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We consider the one-dimensional I-Y model of Lieb, Schulz, and Mattis and study the asymptotic
behavior of each of the three correlation functions (cro'a&')=pN', where i=a, y, or s. We study in detail
the influence of X-Y anisotropy by separately studying the correlation functions in both the isotropic and
anisotropic cases at both nonzero and zero temperatures. For nonzero temperature we derive both low-

and high-temperature expansions for all three correlations and show that these correlations go to zero
exponentially as N—+ ~. The behavior near T=O is studied in the isotropic case by considering the N—+ ~
limit with TN fixed, while in the anisotropic case we must hold T'N fixed as N—+ ~. In this manner we
obtain the T=0 result that if the interaction is stronger in the x direction, then pN approaches a constant
exponentially while p~~ approaches zero exponentially as N-+ ~. We finally show that in the isotropic case
at T=O that p&= p~~N '".In all cases, at least the first two terms of the asymptotic series are explicitly
given,

l. INTRODUCTION

(o 1)

41 o) o)
t'1 O )

are the Pauli matrices. When 0.=0 this model reduces
to the Ising model, whereas when n=1 the interaction
is isotropic in the X-F plane and is a special case of the
anisotropic Heisenberg model. One reason that LSM
introduced this model was to study the effect which
the presence or absence of isotropy has on the three
correlation functions

Px (00 0N )y (1.2)

where i may be x, y, or s. These authors found that
p~' could be expressed as the product of two integrals
and that p~* and p~& could be expressed as the product
of two large Toeplitz determinants. They furthermore
found several bounds on these correlation functions as
E—+~ which establish a distinct difference between the
isotropic and anisotropic cases. However, except for
p~' at T=0 and 0.= 1 the explicit asymptotic behavior of
the correlation functions was not obtained. It is the
purpose of this paper to characterize the differences
between the isotropic and anisotropic cases in as much
detail as possible by explicitly evaluating the asymp-
totic behavior as X—+~ of all three correlation func-

' E. I ieb, T. Schultz, and D. Mattis, Ann. Phys. (N.Y.) 16, 407
(1961).This paper will henceforth be referred to as LSM. Our
Hamiltonian diGers from these authors in several minor details.
Our a is related to their y by a= (1—y) (1+y) ' and we obtain
our Hamiltonian by multiplying theirs by —4(1+y) '. We have
chosen to treat the ferromagnetic case and use Pauli matrices
instead of the matrices s=-,'d. For recent related work, see also
Th. Niemeyer, Physica 36, 377 (1967).

~ 4HE X-I" model of Lieb, Schulz, and Mattis' is a..system of K spin-~ particles fixed on a line with
nearest-neighbor interactions given by the Hamiltonian

g(~i*~~+i*+—«f~i+i") ~

where

tions both in the ground state and at nonzero tem-
peratures.

The correlation function pN' is studied in Sec. 2
where we consider the cases (a) ix=1 or A1 for T)0
fixed and X—&~, (b) a/1 and T'1V fixed as X~~,
and (c) n=1 and TX fixed as S—+~. It is necessary to
consider these last two cases in order to recover the
ground-state correlation functions from the nonzero-
temperature results.

The correlation function p~* is studied in Sec. 3 by
using a theorem of Szego' to asymptotically evaluate
the Toeplitz determinants. This yields the leading term
in the asymptotic expansion of p&*. When T&0, p&

goes to zero as E—+~. A high-temperature expansion is
given by (3.15) and a low-temperature exps, nsion for
n(1 by (3.35) . When T=0, p~ has the limit (1—a') '~'

as 1V—+~ [Eq. (3.36)].
In Sec. 4, we study p&~ for a&1 by using some recent

results of Wu. ' For T)0 and S—&~, we obtain a high-
temperature exps, nsion [Eq. (4.19)g and a low-tem-
perature expansion [Eq. (4.23)]. We also study the
approach to the ground state by studying the 3f—+~
limit with T'X held fixed. In the ground state, we find

[Eq. (4.28)7 that p&& approaches zero exponentially
as X~~.

In Sec. 5, we return to p~ and study its behavior for
T S fixed and X~~ by computing the first correction
term to the result of Sec. 3. We are then able to see that
at T=0, p~ approaches its limiting value exponentially
rapidly [Eq. (5.15)j.Finally, we study p&*——p&" in the
isotropic case. When T&0, we obtain a low-temperature
asymptotic expansion [Eq. (6.8) $. In the ground state,
the Toeplitz determinants may be exactly evaluated
and we find that p~ approaches zero as E 'I' when
E—+~. In contrast to all other correlation functions of

' V. Grenander and G. Szego, Toep/itr. Forms and Their 3ppbca-
tions (University of California Press, Berkeley, 1958). See also
E. W. Montroll, R. B. Potts, and J. C. Ward, J. Math. Phys. 4,
308 (1963).

