

FIG. 1. The upper sequence of terms is calculated by diagonalizing the complete $4f^6$ matrices, assuming hydrogenic eigenfunctions. Only the lowest term with a given L is represented. The lower sequence of terms is calculated in the approximation that (a) the character of the eigenfunctions of the terms in question is determined principally by the coupling $(I \times I)L$; and (b) within the I term of f^3 , tensors of rank 6 predominate.

to Racah.⁸ For our purposes, it runs

$$
(-1)^{L} \left\{ \begin{matrix} L & 6 & 6 \\ 6 & 6 & 6 \end{matrix} \right\} \simeq \frac{P_{L}(\frac{1}{2})}{13}
$$

for small L; but it does not work well for $L > 6$.

Application of these ideas can be made to a wide variety of allied problems. For example, the variety of allea problems. For example, the highest S, D, and P terms of $f⁴$ should result from the coupling $(P \times P)L$, since P is the uppermost
term of f^2 for which all $m_S = \frac{1}{2}$ or all $m_S = -\frac{1}{2}$. We should therefore expect the ordering E_S $>$ E_D $>$ E_P , which holds for p^2 , to be satisfied for the highes terms of f^4 . A detailed calculation⁹ shows that this is indeed so. The chief advantage of this kind of approach is that it gives a broad understanding of relative term energies in certain circumstances; to obtain really accurate results a suyeryosition of all possible basis states is required.

*This work was partially supported by the United States Atomic Energy Commission.

 1 B. R. Judd, Phys. Rev. 162, 28 (1967).

²B. R. Judd and L. Armstrong Jr., Proc. Roy. Soc. (London) to be published.

 $3J.$ B. Gruber and J. G. Conway, J. Chem. Phys. 34 , 632 (1961).

⁴A. R. Edmonds, Angular Momentum in Quantum Mechanics (Princeton University Press, Princeton, N.J., 1957).

 ${}^5C.$ W. Nielson and G. F. Koster, Spectroscopic Coefficients for the p^n , d^n , and f^n Configurations (Massachusetts Institute of Technology Press, Cambridge, Mass., 1963).

 E . U. Condon and G. H. Shortley, The Theory of Atomic Spectra (Cambridge University Press, New York, 1935).

 7 B. R. Judd, Operator Techniques in Atomic Spectroscopy (McGraw-Hill Book Company, Inc., New York, 1963). ${}^{8}G$. Racah, Ergebnisse der exacten Naturwissenschaften

(Springer-Verlag, New York, 1965), Vol. 37, p. 69. 9 J. P. Elliott, B. R. Judd, and W. A. Runciman, Proc.

Roy. Soc. (London) A240, 5D9 (1957),

Atomic g Electrons*

B. R. Judd

The Johns Hopkins University, Baltimore, Maryland (Received 15 April 1968)

A scheme is presented for giving a complete classification of the states of the atomic configurations g^N . Repeated terms are separated by diagonalizing an operator e that has, as its analog in the f shell, the operator that classifies states according to the group G_2 . Properties of e that are typically group-theoretical in character are noted. Tables of fractional parentage coefficients and the energies of the terms of maximum multiplicity are given.

A glance at Charlotte Moore's comyilation of atomic energy levels¹ reveals that single g electrons have been observed in many atoms and ions. Theoretical preparations for g^2 were made as long ago as 1938 by Shortley and Fried.² Shudeman,³ Karayianis, 4 and Wybourne⁵ have counted and partially classified the states of g^N . The classification, as it stands at present, is inadequate because many like terms $(i, e, , \text{ terms with the same quan-}$ tum numbers S and L) are not separated by the grouys used. It is the yuryose of this article to give a method of uniquely syecifying the states of

the g shell. Such a method is particularly valuable at a time when interest in super-heavy atoms and complex atomic configurations is increasing; but as will be seen from the subsequent discussion, it uncovers a theoretical problem that is of considerable interest in its own right.

The scheme we choose to adopt for defining the states of the g shell is based on a separation of the electrons according to their spin orientations, m_s . All those electrons with spin up are considered to lie in a space A ; all those with spin
down in a space B . A state of $g^{\tilde{N}}$ is defined by writing

$$
|\left([\lambda_A]\tau_A L_A \times [\lambda_B]\tau_B L_B\right) L M_L\rangle\,,\tag{1}
$$

as has been described in detail elsewhere.⁶ The tableaux $[\lambda_A]$ and $[\lambda_B]$ are both of the type $[11, .1]$; the number $(\alpha \text{ or } \beta)$ of symbols 1 gives the number of electrons in each space. Evidently

 $N=\alpha+\beta$, $M_{S}=\frac{1}{2}(\alpha-\beta)$.

