
FERMI-LIQUID EFFECTS

siderable care must be used in treating the dispersion
relation' o.„a»+o,„'~0, because of the cancellation of a
factor D(A„) between numerator and denominator. We
obtain the correct dispersion relation using our approxi-
mate solution of the 6)&6 matrix equation after dem-
onstrating that this cancellation must occur. The full
dispersion relation is too complicated to display here,
and its long-wavelength limit is of no value because non-
linear terms in A2 become important for very small X.
Ke can however, make the following statements about
the dispersion relation: Grst, it contains no Fermi-liquid
terms lower than fourth order except the term linear in
A2, and second, in contrast to the other polarization,

there is no shift of cv away from the value co, for X=0.
In this respect the dispersion relation is much closer to
the prediction of the free-electron model than the
experimental data. " The exact numerical results for
both polarizations will be presented in a more detailed
later publication.

The authors would like to acknowledge several
discussions with P. M. Platzman and W. M. Walsh, Jr.

"W. M. %alsh, Jr., has informed us that further experimental
studies have shown that the original assignment of the wave-
lengths of the plasma waves in Ref. 2 was incorrect, and that the
correct experimental data does lie much closer to the prediction of
the free-electron model.
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High-temperature power-series expansions for the free energy of a classical Heisenberg ferromagnet in
an applied Geld are given in the form

—Ii/EAT= Z ay~, )h2"x',

where h=gPIJ/AT and x= J/kT. The coefacients are given for l&7 and 4&2n&10. Estimates of the critical
exponents for the fourth to tenth Geld derivatives of E are given.

I. INTRODUCTION

" 'N recent years much work has been done on obtaining
. . high-temperature series expansions of thermodyna-
mic functions for the Heisenberg model and the esti-
mation, from these series, of various critical parameters.
For general spin only six terms of the susceptibility
expansion and 6ve terms of the specific-heat expansion
are known. ' For the special cases of S=—', and S=
further terms are known. Baker e3 al.' have given the
free energy for the S=-,' Heisenberg model to order
I/Tio Dor the bcc and simple cubic (sc) latticesg and
I/P' (for the fcc lattice) and also the field dependence
in powers of the applied Geld B up to (H/T) '.

It is the purpose of the present paper to present the
results of a similar calculation for the S= ao Heisen-
berg model. Currently, high-temperature expansions
for the zero-Geld susceptibility and speciGc heat are
known to 8 and 9 terms for close-packed lattices and
9 and 10 terms for open lattices, respectively, using
this model. ' %e shall give the temperature and Q.eld
dependence to orders I/T' and (H/T)".

I G. S. Rushbrooke and P. J. Wood, Mol. Phys. 1, 257 (1958).
~ G. A. Baker, H. E. Gilbert, J. Eve, and G. S. Rushbrooke,

Phys. Letters 20, 146 (1966); 22, 269 (1966); Phys. Rev. 164,
800 (1967).

3 H. A. Brown and J.M. Luttinger, Phys. Rev. 100, 685 (1955);
H. E. Stanley and T. A. Kaplan, Phys. Rev. Letters 16, 981
(1966); P. J. Wood and G. S. Rushbrooke, i'. 17', 307 (1966);
G. S. Joyce and R. G. Bowers, Proc. Phys. Soc. (London) 88,
1053 (1966).

In Sec. II we shall describe how the calculation was
performed. Section III will be concerned with the
susceptibility series, Sec. IV with the high-temperature
series proportional to powers of the applied field greater
than 2. Finally, in Sec. V we consider some two-dimen-
sional lattices.

II. CALCULATION OF THE FREE ENERGY

%e start with the Hamiltonian

ac= —2~+ st'& st &-gpaP s.&'&=3:,+x,

where J is the exchange-energy constant for nearest-
neighbor interactions, S~') the spin vector on lattice
site i, g the gyromagnetic ratio, p the Bohr magneton,
and H the applied Geld (taken to be in the s direction).
We use the abbreviation S(5+I) =X.