3T. T. Wu, Phys. Rev. 149, 380 (1966). Equations from this
paper will be referred to by a w after the equation or section
number.
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the I-F model, this approach of p~& to its E~~ limit
is not an integrable function of E. This implies that at
T=O when H, (H„) is near zero that the x(y) com-
ponent of the magnetization behaves as

cV~ sgn(B, )E } H* I'/' (1 3)

2. CORRELATION yN'

It has been shown by I.SM' that if we impose periodic
boundary conditions on (1.1) and take the thermo-
dynamic limit, the correlation function pz' for E/0
is given by

Unless p=44, the integrand of (2.4) consists of an
infinite number of poles on the real e'& axis. %'e make
this manifest by using the partial-fraction decom-
position of tanh2' to write

L(1 «—")/(1 «—")7"'

X tanhfPL(1 —«'&) (1—« '&)]'"}=2P(1—« '4)

X g p2(1 —«'&) (1 «—'&)+-' lr(22n—2 1)']—' (2.7)
en~i

Define f to be that solution of

pN GN6-N if E is odd

if S is even,

P'(1—n~ ) (1—n~ ')+-'~2m2=0

which obeys t $ ~

& 1.Explicitly,

(2 g)

where

G„=—(1+n)-'}1~1+nL„1] if n is odd

=0 if n is even, (2.2)

= (—1)n(22r) 1 @e/nef (1—« /4')/(j. —«'&) 7'/'

X tanh fP f (1—«'4') (1—« '4) ]'"} (2.4)

where the square roots are defined positive at p=m. It
is easily seen that

x/2I,=—(2/2r) d8 $1 4n(—1+n) ' sin'07 "' cosn8
0

X tanh fP(1+n) L1—442(1+42) 2 sin'e]1/2}, (2.3)

and P = (kT) '. This is conveniently rewritten as

G2.-1(42)

( +'=-'/2 —'
f 1+n'+ (-'P-'2rn2) 'WL((1—n) '+ (-'P '2r2n) ')

X ((1+a)'+ (-'P 'lrln) ')7'"} (2.9)

where for positive m the square root is defined positive.
Evaluating (2.4) by residues we find for n& 1 and all
nandP that

G2 1(n) =(—1)"+'2P-'

X Q (2m-1 ( 1 42 @2m—1) ((2m-1 52m —1) ' (2 ~ 10)
Srt 1

We wish to make explicit the asymptotic behavior of
p~' as E—+~ for those ranges of T and n where we will

also obtain asymptotic expansions of p~* and p~&. We
therefore consider the three special cases mentioned in
the Introduction.

A. T&0 and N& ~ for A11 0.

so that
G—(2n—1) (/2) =G2n-1(42 ) )

P2 —1 (42) G2 1(42) G2 1(42 ) ~

When e is sufficiently large and T&0 all terms in

(2.10) are exponentially small compared with the first,
(2.6) so that p» 1' is asymptotically given as

z~ 4p-2p (+) 1/2g (~—1) 1/272n —lp (&)
—1/2~1/2 ( (&)1/2~—1/2]p (~ 1) 1/242 1/2 $ (~ 1) 1/242 /27

XLb( ) '—h( )] '[4( ') '—6( ')7 ' (211)
When T is large, we may further expand $ as

Pm =42(2P/lrn2) 2/1 (2P/ n—2)2r'(1+n2)+ (2P/2rn2) (14+3 +422n4)+Q(P') ] (2.12)
to find for all n

p2 lz(42) ~ 162r lf (2p/2r)2f 1 21 (2p/2r) 2(42 1+42)2+Q(p4) 7} n 1L1 12(2p/2r)2(42 2+6+422) +Q(p4) 7 (2 13)

If T is small and 0.&1 we may use the expansion

+1—1~—1
f 1+~2+(lp—l~nl) 2~

~
1 ~2

~ D+ (lp—lgn2) 2(1+~2) (1 ~2) —2 24„2(lp—l~n2) 4(1 ~2)—4+Q(p-4)]}

(2.14)
to obtain

z(&)~ P-4&2f&f 1 1(LP—1&)2(1+&2)(1 &2)
—I+Q(P-4)]}2n—1&—l(~—1 &)

—2

X}1—lp-22r2(1+422) (3+422) (1—422) 2+Q(p ') 7. (2.15)
If T is small and a = 1 we correspondingly find

/22~in(1) =—p 2t 1—lp-12r+1 (lp—llr) 2+g (p
—

2) ]2n—
if 1—14(1p-12r) 2+g (p

—4) ]. (2.16)
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B. 0.&1, T'N Fixed and N~

The expansions (2.15) and (2.16) are vahd only
when n is so large that only the first term of (2.10)
contributes significantly. This restriction prevents us
from setting P=DD in (2.15) and (2.16). When a(1
we may study the approach of P2„1' to its ground-state
value by defining

Therefore, we use (2.18) in (2.10) to find

G2 i(a) (—1)"a"8v2 (1—u') "'q&"'(2n—1) "'
8

X +(2n —1) '(1—a') '(1+a')
Bg&

lr' 8' 8'
X

~ 3q&, +q&', Q exp[—q&s'(2m —1)'7,
~q& ~q& m=i

q&
——(2n —1)P 'i'i(1 —u') ' (2.17) (2.19)

and considering the e—+~ limit with q( fixed. We may
then recover the ground-state correlation function by
setting q& ——0. We first expand Gq i(u) by writing

$
n i/2=an—i/2 exp( —

q simm)'

X[1+s4q '(2n —1) '(1—u') '(1+u') m'