Because of the alignments of the spins in the A space, only those L_A values occur that correspond to the terms of maximum multiplicity in g^{α} . There are several duplications. The distinguishing symbol τ_A is required to separate a pair of F terms when $\alpha = 3$ or 6, and the pairs D, G, and I when $\alpha = 4$ or 5. Similar remarks apply to the B space.

A direct way to give meaning to the symbols τ_A and τ_B is to construct coefficients of fractional parentage (cfp) for the terms of maximum multiplicity in g^3 and g^4 . If we use the scheme (1), there is no need to construct any other cfp, since we can always exploit the electron-hole symmetry in the A space or in the B space when necessary.

However, it is highly desirable to have some systematic procedure for constructing the cfp of the duplicated terms. In the case of the f shell, the classification through the group G_2 is equivalent to diagonalizing the scalar two-body operator

$$
e' = \sum_{i > j} \left[\underbrace{(v_i^{(1)} \cdot v_j^{(1)}) - 2(v_i^{(s)} \cdot v_j^{(s)})}_{+ \underbrace{(v_i^{(s)} \cdot v_j^{(s)})}, \right]
$$

where $v^{(k)}$ is a single-electron tensor operator with reduced matrix element $(2k + 1)^{1/2}$. The operator e' transforms according to the representations (111) of R_7 and (00) of G_2 .⁷ Although there is no analog of the group G_2 in the case of g electrons, we can nevertheless construct an operator that is scalar and transforms according to the representation (1111) of R_{9} . It is

Z

$$
e = \sum_{i > j} \left[11(\underline{v}_i^{(1)} \underline{v}_j^{(1)}) - 14(\underline{v}_i^{(3)} \underline{v}_j^{(3)}) - 5(\underline{v}_i^{(5)} \underline{v}_j^{(5)}) + 8(\underline{v}_i^{(7)} \underline{v}_j^{(7)}) \right].
$$

Any operator belonging to (1111) must have vanishing matrix elements for the singlets of g^2 , and this condition enables the coefficients in the above expression for e to be obtained.

The procedure of Redmond⁸ is the most convenient for calculating the required cfp. The results are set out in Tables I and II. All duplicated terms can be separated by diagonalizing e , and the eigenvalues $\langle e \rangle$ are included in the tables. What is especially remarkable is the frequent occurrence of repeated eigenvalues. For example, in g^4 we find $\langle e \rangle$ = 15 four times and $\langle e \rangle$ = -9 four

TABLE I. Coefficients of fractional parentage for g^3 .

			g^2					
$g^3\,$	$\langle e \rangle$	D^{a}	$3_{\mathcal{P}}$	3F	3H	3K		
4P	-29	$27^{\frac{1}{2}}$	$\bf{0}$	$14^{\frac{1}{2}}$	$13^{\frac{1}{2}}$	$\bf{0}$		
$^4\!F$	11	$126^{\frac{1}{2}}$	7	$12^{\tfrac{1}{2}}$	$33^{\frac{1}{2}}$	$32^{\frac{1}{2}}$		
4F'	-24	$6006^{\frac{1}{2}}$	$\mathbf{0}$	-52	$2816^{\frac{1}{2}}$	$-486^{\frac{1}{2}}$		
$^4\!G$	-9	$2970^{\tfrac{1}{2}}$	$363^{\frac{1}{2}}$	$-1372^{\frac{1}{2}}$	$-275^{\frac{1}{2}}$	$960^{\frac{1}{2}}$		
^{4}H	11	$6435^{\frac{1}{2}}$	$-1859^{\frac{1}{2}}$	$546^{\frac{1}{2}}$	$1650^{\frac{1}{2}}$	$2380^{\frac{1}{2}}$		
4 _I	-9	$429^{\frac{1}{2}}$	$\mathbf{0}$	$52^{\frac{1}{2}}$	$-275^{\frac{1}{2}}$	$102^{\frac{1}{2}}$		
4K	-2	$3861^{\frac{1}{2}}$	$\mathbf{0}$	$1105^{\frac{1}{2}}$	$-704^{\frac{1}{2}}$	$-2052^{\frac{1}{2}}$		
4M	15	$13^{\frac{1}{2}}$	$\mathbf{0}$	$\mathbf 0$	$3^{\frac{1}{2}}$	$-10^{\frac{1}{2}}$		

 a ²The number *D* is a common divisor for all entries standing to the right.