We introduce a new vector T&"=S"&/QX. It is then
easily seen that in the limit S~oo, T") becomes a
unit classical vector. In terms of the vectors T&@ the
Hamiltonian becomes

X=—2JXQ T&'&. T&t&—gPHQXQ T,"&. (2)

In the following we shall write J for Jx and B for



R. L. STEP HENSON AND P, I. WOOD

PQX, whence we obtain

K= —2JQ T&o T&'& gP—HQ T &'& (3)

as the Hamiltonian for the classical Heisenberg model.
Since Xo and 3'.

& commute we may write the partition
function

We must now descr~. be the methods used to evaluate
the mean trace of multiline graphs. Let ei and qi be
the polar coordinates of the direction T"' (with the
s axis as polar axis) and 8,; the angle between T&o

and T&j~. Then

T&'~ T&j'= cose,;

where
Z= Tr exp( —X/kT) =ZOZ~, (4) = cos8; cos8;+sin8; sin8; cos(y;—q, ), (10)

T,&@= cose;.

and

Zo= Tr exp{ (gPH/k T)P T, o } (3) Therefore

Zo ——Tr exp{ (+gPH/kT) g T "'}
Z&

——(exp{(2J/kT) g T&" T&'&}), (6)
(ij)

and for any operator A we dehne the mean trace as

Tr{A exp( —X /k0T) }
A =

Tr exp( —Xp/kT)

We can expand the exponential in (6) as

Z«.)-(»/kT) ((ZT" T ) &

l=o & ij)

and represent
((Z T"'T"')')

(ij&

by a set of l-line graphs; a line between points i and j
of such a graph representing T&') T~j~. With each graph
is associated (i) a trace factor and (ii) an occurrence
factor. The graphs may be connected or disconnected.
We can avoid having to consider the disconnected
graphs by forming a graphical expansion of the free
energy Ii= —kTlnZ rather than Z. This expansion
requires us to use the cumulants of graphs rather than
the mean traces. Occurrence factors for connected
graphs are tabulated by Baker et al.'

If we denote the links in an I-line graph by n, P cu,

the cumulant function by [n ~ ~ co), and the mean
trace by (n ~ ~ &0&, then it can be shown' that

l

(- ~ -&=Z Z [-"w[ "»" ['"-),
k-t 2 (l,a)

where p(l, k) refers to a partition of the f symbols
n ~ .~ into k groups (with any sequence within a group
and any sequence among the groups). This can be
rearranged to give

CX' ' 'M

l
—Z Z I

o'"'P)b'''8)"'[&"'M) (9)
Is 2 y(l, k}

Thus the cumulant of an I-line graph can be evaluated
from its mean trace and the cumulants of 1,2 ~ ~ (i—1)—
line graphs which have been previously calculated.

= (1/4s.)~ ~ ~ ~ exp{(gPH/kT) Q cos8;}

N

'goal

sin8, d8, dq;

1r 2~

(1/kr) d8 dy exp{(gPH/kT) cos8} sin8
0 0

(12)

This is the denominator in the expression for the mean
trace.

Now any term in the expansion of (8) is represented
by a multiline graph, each bond of which represents a
factor cos8;;. The mean trace of such a graph will be

(combinatorial factor)

ZO

~ ~ ~ (1/kr) v lI cos8;;

&&exp {(gPH/k T)g cosH, }g sin8&, d8&,dp~, (13)

where the product is taken over those bonds (ij&
which occur in the graph. Clearly, for each lattice point
not involved in a graph a factor

I(m, e) = cos"8 sin"8 exp {(gPH/k T) cos8} sing d8,
0

J(m, e) = cos~y sin"y dy.