+0((2n—1) 'm')g. (2.18)

This expansion breaks down when q&m'~(2n —1)'/',
but when mm is this large, $

" '/' is exponentially smaller
than ti" '" and does not contribute asymptotically.

where the derivatives in the bracket all act on the
infinite series. This series may be expressed as an
elliptic 0 function of the third kind. However, for the
purpose of studying the behavior of G2„1 near g&

——0
we need only use the Poisson summation formula to
write

Q exp[—q&s'(2m —1)'7
m 1

=-'(~q ) "'[1+2P (—1)~ exp( —m'/4q&) 7. (2.20)
m-1

Therefore,

Gi~ i(u) ~(—1)"+'a"(1—u') '/'(2/s) "'(2n 1) '—/'11+2 g (—1)~ exp( —m'/4q&) (1—m2/2q&)
m~1

(2.22)
and using

—-'(2n —1) '(1—u') '(1+u') [3+2+ (—1)"exp( —m'/4q&)
m 1

X [3+9(m'/2q&) —9(m'/2q&) '+ (m'/2q&) '7 ]+0 ((2n—1) ')}. (2.21)

We expand G&„ i(a ') similarly by defining

q&
——(2n —1)P 'xi(u ' 1)—'=—u'q&

P„(a ')" "'~a" "' exp( —q&m') [1+q&'(2n—1) '(1—u') '(1+a2) m'+0((2n —1) 'm')7
to Qnd

G (u-1)~( 1)m+lum4v2(u
—2 1)i/Rq I/2(2n 1)—i/2

(2.23)

X I 1+(2n —1) '(1—a') '(1+u') [q&8/Bq&+q&'8'/Bq&'7} g exp[—q&s'(2m+1) '7

= (—1)&+iu& (1—a ) / (2/s) (2n —1) / {1+2g (—1)~ exp( —mu/4q&)+~g(2n 1)-i(1 a2)-l(1+a2)
m~1

X[1+2 g (—1)~ exp( m /4q&) —(1—4(m /2q&) + (m /2q&) )7+0((2n—1) )}~ (2 24)
tn=l

We finally may use (2.21) and (2.24) in (2.6) to find

pm„ i'~ —a'" '2x '(2n —1) 'I[1+2 g (—1)~ exp( —m'/4q&) (1—m'/2q&) 7[1+2g (—1)~ exp( —m'/4q&) 7
m=1 m=1

+i~(2n —1) '(1—u') '(1+u') 1[1+2g (—1)~ exp( —m'/4q&) (1 mm/2q&)—7
m~1

X[1+2g (—1)~ exp( —m'/4q&) (1—4(m'/2q&)+ (m'/2q&)')7 —[1+2g (—1) exp( —m'/4q&) 7
m~1 m=1

X[3+2g (—1) exp( —m'/4q&) (3+9(m'/2q&) —9(m'/2q&)'+(m'/2q&)'H]+0((2n —1) )}. (2.25)
m=1

Bateman Manuscript Project, Higher Transcendental Functions, edited by A. Erdelyi {McGraw-Hill Book Co. , New York, 1953),
Vol. 2, p. 355.
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This is the desired answer. We note in particular that as
q) goes to zero, (2.25) approaches its q) ——0 value
expoiieiitially rapidly. This 2'=0 correlation function is

p2 i*~—n'"—'2i{.—'(2' —1) '
Xt1—-,'(2ii —1) '(1—n') '(1+n')+0((2ii —1)-')$.

(2.26)

This asymptotic expansion improves on the previous
result of LSM who show that p2„1' is bounded by a
constant times (2ii—1)

C. 0;= 1, TN Fixed, and X—+~

When 0.=1 we may study the approach of p2 1' to
its ground-state value in a manner similar to the a&I
case. The principal difference is that we must expand in
terms of the parameter

q=-,'(2e —1)P 'ir. (2.27)

We use the expansion

$ (1)" '"=e '"[1+6q'(2ii—1) 'm'+0((2n —1) 'm')j

(2.28)
in (2.10) to find

p2~—i (1)~—16q'ir '(2m —1) '(ei e'i)—
&(I1—-', (2e—1) '[3q'(e& —e &) '

&& f 2(e'+e ')' (e' e—')'5—q'(e& —e&) —'(e&+e &)

&&t6(e&+e &)2 5(ei——e &)~$]+ ~ ~ ~ }. (2.29)

This is the desired answer. We may now let q~0 and
recover the asymptotic expansion of the ground-state
correlation function

p2~ '(1)~—4ir '(2ii —1) ' (2.30)

This derivation is only valid asymptotically. However,
if we set T=0 directly in (2.4) we see, as first noted by
LSM, that (2.30) holds as an equality for all n

3. CORRELATION IO~

It has been shown by LSM that if we define the e&(e
Toeplitz determinant

G-l G 3 ''' G 2n+1

then for A&1

p~'(n) =p2„ i*(n) =E„ iE„

=p2„*(n) =R„'

if E is odd,

if 1V is even (3.2)

(3.3)

