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Ayylication of these ideas can be made to a wide
variety of allied problems. For example, the
highest 8, D, and P terms of f' should result from
the coupling (Px P)I., since P is the uppermost
term off' for which all mz = —,

' or all ms = ——,. We
should therefore expect the ordering Eg & ED & Ey,
which holds for P2, to be satisfied for the highest
terms of f~. A detailed calculation' shows that
this is indeed so. The chief advantage of this
kind of ayyroach is that it gives a broad under-
standing of relative term energies in certain cir-
cumstances; to obtain really accurate results a
suyeryosition of all possible basis states is re-
qull ed,

FIG. 1. The upper sequence of terms is calculated by
diagonallzing the complete 4f matrices, assuming hy-
drogenic eigenfunctjons. Only the lowest term with a
given I is represented. The lower sequence of terms
is calculated in the approximation that (a) the character
of the eigenfunctions of the terms in question is deter-
mined principally by the coupbng (I x I)I,; and (b) within
the I term off3, tensors of rank 6 predominate.

(l(t. 88) I

for small I.; but it does not work well for I.& 6.
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A scheme is presented for giving a coinpplete classjfication of the states of the atomic
configurations g~. Repeated terms are separated by diagonalizing an operator e that
has, as its analog in the f shell, the operator that classifies states according to the
group t"&. Properties of e that are typically group-theoretical in character are noted.
Tables of fractional parentage coefficients and the energies of the terms of maximum
multiplicity al e given.

A glance at Charlotte Moore's comyilation of
atomic energy levels' reveals that single g elec-
trons have been observed in many atoms and ions.
Theoretical preyarations for g' were made as long
ago a8 1938 by Shortley and Fried. ' Shudeman, s

Karayianis, ~ and Wybourne' have counted and yar-

tially classified the states of g+. The classifica-
tion» as lt stands at yresent» ls inadequate because
many like terms (i.e. , terms with the same quan-
tum numbers 8 and L, ) are not separated by the
grouys used. It is the yuryose of this article to
give a method of uniquely syecifying the states of
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the g shell. Such a method is particularly valu-
able at a time when interest in super-heavy atoms
and complex atomic configurations is increasing;
but as will be seen from the subsequent discussion,
it uncovers a theoretical problem that is of con-
siderable interest in its own right.

The scheme we choose to adopt for defining the
states of the g shell is based on a separation of
the electrons according to their spin orientations,
m~. All those electrons with spin up are con-
sidered to lie in a space A; all those with spin
down in a space B. A state of g+ is defined by
writing

1([A~] 7~L~ && [A~] 7~L~)LML),

as has been described in detail elsewhere. ' The
tableaux [&g) and [Xfl] are both of the type
[11...1]; the number (n or P) of symbols 1 gives
the number of electrons in each space. Evidently

N= n+P, M& = 2(o.-P) .

However, it is highly desirable to have some sys. -

tematic procedure for constructing the cfp of the
duplicated terms. In the case of the f shell, the
classification through the group G, is equivalent
to diagonalizing the scalar two-body operator

~(v &s&.v &5&)]—Z

where v( ) is a single-electron tensor operator
with reduced matrix element (2k + 1)'I'. The oper-
ator e' transforms according to the representa-
tions (111)of f&!, and (00) of G, .' Although there is
no analog of the group G, in the case of g electrons,
we can nevertheless construct an operator that is
scalar and transforms according to the represen-
tation (1111)of R,. It is

e = Z 11(v."'v "&)-14(v "'~v ")
i&j~ 0 2' j

Because of the alignments of the spins in the A
space, only those LA values occur that corre-
spond to the terms of maximum multiplicity in
g~. There are several duplications. The dis-
tinguishing symbol v~ is required to separate a
pair of I' terms when n =3 or 6, and the pairs
D, G, andrwhen @=4 or 5. Similar remarks
apply to the B space.

A direct way to give meaning to the symbols vA
and 7B is to construct coefficients of fractional
parentage (cfp) for the terms of maximum multi-
plicity in g' and g4. If we use the scheme (1),
there is no need to construct any other cfp, since
we can always exploit the electron-hole symmetry
in the A space or in the B space when necessary.

5(v &5&. v &5&) + 8(v &7&.v &7&)]

Any operator belonging to (1111)must have van-
ishing matrix elements for the singlets of g',
and this condition enables the coefficients in the
above expression for e to be obtained.

The procedure of Redmond' is the most conve-
nient for calculating the required cfp. The results
are set out in Tables I and II. All duplicated
terms can be separated by diagonalizing e, and
the eigenvalues (e) are included in the tables.
What is especially remarkable is the frequent
occurrence of repeated eigenvalues. For example,
in g we find (e) = 15 four times and (e) = -9 four

TABLE I. Coefficients of fractional parentage for g .

