/(d—2+1). (6.11)
Therefore, in the X-¥ model at 7'=0 as H—0
M~ sgn(H)K | H, 15 (6.12)
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