In this section, we compute the asymptotic behavior
of p~ when E—+~ and T is Axed by a direct application
of Szego's theorem. ' lt is convenient to multiply all
odd-numbered rows and columns by —1 and to trans-
pose the resulting determinant. We define

a„=(—1)"G 2

=(2~) ' ~ {, '"&L(1 o{e—'&)/(1 o,e'&)—]'~

to obtain

)& tanhIPL(1 —ne"') (1 o.e —'&) $'~'} (3.4)

a 1 ''' a

a-n+2
(3.5)

an —1 an —2 ao

where

E„G"exp( g mk„k „),
m=1

(3.6)

G= exp{2 { 'f dyln{[{1— e '')/(1 —e'&{$'"

k~e'"4'= ln}((1 ae '&)/—(1 ne'~) j"—'

We may immediately apply Szego's theorem to the
determinant (3.5) when n(1. This gives as m~m

G 2+3

G2n—3 G2n —5 ' ' ' G—1

(3 1)
X tanhP((1 —ne'~) (1—ne '~) )'"$}. (3.8)

We may obtain a more explicit evaluation of G if we
use the in6nite-product representation of the hyper-
bolic tangent to write

f(1—ue '&) (/1 cxe"&)j'~—ta hnPI(L1 ne'&) (1—ne—'4') j'{2}=P(1—ne '&)

II P(2Pir ')'(2m 1) 'n)2 —i '(e'~ —
$Q i) (e '~—

&2 i) j,
m=1

(3.9)

where we have used the definition of P LEq. (2.8)].Vsing this expansion in the integral of (3.7) we find that



We may also use (3.9) to obtain an explicit formula for k„by first rewriting (3.8) as

P s'~= lnP+ g {lnL(2PS I) 2(2m —1)2~ I$2~I7—inL(2' I) i(2m)2~ I)2~7}+ln(1 —Os '&)

+ Z hIC. (1—f~&") (1—k~& ")(1—b I&") '(1—6 I& ") '7 (311)

&m=m ' g (bI-I —bI ),
l~l

(3.12a)

Since { & [ and { n { are less than 1 we may expand
each term of (3.11) in a power series and obtain
for m& j.

where the contour C encirdes all poles at positive values
of ns once in the counterclockwise direction. Ke now
deform the contour of integration to the path Rens=tII

where 0&8&j.. The integrand. has no singularities
between these two paths and the contribution from the
two arcs at inhnity clearly vanishes. Therefore,

k~= —m La + g (bI $gI I—)7. (3.12b)
L~l

We may then combine (3.6) with (3.10) and (3.12)
to obtaUl as @~oo

dm cscsm fin(2pIr
—')i

+ lnm '+ ln-,' [1+~i+(-,'p-Ism) &

(3.18)

The residue of the last term at m =0 is zero. Now

(3.13) +«(1—&)'+(2P '~m)')((1+~)'+(I2p-i~m)2)7IIs]}.

(2i)—' dm cscsm lnm= —isin(Ir/2), (3.19)

&&(1—b IS -I) '7 (3 14)

Whcll T Is lRlgc, I't ls trlvlai to ilsc (2.12) to cxpRIld
the inlnite products and find

~~*-fpD —
3 (1+~')p'+0(p') 7}"L1—3~'p'+O(p') 7

(3.15)

Th1S IS Vahd fol' 0(0!(1 but IS llSCful OIlly wIICII Ap((1.
In the low-temperature case, this expansion breaks

down. %C now must asymptotically expand 6 and I' by
erst rcwrltlng them ln tclms of contour lntcgrals. This
procedure is somewhat diferent in the isotropic and
anisotropic cases. Ke treat the anisotropic case here
and return to the isotropic case in Sec. 6.

A. Expansion Of 6
To convert the logarithm of the in6nite product

(3.10) into a contour integral, we note that because
the products in the numerator and denominator con-
verge separately we may write

lnG= lnP+ Q (—1)"inL(2PS ')'(2m) 'n$
m-1

(3.16)

%e then convert this series into a contour integral
by using the fact that csc7tm has poles with residue

(—1)~/m at all integral values of m. Therefore,

so the first three terms of (3.18) cancel. Rewrite the
remaining term by letting m =iy and let 8~0 (keeping

y in the lower half-plane whenever there are singularities
on the real y axis) to obtain

dy cschIry ln-', f 1+a'—(-',P In.y)
'

lnG= ln tanht'P(1+n) 7—Ps '

x arctan f L(-,'t' —(1—n) ') ((1+n) '—-',P)7"'

XL1+n' ——,'P7-I}. (3.21)

This reduction is exact. The second term of (3.21) is
negative, so if wc ignore it we obtain the upper bound
on pg* of

pI!I & constXtanh~g(1+a) 7, (3.22)

(3.20)

Thc squal'c l oot ls dc6ncd posltlvc when p =0. 5lncc thc
real part of the logarithm is a symmetric function of y,
it gives no contribution and wc readily 6nd

lnG= lnP+(2I) ' dm cscsm lnt (2P~ ')'m 'R4 '7, which was obtained by LSM.
In the low-temperature regime the first term of (3.21)

(3.17) is exponentially smaller than the second term and must
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be discarded. To obtain an asymptotic evaluation of
the integral as )8—P()() we note that if u(1 we may
replace cschPt by 2e tP and if u&0 we may replace the
upper limit by ~.Make the change of variable

from the single product. Therefore, we obtain

P= (1—u') '" exp — dm dm' csc3rm csc3[m'
-$00+8

)( )e[(t 3 -3 -)(-3—')(3 et-) -(3 'et-) -j) .'