3Q

27'

126
1

12' 33 32'

6006 2816 -486

2970 363 ~1372 -275 960

6435 -1859 546 1650 2380

429 52 -275 102

3861

13' 0

1105 -704
1

33

-2052
1

-10

The number D is a common divisor for a11 entries standing to the right.
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TABLE II. Coefficients of fractional parentage for g,

4g 4F 4F 4a 4I

S -18

'D- -33 1120

5280

1848 231'

1573
1

-275

-572

44
1

-208

819

-315

-2816

-385

364
1

-28
1

-26
1

408

2 558558

G' -29 40920 10571
1

~33 -5616

1 1
148720 -47386

1

1365 -13650

-13104 -137984 131040 80325
1

9520

H -9 17160 2028
1

-1144' 2888 -4680 -1760
1

-325
1

60 -4275

-9 112112 1001 -4732 -22295 10780 24752 48552

51 15 583440
1

206635 5780 -33813 --89012 -70720 27000
1

150480

5X -9 240240
1 1

1144 41472 22932 2618 -63869 57000 51205

5N 15 2856

15 194480 16796 -63954
1

425 660

9945 -33000 -70785
1

-1771

The number D is a common divisor for all entries standing to the right.

times. Repetitions of this kind are characteris-
tic of eigenfunctions belonging to a common irre-
ducible representation of a group; and yet a de-
tailed study has failed to uncover any group which
is a subgroup of R, and which, at the same time,
possesses as a subgroup the rotation group R, in
ordinary three-dimensional space. ' At the mo-
ment, the reason for the repeated eigenvalues is
obscure. It would be very interesting to see
whether analogous repetitions occur for h elec-
trons.

The tables of cfp have been used to calculate
the energies of the terms of maximum multiplicity
for the g shell. Although there are five Slater
integrals FI (k =0, 2, 4, 6, and 8), the relative
energies of these terms depend on only two linear
combinations of these quantities, namelye

F= 3(5E, + 10F~-3F,-68F,)

and Z =3(7F,-35F4+27F, + 17Fs) .

3p

H, K

4

4H

4p

4F

D

's
G

I
F

5
L
I
D

5G

K

If the radial eigenfunction R is strongly peaked at
a certain radial distance a [i.e. , if R- 6(r-a)j,
then Z(0; as the function broadens out, Zpasses
through zero and becomes positive. The zero
corresponds quite closely to hydrogenic 5g eigen-
functions. ' To simplify the analysis, it is con-
venient to set Z=0. All spacings (for terms of
maximum multiplicity) involve just one quantity,
Y. The term schemes can thus be drawn out
subject to a single scaling factor; this is done
in Fig. 1. The actual numerical values are col-
lected in Table III.

I'IG. 1. Relative energies of the terms of maximum

multiplicity for g,g, and g . The assumption for g
that E( H) = E( K) corresponds closely to the situation
for a hydrogenic 5g eigenfunction. As is made clear in

Table III, the term patterns for other g configurations
are simply related to the ones drawn out here.
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Configuration

g2 g7 gii gi6

gs g6 gi2 gi5

g4 g5 gi3 gi4

I'

H, X
P

G
H
I
X
M
S
D

G

H
I
K
I
N

1001
221

-175
91

485+ 286 276'
455
595

-381
-185
-525

910
576+ 592036~

494
240+ 303 300~

350
240+ 91396'

-430
-14

-850

TABLE III. Relative energies of terms of maximum
multiplicity for g+ in units of F/12.
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A hydrogenic 5g eigenfunction gives a small negative
value to Z, not a positive value as stated in Ref. 6.

Photo-Ionization of the Hydrogen Molecule
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One-center wave functions are employed to investigate the photo-ionization of the hydrogen
molecule from its ground state X(lsc rg+), from 700 to 300 L. It is assumed that the re-
sidual ion is left in its ground state, and the free electron is in a po. or pm orbital. Using
the one-center wave functions for 82+ for the internuclear distance equal to 1.4ao, the free-
electron wave functions are obtained by solving the integrodifferential equations in exchange
and polarized-orbital approximations. The oscillator strengths obtained in the polarized-
orbital approximation are found to be in satisfactory agreement with the experimental data.

I. INTRODUCTION

Recently the author' ' has employed one-center
wave functions for the hydrogen molecule to in-
vestigate the direct and the exchange excitation
of the molecule due to electron bombardment.
For these bound-bound transitions, satisfactory
agreement between the theory and the experiment
has been obtained. Hence it seems interesting to
extend the use of one-center wave functions to the
investigation of the bound-free transitions.

In 1960, Shimizu investigated the photo-ioniza-
tion of the hydrogen molecule. He employed two-
center wave functions for H, and H, . However,
the free electron was represented by a plane wave,
which is not likely to be a good approximation.
Flannery and Opik, ' in 1965, reinvestigated the
problem, again employing two-center wave func-
tions for H, and H,+. To obtain the wave function
of the free electron, they considered its motion
in the field of two positive charges, each of half

a unit, separated by a distance. Thus, the solu-
tion of the continuum orbital was obtained for a
one-electron system. The use of these solutions
in the computation of the matrix elements of the
photo-ionization cross section completely ignores
the effects of the departure of the static field from
the two-point charge field, of the exchange of the
free electron with the bound electron, and of the
polarization of the bound-electron orbital .by the
free electron, One- center wave functions provide
an easy means of studying all the above-mentioned
effects which are found to be of significance in
atomic systems.

Recently, Temkin and Vasavada' have analyzed
the electron-molecule scattering problem in
spherical coordinates. In addition, they have
generalized the method of yolarized orbitals to
treat the electron scattering from diatomic mole-
cules, with specific ayylication to H2 . The chief
idea of their method is the utilization of a single-
center expansion for the target system. Their