(1/kr) d8 d&r exp{ (gPH/kT) cos8} sin8
0 0

will cancel in numerator and denominator of the mean
trace. Each cos8;, may now be replaced by

cos8; cos8, +sin8; sin8, cos(q;—&r,)

and the numerator broken down into contributions
involving the integrals

' G. S. Rushbrooke, J. Math. Phys. 5, 1j.06 (1964). I(m, n) was evaluated as a power series in gPH/kT.
'G. A. Baker, H. E. Gilbert, J. Eve, and G. S. Rushbrooke, Thus we see that the numerator and denominator of

Brookhaven National Laboratory Report No. BNL 50053, Y-460,
1967 {unpublished). (13) and, hence the mean trace itself can be evaluated
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TABLE II. Neville tables for the estimation of y
assuming diGerent values for x,.

as a power series in gPH/kT. The manipulations in-
volved in obtaining the mean trace as a power series
in gpH/kT were performed on a computer and the
calculations were carried out to order (gPH/kT)".
In obtaining the cumulants from the mean traces we
used the methods of Sykes et at.' to represent graphs
in the computer. It is fairly straightforward to see that
only even powers of H are involved.

In this way we obtain

x,=0.1572 x,=0.1573

yg = 1.2576

F3=1.3269

y5= 1.3447

y7= 1.3521

yI= 1.2584

1.3737 p3 = 1.3290

1.3703 pg= 1.3480

yv= 1.3568

y2= 1.3701

1.3704 &,=1.3410

1.3616

1.3713

1.3707

1.3643

1.3766

1.3786

1.3/87

1.3801

~= —XkTQ k2-P,.(.),
n=o

(14) &,= t.3036

y4= 1.3382
1.3708 1.3749

1.3782where
k= gPH/kT, x= J/kT

1.3703 1.3795and
78= i.3596y8= i.3543

Fp„(x) = Q a2„,(x';
l~0

1.3705 1.3771
(15) y p

——1.3490 1.3702 yg
——1.3530 1.3819

that is,

XkT—Q g a,„,,kP-x&.
nM l=0

agree with those of other authors where these overlap.
In the Appendix we give the coefFicients for 4& 2n&10,

(1/)
III. SUSCEPTIBILITY SERIES

x= J /x1V pg'= g 2a2, ~x' (19)
lM

These coeKcients have been given by several authors'
and are therefore not reproduced here. Our calculations

TABLE I. The Neville table formed from the
ratios a~, l ~/ag, l for the fcc lattice.

l=3

l=7

l=2

l=4

l=6

l=8

0.125

0.14175

0.14706

0.14967

0.13636

0.14494

0.14859

0.15053

0.15013
0.15625

0.15503
0.15707

0.15619

0.15352

0.15579

0.15645

0.15692

0.15712

0.1572

0.1572

We have calculated the coeKcients a2„,l for 2n&10
and t&7 for the fcc, bcc, sc, plane square, and plane
triangular (p.t.) lattices.

The numbers of graphs considered for t=1,2 ~ ~ ~ 7

(i.e., multiline connected graphs) are 1, 2, 5, 12, 33,
103, and 333 for the fcc lattice and correspondingly fewer
for the other lattices.

In terms of these coefIicients the magnetic speciGc
heat and zero-Geld susceptibility are given by

C= C/cVk= Q l(/ —1)ap, ix'
2~2

and

We have reanalyzed the extended susceptibility
series of Joyce and Bowers' and have come to essen-
tially the same conclusions as they did. Namely,
assuming that

g~A/(x, —x) &

for x near, but less than, x., then x, 0.1572, 0.2432,
and 0.346 for the fcc, bcc, and sc lattices, respectively.
For example, the Neville table' formed from the
ratios a2, ~ ~/ap, ~ for the fcc is given in Table I.

Using these values of x, we may use the method of
Bomb and Sykes7 to estimate p, namely

lLx, (ap, (/a, , ~g) —1j=y)—1; y)~ as l~~.
This procedure leads to the estimates 1.37, 1.38, and
1.39 for p for the fcc, bcc, and sc lattices, respectively.
It should, however, be noted that the precise value of
p depends very critically on the value assumed for
x,. For example, we can draw up the Neville tables
given in Table II for the estimation of y for the fcc
according as we assume x,=0.1572 or 0.1573.

One sees from Table II that a change of 0.0001 in x,
can lead to a change of 0.01 in y. On this basis we would
hesitate at being able to point to any dependence of p
on the lattice structure.