(3.27)

Only the real part of the logarithm contributes to the
integral and we find

2(1+a}
P=(t—')'t'esp(e-'3' ct

s'=-,'t —(1—u) (3.23)

and. expand

arctan {s[(2(1—u) +s') (4u —2 (1—u) s—s')g't'

X[2u—2s'(1—u) —s4$ '}= Q A„os'"+', (3.24)

2(1—a)where the 6rst few terms are

ADO=[2(u-3 —1)ys

AP= —'v2u 't'(1 —u) 't'[3u+(4 —3u) (1—u)'j
ct csc)tt'tt cscMt P(tt')), (,3.33)

2(1+a}

G exp{—(23r)8) 't' exp[—2)8(1—u) j A(t) =-,'(u '+u —-'u 't')

where

1+{g(t)B(t')[1—A(t)A(t') j '}'"
Then if we integrate term by term we find the de»«d ( ' "

1—{g(t)g3(t')[1—A(t)A(t')1 '}'['
expansion 3.29)

(3.30a)

X +35~ ~ (2m+1) (4t8)-A 0}. (3.26)

B.ExpaxlsloQ of I
%'e convert I' into a contour integral in a manner

identical to the foregoing. The double products in I' are
converted into double integrals. The contributions to
these integrals of the poles at m=0 and m'=0 are
single integrals which cancel the single integral arising

~(t) =-:='[-:t'-(1--)'j[(1+-)'--:&j (33ob)

Ke obtain a low-temperature expansion by using the
substitution (3.23) and expanding

I'&s, s') = ln[(s+s') (s—s')-'j'

+ss' Q Q A„,„."s'™s'"' (3 31)
mM sett'M

%e then 6nd for 0&0,& j.

CO CO

P (1—u') "4 exp
~

3r 'O'P' exp[—4t3(1—u) j ds ds' exp[—2)8(s'+s") $
0 0

Xss'()e[(s+s')(s —s') 'j'+ss' P g A, ss' s" )). (333)
mM m)t'~

The erst integral may be evaluated by transforming to polar coordinates as

CO CO r/2

(8' ds ds' exp[—2(ti(ss+s")ass' ln[(s+s')(s —s') 'j'= — d8 cos8»n8 in
~
(cos8+ sm8)/(cos8 —»n8)

~

=I'g 3r.

0 0

(3.33)
Therefore, we obtain asymptotically at low temperatures

P~(1—u')'t4 exp{exp[ 4P(1 u)—j3p '[4—+(2)8) ' g g A~ "(4P) "~'35 ~ ~ (2m+1) X35 ~ ~ ~ (2m'+1)]}.
~-O mIM

(3.34)
C. Asymptotic Behavior of y~

V/e novr may combine the expansions of the preceding two subsections to obtain the explicit asymptotic be-

havior of p~ as S~~, 0&0,&1, and T is small:

t)&' (1—u')'ts exp{ Ã[(23PP) "'—exp(—2)8(1-u) ) g 3 5 "(2m+1) (4P) A„~j}

X exp{3r ' exp[—4)8(1—u) j[8+)8-'g g A ~(Q)~~'3 5 ~ ~ (2m+1) 3 5 ~ ~ ~ (2m'+1) $} (3.35)~m~~



(4.S)(-1)"B~lx .

C(~)= Z ~' (4.6)

is such that lnC($} is continuous and periodic on the
unit circle, and if we may write for } $ }

=1

Lc(87 '=~(k) e(P') (4 7)

such that E(f) and e(&) are both analytic for } p } &1
and continuous and nonzero for } P ) &1, then

4. CORREI.ATION y&~ FOR 6&&

Mien 04K+ j. thc asymptotic cxpanslon of p~+ ls
more complicated, than the expansion of p~ carried
out in the previous section. Kc need to evaluate
8 {a ') for a& 1, and it is not possible to do this merely
by use of Szego's theorem. This difhculty is the same
one encountered by Wu' in his analysis of the Toeplitz
determinants which arise ln the corrclRtlon of t%'0 splns
on the same rovr of the tao-dimensional Ising model,
'II|I'u's very clear analysis is developed in sufBcient
generality that vrc need not repeat it here but vriH

simply quote the needed results and refer the reader to
his paper for proofs.