				ρ^3							
g^4		$\langle e \rangle$ $\qquad \qquad D^{\rm a}$	^{4}P	$^4\!F$	4F'	4G	4H	4 _I	4K	4M	
5S	-18	$\overline{1}$	$\pmb{0}$	$\overline{\mathbf{0}}$	$\overline{\mathbf{0}}$	$\mathbf{1}$	θ	$\mathbf{0}$	θ	$\mathbf{0}$	
5D	-33	$1120^{\frac{1}{2}}$	$\overline{\mathbf{0}}$	-3	$-572^{\frac{1}{2}}$	$175^{\frac{1}{2}}$	$\bf{0}$	$364^{\frac{1}{2}}$	$\mathbf{0}$	$\bf{0}$	
$^5D'$	15	$5280^{\frac{1}{2}}$	$\overline{\mathbf{0}}$		$1573^{\frac{1}{2}}$ $44^{\frac{1}{2}}$	$819^{\textstyle{\frac{1}{2}}}$	$-2816^{\frac{1}{2}}$	$-28^{\frac{1}{2}}$	θ	Ω	
$^5\!F$	-9	$1848^{\textstyle{\frac{1}{2}}}$	$231^{\tfrac{1}{2}}$		$-275^{\frac{1}{2}}$ $-208^{\frac{1}{2}}$	$-315^{\frac{1}{2}}$	$-385^{\frac{1}{2}}$	$-26^{\frac{1}{2}}$	$408^{\frac{1}{2}}$	Ω	
5G		$\begin{matrix} 2 & 558558 \end{matrix}^{\frac{1}{2}}$ 0					$148720^{\frac{1}{2}}$ $-47385^{\frac{1}{2}}$ $-13104^{\frac{1}{2}}$ $-137984^{\frac{1}{2}}$ $131040^{\frac{1}{2}}$		$80325^{\frac{1}{2}}$	$\mathbf{0}$	
${}^5G'$	-29	$40920^{\frac{1}{2}}$					$10571^{\frac{1}{2}}$ $-33^{\frac{1}{2}}$ $-5616^{\frac{1}{2}}$ $1365^{\frac{1}{2}}$ $-165^{\frac{1}{2}}$	$-13650^{\frac{1}{2}}$	$9520^{\frac{1}{2}}$		
^{5}H		-9 $17160^{\frac{1}{2}}$ $2028^{\frac{1}{2}}$					$-1144^{\frac{1}{2}}$ $2888^{\frac{1}{2}}$ $-4680^{\frac{1}{2}}$ $-1760^{\frac{1}{2}}$ $-325^{\frac{1}{2}}$		$60^{\frac{1}{2}}$	$-4275^{\frac{1}{2}}$	
^{5}I							-9 $112112^{\frac{1}{2}}$ 0 $1001^{\frac{1}{2}}$ $-4732^{\frac{1}{2}}$ $-22295^{\frac{1}{2}}$ $10780^{\frac{1}{2}}$ $24752^{\frac{1}{2}}$		$48552^{\textstyle{\frac{1}{2}}}$		
5I'		$15 \quad 583440^{\frac{1}{2}} \qquad 0$					$206635^{\frac{1}{2}}$ $5780^{\frac{1}{2}}$ $-33813^{\frac{1}{2}}$ $-89012^{\frac{1}{2}}$ $-70720^{\frac{1}{2}}$		$27000^{\frac{1}{2}}$	$150480^{\textstyle \frac{1}{2}}$	
$^5\!K$		-9 240240 ^{$\frac{1}{2}$}	$\mathbf{0}$				$1144^{\tfrac{1}{2}}$ $41472^{\tfrac{1}{2}}$ $22932^{\tfrac{1}{2}}$ $2618^{\tfrac{1}{2}}$	$-63869^{\frac{1}{2}}$	$57000^{\frac{1}{2}}$	51205 $^{\textstyle \frac{1}{2}}$	
^{5}L		$15 \quad 194480^{\frac{1}{2}}$	$\mathbf{0}$	$\begin{matrix} 0 & 0 \end{matrix}$		$16796^{\frac{1}{2}}$	$-63954^{\frac{1}{2}}$		$9945^{\frac{1}{2}}$ $-33000^{\frac{1}{2}}$	$-70785^{\frac{1}{2}}$	
5N	15	$2856^{\frac{1}{2}}$	$\pmb{0}$	$\mathbf{0}^-$	$\overline{\mathbf{0}}$		$\begin{array}{ccccccc}\n & & & & & 0 & & & & 0\n\end{array}$	$425^{\frac{1}{2}}$	$660^{\textstyle{\frac{1}{2}}}$	$-1771^{\frac{1}{2}}$	

TABLE II. Coefficients of fractional parentage for $g⁴$.