Analysis of x by Pade approximants gives the same
story. For the open lattices, however, there is evidence
of a much weaker singularity at approximately —x,.
This point represents the Neel point of the antiferro-
magnetic problem. Previous work by Rushbrooke and
Woods would suggest that, for infinite spin, the singu-
larity occurs at exactly —x,. There was no evidence of
a similar singularity for the fcc lattice, supporting the

6 M. P. Sykes, J. W. Kssam, B. R. Heap, and B. J. Hiley, J.
Math. Phys. 1, 1557 (1966).

~ C. Domb and M. F. Sykes, J. Math. Phys. 2, 63 (1961).
8 G. S. Rushbrooke and P. J. Wood, Mol. Phys. 6, 409 (1963).



R. L. STEPHENSON AND P. J. WOOD

TABLE III. Root of the denominator in the Pade approximant to dplnFIO(x) jidx.

1

3
4
5
6

—0.0797
0.0502

—0.0247
0.0408

—0.0215
0.0373

—0.0156
0.1866
0.1353

—0.1610
0.1301

—0.0211
0.1173
0.1567
0.1561

—0.0202
0.2804
0.1560

—0.0202 —0.0202
0.6644

belief that for the fcc lattice, nearest-neighbor inter-
actions alone cannot produce antiferromagnetic order-
ing.

For the open lattices an attempt was made to sub-
tract out the ferromagnetic singularity and to sharpen
the antiferromagnetic singularity by considering Pade
approximants to (i)

(did*)I(d/dx) »x—L~/(x —*)7I
and (ii)

(x—x,) (d/dx) inx.

In both cases a range of x.'s was taken and in the
former a range of y's. However, in no case was there a
consistent Pade table, although indications persisted
of the presence of a singularity at approximately —x,.

IV. HIGHER-ORDER SERIES

We must next consider the series Fp„(x) n= 2, 3, 4, 5.
We assume that these series behave like

A /(x &'"& n)&&'")—

for x near, but less than, x,. No firm conclusions can
be drawn as to the values of x,""& and y(2") by using
the method of Pade approximants, since it turns out
that the series vanish for small negative values of x,
and consequently the Fade approximants are in some
cases rather erratic. This does not happen to the sus-
ceptibility series. For example, the Pade table for
Fip(x) for the fcc (i.e., the root of the denominator in
the Pade approximant to dDnFqp(x)7/dx) is given in
Table III.

One can see in Table III the inhuence of the singu-
larity at x~—0.0202, which is due to the vanishing
of Fip(x) at this value.

The ratio method is unaGected by these zeros and its

y('") =3.44m —2.07,

~('")=3.45~—2.06,

y('") =3.50'—2.11,

bcc

sc.

Thus not only is the relation very nearly linear but it
is also almost lattice-independent. Indeed, the un-
certainties in the values of x, and the y's are such as to
make one conjecture that p&'"' =mn+c, where m~3.45
and c~—2.07.

Very similar results were found for the case 5= 2 by
Baker et al.' These authors found a value of m equal
to 3.63. It would therefore appear that m is spin-de-
pendent.

A number of scaling arguments have recently been
put forward' which suggest that all the critical indices
can be expressed in terms of just two of them. If o., is
the index of the singular point of the specific heat, P
the degree of the magnetic phase boundary, 5 the degree

TABLE V. Values of y and y(2") for the
three-dimensional lattices.

use leads to values of x,('") which are very close to x,.
The values obtained are as given in Table IV.

It would seem very likely, therefore, that x,('"'=x,
for all n, (recall that the estimates x," ' are made on
the basis of fewer series terms than those of x.). We
shall make this hypothesis in the remainder of this
paper.

Estimates of y('"& can now be made using the method
of Bomb and Sykes as in the previous section. Ke 6nd
the values given. in Table V (we include the values of
y given in Sec. III).

It is evident that relation between y('") and e is
remarkably linear. A least-squares calculation for each
lattice gives

fcc

TABLE IV. Values of x, and x,('") for the
three-dimensional lattices.