The evaluation of R„(o. '} for +&1 parallels Wu's
evaluation of S~ fol' 2 )T~ (Scc. 2w) . Wc 61'st. dcanc

«e 'I (~-)e(e

&herc thc lntcgI'Rtlon ls RI'ound thc unit cllclc. Herc
the symbol =: means that if ere Gx 0,&I both sides of the
cquRtlon hRvc thc sRme asymptotic cxpRnslon as
s~+& ~ Fol' Gill' case C($) 18 g1vcn by

C(5) =—&(1— ")II (1—6-)(1—6-) '

&&(1-~L)(1-~r .)-
Here g„and 0 are obtained from $ of (2.9) and G of
(3.10) by the replacement P-+)ea '. We may there-
fore choose

2m

e;=aq 1= {2Ir—) ' +e "eg(1 ne"—')/(1 ae —'e)]'Is
0

X tanhIPL(1 — 'oe'e) (1- -o' e')sg'"} -(4.1}

vrherc the square roots are positive at e@'=—i. Call the
s+N QctcrIDlnant formed froIQ thc c s ~(8 =-6"(1--~)- II «-u. .) (i-u..)-

In this asymptotic expansion N and P are ildepeN(Eeet so that
large. %C Inay therefore keep E large enough so that
this asymptotic expansion is valid and take the T—+0 &au shows that
bmit to 6nd that in the ground state'

s —(1 ass) I/O (3.36)

&~1 ' ''
&O

(4 2) Rnd
(4.10)

(4.11)

We extract a (—1) from each element of (4.2) and
apply Szego'8 theorem to (—1)"8„.The only difference
fl'onl thc cxpRnsloll of E„of tlM last scctloll 18 tllat p 18

replaced by tI)a ', so if we explicitly indicate the de-
pendence oil P)

lim (—1)"8 (a, P) = lim 2 (n, Pa-I). (4.3)

(4.4)

x.=.'—( w )2- )~$& P('(& ~F') '

X g L(1—F-%~1}(1—y%~)-I

X (1—gs ) (1—@~I)-'j. (4.12)

This may be rewritten, using the in6nite-product
representation of the hyperbolic tangent (3.9), as

«e- ' '"-thI~=L(1--e(1--e-}S } IIL(i-~l,.)(i-re, ,)-a. (4.13}ge=. — m'f

8@~1

The remaining product in (4.13) may be rewritten as

II I(~ (I~)i(& (I~i)7— (& ~6-'~xv ( =2P~ '—R(e +T)
di cschPi Im in} (1—g(/) )(1—(s&)-11 ~, (4.14}

( -~u

g(i) =$n f 1+~-'——;P—L((a-I—1)'——,'P)((~-Ig 1)s—-', P)j}I)'. (4.15)

& This Hmit is closely related to the end-to-en(I correlation function gn a chain vrgth free bounda y c ' '
gi

0
ndsr conditions 'van in (2.'19) of LSM.
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Therefore, (4,13) may be expressed as

s =—(2') 1 d) P lf (1.—n$) (1—ngl) 7 1/0 coth Pn lf(1 aP) {1 apl)71/

2(ss +1)
X exp

~

—pdx-s dc csc)sPS Pm 1nL(1 d((—S) )(I—a() sj) . (ddd)
2(e L-O

It remains to obtain an asymptotic expansion of (4.16) for large pl. To do this, we use the partial-fraction decom-
position of the hyperbolic cotangent and note that the only singularities of the integrand inside the unit circle
are simple poles at )=$» and n to write

2(a +1) CO

a„=' —P-'a"(a-' —) 'exp (
—2Px ' dC cschPS Pm lnL(1 —ces(S))(1-as)-sj

l
PsZ2—-L(s»'s—da) '

2( -~» k=1

2(e +1)
X exp

I
2Px s — -dc cscbPS Pm)nEO Fad(s—))(& bsa)—)) '(4 &&)

2(a 1-13

When T)0 is fixed and I p()0 t-he second term in (4.17) is exponentially smaller than the 6rst and does not con-
tribute to an asymptotic expansion. %e then obtain

;-~"-"V-{fIf(1--~=)/(1--~=.)7fIII f(1-h.~.. )(1-h.~..)-(1-h ~= )-7} (4.»)
stol Is=1 te~~l

When T is large, we expand (4.18) as

/~"-{&f1 (a '+—1) 3&'+o(&')7}"L1 »n 'P'+—o(P') 7 (4 19)

This is identical to the corresponding high-temperature expansion of p»(m fEq. {3.15)7 with the replacement nd-pn

When T is small, we asymptotically expand (4.14) as

g (1—nP»„)/(1 —ng»„1) = (1 n') —"exp—{—(21pPn ') '" expf —2P(n '—1)7 Q 3 5 ~ ~ ~ (2m+1) (4n 'P)~A„(OI,

where A ('3 are dered by
(4.20)

Q A„(')s' +'= arctan{sf(2(1 —)+s')(4 —2(1—)s'—s')7'"f2(1—)+2s(1—)s'+s'7 '}. (4.21)

Tl e &st t~o A.(» are
A0(') =f2n/(1 —n) 7'/',

A ("= 'V2a—'—/'(1 a) 3/—( 3+ 2n 9n')—
Thus for T small

/)/)/" a +'P-'(1 —n) @'exp{—(X+2)f(2sn 'P)'/'e-@'& '& +35~ ~ ~ (2m+1)(4a-'P)"A o7}

(4.22a)

{4.22b)

xp{ f(2n/s)9) 1/2 exp( 2P(a—1 1) ) g 3.5...(2~+1) (4n-1P)~df &i&7} (4 23)

This is to be compared with (2.15) and (3.35) .
In order for this last expansion to be useful, we must

have )9(1—a)))1. However, if for large but fixed I, /)/

becomes too large, the approximation of neglecting the
in6nite series in (4.1'7) no longer gives the correct
asymptotic behavior. YVe study this regime where n
and )9 are comparable as we did in Sec. 2 by defining

