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The dispersion relation for plasma waves propagating perpendicular to a dc magnetic held in a metal
with a spherical Fermi surface is studied. It is found that the dispersion relation differs only slightly from
the prediction of the free-electron model. The experimental data can be used to estimate the value of the
interaction coeScient A2, but they should be independent of A0 and A&.

t iHE propagation of plasma waves near the funda-..mental cyclotron resonance in potassium has been
studied recently by Walsh and Platzman. " The
experiments are carried out in the Azbel-Kaner geom-
etry, with samples which are thin, plane-parallel slabs.
The plasma waves propagate perpendicular to the dc
magnetic field 3, and may be polarized either parallel or
perpendicular to B.In the former case, ' the experimental
data differs slightly from the prediction of the free-
electron model, while in the latter, ' there appears to be
considerable deviation. Platzman and Walsh attributed
the deviation to Fermi-liquid effects, and presented an
analysis which involved only the Fermi-liquid interac-
tion coeKcients Ao and A&. This analysis contained some
numerical errors, '' and the agreement of theory and
experiment was fortuitous. The object of this paper
is to present the results of a study of plasma wave
propagation in a situation in which the interaction
coefficients A„can be neglected for e&2.

We begin with the kinetic equation for a collisionless
electron liquid':

L ico+t'q v—+rd, (B/By) jf(8, y)

denoted by ~c, and the function 8e& is given by

8.,(k)=, d'k'C (k, k') Sf(k'),

where C(k, k') is the spin-independent part of the
interaction function. We introduce R(8, g), the periodic
part of the position vector in real space of an electron on
the Fermi surface, and note that

exp[iq R(8, $)1= g J (Xsin8)e'"&.

Here X=q,n&/te, and J is the eath-order Bessel func-
tion. We define the Fourier coefficients f (8), v (8), and
C (8, 8') by

f(8, P) exp[+iq R(8, y) j= g f„(8)e'"&,

v(8, Q) exp[+sq R(8, Q) j= g v (8) e'~&,

C'(k, k') = g C (8, 8') exp$sm(P —p')$. (5)

Here 0 and @ are angles denoting a direction in k space
and f(8, P) is defined by f (8)= „+(—1+

M g zSz +Cue
F (8),

cv —g,P, —1k',Bf(k) = ( Bf„/Be)f(8, y—),
(6)

where 8f(k) is half the trace with respect to spin of the
deviation from thermal equilibrium of the density
matrix caused by the electric Geld E. We have assumed
space-time dependence of the form exp( —ito1+iq r),
and taken the dc magnetic Geld to lie in the z direction
(8=0) . Without loss of generality we can choose q to lie
in the x-z plane. The electron cyclotron frequency is

where the function F'„(8) is given by

m~kp
F„(8)=, g J„~(Xsin8) d(cos8') C ~(8, 8')

2'

XJ ~(X sin8') f„(8'). (7)

Here no* is the eflective mass and k~ the Fermi momen-
tum (we set 5=1 throughout). The function Cr(8, 8')
can easily be expressed in terms of the usual Fermi-
liquid interaction coeKcients A„:
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+ '( / &)j '( '&) = ' ' ( ) In terms of these functions the kinetic equation can be
written
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ub
M= Q (I+5'„p) '(T„+i+T„ i)(u' —rN') '. (14)

m=p

In (13) and (14)

where L„'=I (2tr+1) (tr —
I

l I) l/4rr(is+.
I

f I) ij'" and and
P„'(8) is an a,ssociated Legendre polynomial. By s
stituting (8) into (7) we obtain

F.(8) = Q Q I'i;A, (L,')sn'~(8) J„(Xsin8),
8&[tI

where

I'r, =2 g d(cos8) J i(X sin8)P. ~'~(8)f (8). (10)

5„= d(cos8) cos'8 J '(X sin8),

If A„=O for all e greater than some value Ã, there are
(J)l'+1)' different I'i, . In this paper we take %=2; thus
there are nine coefFicients F~,. It is apparent that be-
cause of the form of C i(8, 8'), one can solve the integral
equation (6) by multiplying by P„~t ~ (8)J„ i.(X sin8),
integrating over cose, and summing over n. The integral
equation is then reduced to (%+1)' simultaneous
equations for the coefficients Fg....

For propagation perpendicular to the dc magnetic
Field, the 9X9 matrix equation (for the case A„=O if
rr) 2) for the coefficients I'i, separates into a 3&&3 and a
6X6. The solution of the 3&(3 matrix equation gives
0„, and hence determines the dispersion relation for
plasma waves polarized parallel to B.The solution of the
6)&6 gives 0. „cr», 0,„, and a.„„and determines the dis-
persion relation for the other polarization. We have
studied the solutions of both of these equations by the
same approximate method. Theoretical estimates' of the
interaction coefFicients indicate that

I

A I, is of the order
of a few tenths, while

I
Ai

I
and

I
As

I
are smaller by

roughly one order of magnitude. We therefore consider
Ap to be of first order, A~ and A~ of second order, ApA~

and ApA2 of third order, etc. In solving the 3&3 matrix
equation, we retain terms up to third order in both the

numerator and denominator of the correction to o-;,.

caused by Fermi-liquid effects. ' In other words we write

o„=rr„P+N(A„)/D(A„), (11)

T = d(cos8) sin'8 cos'8 J '(X sin8). (15)

u 1+A,——,rpX'L1+ (20/7) A,j. (16)

Thus, we see, the main effect of the Fermi-liquid inter-
action is the shift of u from the value of unity of X=O;
the change in the coefficient of X' is of the order of only
10%.