X,(4) & (s)

0.1572 0.1566 0.1552 0.1558 0.1566

7
~(4)

~ (6)

+(s)
+(io)

fcc

1.37
4.83
8.26

11.69
15 ' 12

bcc

1.38
4.85
8.29

11.74
15.19

sc

1.39
4.90
8.41

11.91
15.41

bcc 0.2432 0.2435 0.2410 0.2422 0.2424

sc 0.346 0.344 0 ' 345 0.345 0.345 ' M. E. Fisher, Rept. Progr. Phys. 30, 615 (1967), and refer-
ences therein.
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TAaLE VI. ¹ville tables for the ratios ag„,E I/e2~, ~

for the p.t. lattice for n=2 and 3.

0.0625

0.1115

0.1503

0.1816

0.2073

0.2287

0.2472

0.1605

0.2280

0.2752

0.3104

0.3357

0.3582

0 ' 3224

0.3631

0.3865

0.4148

0.0309

0.0620

0.0904

0.1155

0.1377

0.1574

0.1748

0.0932

0.1472

0.1910

0.2264

0.2557

0.2795

0.280

0.314

0.339

"H, E. Stanley, Phys. Rev. 158, 546 I,'1967).
"N. D. Merlin and H. Wagner, Phys. Rev. Letters 17, 1133

(1966).

of the critical isotherm, y the index of the suscepti-
bility, and 2A the gap parameter, then on the basis of
scaling arguments

rr, = 2—2h+y,

p=~ v,—
8=6/(5 —y) .

Using our values (i.e., y=1.38 and 23,=3.45) the
scaling laws give

0.,= —0.07,

P =+0.345,

8=+5.
Thc spin-~ values2 are, for comparison, a,= —0.2,
P=+0.38, and b=4. '/3.

V. TW'0-DIMENSIONAL LATTICES

In this Anal section we consider two two-dimensional
lattices —the plane triangular (p.t.) and the plane
square (p.s.) and attempt to perform a similar analysis
on the series Fs„(x). Stanley" has already given the
first coefficients of Fs(x) for these lattices. We give the
series Fs„(x) rr= 2, 3, 4, 5 in the Appendix.

Recently, Mermin and %agneru have argued tha
it is impossible for one- or two-dimensional isotropic
Heisenberg lattices to exhibit ferro- or antiferromag-
netism as the spontaneous magnetization is zero,

-x
C

5

.2"

II I I I I

765 2

Pro. 1. A plot of the ratios ~„,) I/ag„, ) for the plane
triangular lattice against 1/i for N =i, 2, 3.

However, Stanley and Kaplan" found a nonzero x,
on analyzing the susceptibility series for the p.t. and

p.s. lattices. They suggested that this represented. a
transition to a low-temperature state with zero spon-
taneous magnetization but with an inhnite zero-6eld
susceptibility at the transition point —a possibility
not ruled out by Mermin and Wagner.

We have analyzed the series Fs„(x) for the p.t. and

p.s, lattices by both Padc approximants and by the
ratio method. Pade approximants to the susceptibility
series, Fs(x), for the p.t. lattice would suggest the
cxistcncc of a second singularity at x~0.79. They may
account for the slow convergence. The Pade method is
unsatisfactory for n&1 for the same reasons as in Sec.
III. It would seem to us quite likely that quantities
x, (2"& exist as in Sec. III, but it is dificult to give values
with any precision. For example, the Nevillc tables
of the ratios es„,r t/as„, ~ for the p.t. lattice for I=2 and
3 are given in Table VI.

A plot of the ratios against 1/l is also given. It would
seem quite plausible from Fig. 1 that these series
have a singularity at about the same value as that
given by Stanley from an analysis of the susceptibility
series, i.e., x, 0.53, but the Neville tables suggest
that the convergence of the ratios to this value is
extremely slow. Many more terms in the series are
required before we can be conMcnt about the behavior
of the two-dimensional lattice series.
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APPENDIX

Coefficients of the series F2„(x)=g~a2„,~x . Numbers in parentheses give appropriate powers of 10.