=»f2(&+1)7'( '—1) ' (4.24)

where f 7 means the greatest integer contained in the

brackets, and letting I and P—+0() with (t„held 6xed. In
this limit, aB the integrals in the expression for

lim (—1)"8„

and in (4.1)) are exponentially small and do not con-
tribute to the asymptotic expansion. The expression
fol' Res(a ) tllell silnPllfies to

E (n ') (1—a')1/'P '{n"(a '—n) '

+2 Q4"(6» '—(~) '} (425)



Ke follower the procedure of Sec. 2 and obtain

E„(n ') (1—a') 'I4(q„/se)'"n"

it is convenient to write E„as
8 1 ~ ' ~ 8~1

X 1+~ '(1+a')(1—a') 'I q.—+-'q'
p}q() '9qi) &

i1
Z„(a) =G"

~ 0 0 g
(5.2)

&&Lq. "'+2q. "' Z e-"""j. (426)
m~1

From this we use (3.2) to obtain the desired answer:

{p)((" 2(1—n') ' '% 'X 'a+I/1+ 2 g exp( —mP/4qi))]'
m=1

—-,'1' '(1+n') (1—a') 'L1+2 g exp( —m'/4q„) j
m) 1

where G is given by (3.10) and
2% co

a„=G 'g„=(2~)-' d(I)e '"&(1 ne—&) IIL(e'e —$ )
0 m=1

X(e "' b—)('ee b—i) '(e " 5' ~—i) 'j (53)
We already know from (3.36) that if E~~ and P~op
in any fashion, then E~(n)-+(1—n') 'I4, so we find from
Wu's Eq. (3.4w) that

&(Li+2 g exp( m'/—4q ) (1+2(m'/2q„) —(tl'/2q„)') j
m~1

It should be noted that while the two terms explicitly
shown here have the same dependence on E regardless
of whether 1V is odd or even the O(E ') term wil/
depend on the evenness or oddness of S. Finally, we
may let q„-+0 and we obtain the T=0 correlation

{p)((& 2(1—a') 'f2~ 'X 'n"

X&1—l&-'(1+ ') (1—')-'+o(&-') 3 (4»)

S. CORRELATION y~* NEAR T=O

In Sec. 3 we vmre able to recover the E—+~ limit of
p~ at T=O from the nonzero-temperature result but
were unable to recover the approach of p~ to this
limit. Ke may recover this second term in p~* at T=0
from the nonzero-temperature case by using the methods
of Sec. 3 of Wu's paper to evaluate the second term in
the expansion of {p)}(*when E and P-+Op and

q.=-',NP-'(1 —n') '

=-'l3(&+1)j&'(1—a') '=a 'n (5 1)

is held 6xed.
To compute the 6rst correction to Szego's theorem,

E (n) =:(1—n')'" D gp(m), (5 4)

where xp(m) is the zeroth component of the m+1
component vector de6ned by

g a)'1-i&j=~kp.
j=o

Wu shows that (3.13w)

(5.5)

e(m) =:1—(&~P-'f &(( Q(( '))'((") '-
dfp I I'1 —1~~—1 ~ —1 $6

where the path of the &' integration is indented outward
at j'=$ and

a(O=(1- e-'II L(1-a. .)(1-~S.)- j (5.g)

and

+(h) II L(1 a2 i) (1 M2 ) j (5 9)
m 1

We use (5.6), (5.8), and (5.9) in (5.4) and expand the
in6nite product to obtain asymptotically

Z -e.=1 (~)-O(~')-' (5.n

for
j $

~

=1. The functions P($) and Q($) have the
same analyticity properties required in Sec. 4 and for
this application are specifically given as

11 ='(1—')"'{1+Q[a(m) —1]}='(1—')'"(1+(2w) ' d(("((—a ')(
m=n
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We may use the infmite-product representation of coth and (4.14) to rewrite this as

&.=:(( —)''«{(+(») 'G' 4( L(("8«((—«E ') j '"««t) f))L() «()—() «c—') j'"I

«««h~(~ »[((-(((~))((—«&)-'jI &' "(('—&) 'L(( —&') ((—«5' ') I"'

«")«(»Lo-('-'((~) )((--&'-')- jII. (~.»)

In the E, P-+~ limit, the integrals and the factor G in (5.11) are asymptotically equal to 1. We then use the
partial-fraction decomposition of coth to 6nd

(1 nR) I/4L1+ 2P
—ma-2 Q ( «+I (g

-1 ] )
-1

X Z~ ='(~..--~ )-(~ -~-)-(1- ~, )(1- S -)j. (5.»)
mls.