We have used the same approximation to study the
other polarization. It must be mentioned that con-

qVp

Notice that the dispersion relation does not depend on
Ap or Ai at all. ' The solution of (12) has been obtained
numerically for several values of the parameter A~. In
Fig. f we display the experimental data of Walsh and
Platzman' together with the solutions of (12) for As ——

—0.026, —0.036, and 0. We see that the experimental
data favor a value of A2 —0.026. The long-wavelength
limit" (i.e., X'«

I
As I) of the dispersion relation can be

written~~

where 0„'„is the value of a„ in the absence of Fermi-
liquid effects, and i)t'(A„) and D(A„) are functions of
Ap, Ay, A2, which are accurate up to terms of third-order.
When this is done, the dispersion relation' for waves
polarized parallel to B, viz. , 0„0,becomes

X'LI 1+2A,—",Asu'M3+s'AsI (3usL —1) '
I.O t. I l2 l3 IA l5

~c

L= P (1+b~p) 'S~(u' —ms) ' (13)

V. P. Silin, Zh. Eksperim. i Teor. Fiz. 34, 781 (1958) LEnglish
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+(-,'uXL')'j=0, (12)

where u =cd/cp„X =q,or/cp. , L'=8L/8X, and

FIG. 1. Plot of co,/cu versus qv~/cu for plasma waves polarized
parallel to the dc magnetic field. The open and solid circles repre-
sent the experimental minima and maxima, respectively, of the
derivative with respect to 8 of the power absorbed (Ref. 2). The
three curves are results of the present calculation for values of A~
of 0, —0.026, and —0.036, going from left to right.

~ The functions F&, de6ned by Eq. (10) can be shown to be
proportional to the P,J, used (V, P. Silin, Zh. Eksperim. i Teor. Fiz.
35, 1243 (1958) t English transl. : Soviet Phys —JETP 8, 870
(1959)])in the expansion of f= Z,~t,iy, in spherical harmonics.
For q= 0, the different spherical harmonics are independent of one
another. The mode displayed in Fig. 1 corresponds at q=0 to the
s=2, l=1 mode.

"The result a=1+22 for X=O was obtained by a diGerent
method by P. M. Platzman and W. M. Walsh (private commun-
ication) .
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siderable care must be used in treating the dispersion
relation' o.„a»+o,„'~0, because of the cancellation of a
factor D(A„) between numerator and denominator. We
obtain the correct dispersion relation using our approxi-
mate solution of the 6)&6 matrix equation after dem-
onstrating that this cancellation must occur. The full
dispersion relation is too complicated to display here,
and its long-wavelength limit is of no value because non-
linear terms in A2 become important for very small X.
Ke can however, make the following statements about
the dispersion relation: Grst, it contains no Fermi-liquid
terms lower than fourth order except the term linear in
A2, and second, in contrast to the other polarization,

there is no shift of cv away from the value co, for X=0.
In this respect the dispersion relation is much closer to
the prediction of the free-electron model than the
experimental data. " The exact numerical results for
both polarizations will be presented in a more detailed
later publication.

The authors would like to acknowledge several
discussions with P. M. Platzman and W. M. Walsh, Jr.

"W. M. %alsh, Jr., has informed us that further experimental
studies have shown that the original assignment of the wave-
lengths of the plasma waves in Ref. 2 was incorrect, and that the
correct experimental data does lie much closer to the prediction of
the free-electron model.
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High-temperature power-series expansions for the free energy of a classical Heisenberg ferromagnet in
an applied Geld are given in the form

—Ii/EAT= Z ay~, )h2"x',

where h=gPIJ/AT and x= J/kT. The coefacients are given for l&7 and 4&2n&10. Estimates of the critical
exponents for the fourth to tenth Geld derivatives of E are given.

I. INTRODUCTION

" 'N recent years much work has been done on obtaining
. . high-temperature series expansions of thermodyna-
mic functions for the Heisenberg model and the esti-
mation, from these series, of various critical parameters.
For general spin only six terms of the susceptibility
expansion and 6ve terms of the specific-heat expansion
are known. ' For the special cases of S=—', and S=
further terms are known. Baker e3 al.' have given the
free energy for the S=-,' Heisenberg model to order
I/Tio Dor the bcc and simple cubic (sc) latticesg and
I/P' (for the fcc lattice) and also the field dependence
in powers of the applied Geld B up to (H/T) '.

It is the purpose of the present paper to present the
results of a similar calculation for the S= ao Heisen-
berg model. Currently, high-temperature expansions
for the zero-Geld susceptibility and speciGc heat are
known to 8 and 9 terms for close-packed lattices and
9 and 10 terms for open lattices, respectively, using
this model. ' %e shall give the temperature and Q.eld
dependence to orders I/T' and (H/T)".
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In Sec. II we shall describe how the calculation was
performed. Section III will be concerned with the
susceptibility series, Sec. IV with the high-temperature
series proportional to powers of the applied field greater
than 2. Finally, in Sec. V we consider some two-dimen-
sional lattices.

II. CALCULATION OF THE FREE ENERGY

%e start with the Hamiltonian

ac= —2~+ st'& st &-gpaP s.&'&=3:,+x,

where J is the exchange-energy constant for nearest-
neighbor interactions, S~') the spin vector on lattice
site i, g the gyromagnetic ratio, p the Bohr magneton,
and H the applied Geld (taken to be in the s direction).
We use the abbreviation S(5+I) =X.

We introduce a new vector T&"=S"&/QX. It is then
easily seen that in the limit S~oo, T") becomes a
unit classical vector. In terms of the vectors T&@ the
Hamiltonian becomes

X=—2JXQ T&'&. T&t&—gPHQXQ T,"&. (2)

In the following we shall write J for Jx and B for