(i) fcc lattice:
f/I
0
i
2
3

5
6
7

2
—5.555 555 556(—3)—1.777 /77 I'N( —1)—3.37i 85i 852
—4.952 493 827(1)—6.226 039 647(2)
—7.042 328 331(3)
—7.377 886 756(4)
—7.290 935 63'?(5)

3,527
2.285
7.714
i.847
3.554
5.859
8.6ii
i. i57

336 860(—4)
'/14 286(—2)
991 182(—1)
696 358(1)
099 865(2)
822 439(3)
300 682(4)
201 971(6)

—2.645 502 639(—5)—2.821 869 488(—3)
—1.457 750 903(—1)
—5.073 789 423
—1.363 369 402(2)
—3.042 838 684(3)
—5.899 0'/4 826(4)
—1.023 453 635(6)

2. i37
3.376
2.454
i. i59
4. ii2
i. i84
2.905
6.279

5
779 930(-6)
470 677(—4)
545 963(—2)
538 2ii
088 256(1)
008 759(3)
'/23 422(4)
512 493(5)

(ll) bcc lattice:
E/e
0

2
3

5
6
7

2
—5.555 555 556(—3)—1.185 185 185(—1)—i.457 777 778
—1.390 61"/ 284(1)
—1.133 088 '/09(2)
—8.306 291 483(2)—5.636 158 072(3)
—3.607 009 325(4)

3.527
i.523
3.552
5.222
6.523
6.980
6.652
5.796

336 860(—4)
809 524(—2)
380 952(—1)
416 244
792 458(1)
163 485(2)
931 194(3)
075 955(4)

—2.645
—i.88i
-6.347
—i.438
—2.5i3
—3.645
—4.588
—5. i66

502 639(—5)
246 325(—3)
145 936(—2)
7i9 857
924 961(1)
339 399(2)
634 589(3)
498 105(4)

2. i37
2.250
i.069
3.293
7.60i
i.423
2.270
3.186

5
'/'/9 930(—6)
980 451(—4)
'?20 638(—2)
503 715(—1)
635 042
323 174(2)
oo2 6so(3)
375 899(4)

(lii) sc lattice:
f/e
0
i
2
3

5
6
7

2
—5.555 555 556(—3)
—8.888 888 889(—2)—7.970 370 370{—1)—5.467 654 32i
—3.184 216 343(1)
—1.662 401 693(2)
—8.014 814 154(2)
—3.638 134 855(3)

(iv) Plane triangular lattice:
f/I 2
0 —5.555 555 556(—3)
1 8 888—888. 889(—2)
2 —7.970 370 370{—1)
3 —5.30i 728 395
4 —2.920 209 759(1)
5 —1.408 567 886(2)
6 —6.158 465 898(2)
7 —2.490 927 /15(3)

{v) Plane square lattice:
f/n 2
0 —5.555 555 556(—3)
1 —5.925 925 926(—2)
2 —3.338 2'/1 605(—1)
3 —i.390 6i7 284
4 —4.766 50i 273
5 —1.425 '/33 882(1)—3.851 066 /45(1)
7 —9.603 808 236(1)

3.527
i.i42
i.842
2.079
i.868
i.432
9.755
6.059

3.527
i. i42
i.842
2.038
i.763
i.280
S.i38
4.655

3.527
7.6i9
7.807
5.447
2.957
1.34i
5.3ii
1.887

336 860(—4)
857 143(—2)
680 '/76( —1)
Oi0 i06
617 250(1)
601 857(2)
989 869(2)
812 113(3)

3
336 860(—4)
85/ 143(—2)
680 /76( —1)
i74 Si9
932 521(i)
824 232(2)
316 808(2)
213 1O9(3)

336 860(—4)
04"/ 618(—3)
172 252( —2)
468 249(—1)
467 335
754 664(1)
188 013(1)
3/7 106(2)

—2.645 502 639(—5)—1.410 934 /44( —3)
—3.496 161 921(—2)
—5. '/58 835 419(—1)—7.267 3i9 593
—7.579 961 209(1)
—6.843 223 142(2)
—5.513 840 224(3)

—2.645 502 639(—5)—1.410 934 744(—3)—3.496 161 921(—2)—5.668 '?50 595(—1)-6.939 69i 767
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