We now expand this expression for f'Lxed q, using the methods of Secs. 2 and 4 and use the result in (3.2) to obtain
the desired answers:

p1„*~(1—n')'"ji+4(2n) 'n'"(n '—n) '1r ItFI—(1+n') {1—a') I(2e) 'Fg+O((2N) ')jI (5.13a)

«~(1 n9)I/2j 1+2(2/1 1)—1'«—1(a—1 n)-2~-I

X j:(-+=».+(2--1)-L2(=--)F.-(-+=) {=--)-F.i+O((2.-1) ) ~I, (5»b)

EI——j 1+2 g exp( —m,'/4q, ) jL1+2g exp( nP/4//, ) (—1—m'/2g )j (5.14a)

Z, =12L1+2 g exp( —~2/4q. )jj;+ g exp( —~2/4q, ) L9—3{~&/2q,)—7(~&/2q, )2+ (~2/2q. )IjI

—-,'Li+2 g exp( —eP/4g ) (1—eP/2/t )$ j—s+ g exp{ m'/4//. —) j 5+2(m—' /2q, ) +(m' /2g, )'g I (5 1.4b)

Tllcsc 1'cslllts 8110111dbe contrasted wltll tile comparable results fol' p/(/" glvcI1 by (4.2) Rlld fol' p/()' glvcI1 by (2.25)
when a&1, and by (2.29) when n= i.

We 6naHy are able to obtain asymptotic behavior of the ground-state correlation function by setting q, =0.
We 6nd

pI *~(1—n')'"j1+4(2N) 'n'"(n '—a) '~ IL1—II(1+n')(1—n') I(2e) I+O((2e) ')jI

p «(1—n1)I/mj 1+2(2N—1) 'a'" '(n —a) 2w '

X[n+n '+(2e—1) 'L2(n ' n) x(a+—a '—)'(a ' n) '$+O—((2N 1) ')]I.—(5.15b)

The foregoing lour-temperature asymptotic expan-
sions of p~~ and p~" have been iestricted to the aniso-
tropic case. e now mush to study the corresponding

asymptotic behavior in the lsotropic case when T is
fixed and X—+~. When T&0 this may be done by
applying Szego s theorem as we did 1Q Sec. 3. In
particular, we obtain a valid expression for R„(1) if we
let ~1 in {3.13). Furthermore, expression (3.21) for
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G is still valid if vm let 0.—+i. However, the expression
for I' in terms of an integral given in Sec. 3 is not
particularly suitable for taking the O,~I limit. Instead,
we choose to set 0.=1 at the outset and obtain

We therefore obtain, when E—&co with T small and
6xed?

p)) (1) =p)) "(1}-&'"exp[—&I Z (—1)™+I

P (C
e'=ex(-c [(2d/e)' de cec)cd()C f de' cec)ce()C' e)(c (&/4p) 2m-I(2m) —i{22m 1)B+ Gj j

)()e([C((—C")'"+d((—C')'ej(C+d)-'(I, (6()

m)mm1 m~1
,PPm lf2md-1 -(6 2}

where the square roots are dered positive at f and t'=0
and the contours of integration are in the lower half-
planes. %hen T is small, we expand the integrand of
{6.1) about 3, K =0 as

ln [ L&(1—8) '»+&'(1—P) '»1(t+/}-'
[

I)(c exp[ Q Q ( 1) +m m(d~/4P)2[m+md —l)(4mmd)-I
m-1 m~-1

e)(' (22le 1) (22md 1)B~,I,P[ (6 g)

This isotropic low-temperature asymptotic expansion is
to be contrasted with the corresponding anisotropic
expansion I Eqs. (3.35) and (4.23)j.

We 6nally obtain the ground-state correlation
functions by noting that at T=O the determinant
E (1) is 'thc dctei'IIiiiiaII't exactly cvalllatcdiII S.cc. 4 of
Ku. Using the asymptotic expansion given there
we6nd as X—+~

p)d (1) =p2["(1)~4e'1222»A 'iV '"
J0,0~= j. and Il,o~=I0,1"=~. (63) XL1—(—1)~(')X '+ "j, (6.9)

Then, if we integrate term by term we obtain the
asymptotic expansion

where A =1.2824 ~ ~ is Glaisher's constant. This is to be
compared with the previous result of LSM which said
that p))( (1) was bounded by a constant times E~ ~22.

In marked contrast to all other correlation functions
of the X-I' model, this correlation approaches its
S—+00 limit in a nonintegrable fashion. It has recently
been shown by several authors~ that if at some tem-
perature

I)~P-I/O exp { Q Q ( 1) m+(md/24[P) 2(m+md I)—
m~1 m~2mdl

&((gmm') —'(2'"—1)(2' '—1)B2 B2 I, P[, (6.4)

where we have used an integral representation of
Bernoulh's numbers' 82m.

We obtain a useful low-temperature expansion for
G(1) by first de6ning I„gby

p
i ~ g—(d—2+g)

@~CO

arctan[22:Li —x'3"'L1—»'j '[ = Z ~'
m 1

where d is the dimensionality of the system and g&2
then, at that temperature, when II,—4 the magnetiza-

(6.&) tion M; of the system is given by

~here the erst two I 0 are given by

Il~ ——2 I~g ——-', .1 ?

Using this in (3.21) we 6nd

G(1) exp[ —Q {lr/4p)2" '(—1)™+1(2m)'
m=1

sgn(e)Z [Z [2~2

where E is some constant and

1+2d/(d 2+))) . — —

Therefore, in the X-I' model at T=0 as II—A

M —+ sgn(II, )E [ II, [I».

(6.10)

(6.11)

(6.12)

6 Reference 4, Vol. 1, p. 39.
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