The number D is a common divisor for all entries standing to the right.

times. Repetitions of this kind are characteristic of eigenfunctions belonging to a common irreducible representation of a group; and yet a detailed study has failed to uncover any group which is a subgroup of $R₉$ and which, at the same time, possesses as a subgroup the rotation group R_3 in ordinary three-dimensional space.⁹ At the moment, the reason for the repeated eigenvalues is obscure. It would be very interesting to see whether analogous repetitions occur for h electrons.

The tables of cfp have been used to calculate the energies of the terms of maximum multiplicity for the g shell. Although there are five Slater integrals $F_k(k=0, 2, 4, 6, \text{ and } 8)$, the relative energies of these terms depend on only two linear combinations of these quantities, namely⁶

 $Y= 3(5F₂+10F₄-3F₆-68F₈)$

and
$$
Z = 3(7F_2 - 35F_4 + 27F_6 + 17F_8)
$$
.

If the radial eigenfunction R is strongly peaked at a certain radial distance $a[i, e_{i}, if R - \delta(r-a)]$, then $Z<0$; as the function broadens out, Z passes through zero and becomes positive. The zero corresponds quite closely to hydrogenic 5g eigenfunctions.¹⁰ To simplify the analysis, it is convenient to set $Z=0$. All spacings (for terms of maximum multiplicity) involve just one quantity, Y. The term schemes can thus be drawn out subject to a single scaling factor; this is done in Fig. 1. The actual numerical values are collected in Table III.

I'IG. 1. Relative energies of the terms of maximum multiplicity for g^2 , g^3 , and g^4 . The assumption for g^2 that $E({}^3H) = E({}^3K)$ corresponds closely to the situation for a hydrogenic 5g eigenfunction. As is made clear in Table III, the term patterns for other g^N configurations are simply related to the ones drawn out here.

* This work was partially supported by the United States Atomic Energy Commission.

¹C. E. Moore, Atomic Energy Levels (U. S. Government Printing Office, Washington, D. C., 1949, 1952, 1958), Vols. I, II, and III.

 2 G. H. Shortley and B. Fried, Phys. Rev. 54 , 739 (1938).

3C. L. B. Shudeman, J. Franklin Inst. 224, ⁵⁰¹ (1937).

 4 N. Karayianis, J. Math. Phys. 6, 1204 (1965).

⁵B. G. Wybourne, J. Chem. Phys. 45, 1100 (1966).

⁶B. R. Judd, Phys. Rev. 162, 28 (1967).

 7 B. R. Judd, Phys. Rev. 141, 4 (1966).

 ${}^{8}P.$ J. Redmond, Proc. Roy. Soc. (London) $A222$, 84 (1954) .

⁹H. Wadzinski, private communication.

 $10A$ hydrogenic 5g eigenfunction gives a small negative value to Z, not a positive value as stated in Ref. 6.

Photo-Ionization of the Hydrogen Molecule

S. P. Khare*t

Laboratory for Theoretical Studies, Goddard Space Flight Center, National Aeronautics and SpaceAdministration, Greenbelt, Maryland {Received 7 November 1967; revised manuscript received 25 March 1968)

One-center wave functions are employed to investigate the photo-ionization of the hydrogen molecule from its ground state $X(1s\sigma^1\Sigma_g^+)$, from 700 to 300 Å. It is assumed that the residual ion is left in its ground state, and the free electron is in a $p\sigma$ or $p\pi$ orbital. Using the one-center wave functions for H_2 ⁺ for the internuclear distance equal to 1.4 a_0 , the freeelectron wave functions are obtained by solving the integrodifferential equations in exchange and polarized-orbital approximations. The oscillator strengths obtained in the polarizedorbital approximation are found to be in satisfactory agreement with the experimental data.

I. INTRODUCTION

Recently the author¹⁻³ has employed one-center wave functions for the hydrogen molecule to investigate the direct and the exchange excitation of the molecule due to electron bombardment. For these bound-bound transitions, satisfactory agreement between the theory and the experiment has been obtained. Hence it seems interesting to extend the use of one-center wave functions to the investigation of the bound-free transitions.

In 1960, Shimizu⁴ investigated the photo-ionization of the hydrogen molecule. He employed twocenter wave functions for H_2 and H_2^+ . However, the free electron was represented by a plane wave, which is not likely to be a good approximation. which is not likely to be a good approximation.
Flannery and Opik,⁵ in 1965, reinvestigated the problem, again employing two-center wave functions for H_2 and H_2^+ . To obtain the wave function of the free electron, they considered its motion in the field of two positive charges, each of half

a unit, separated by a distance. Thus, the solution of the continuum orbital was obtained for a one-electron system. The use of these solutions in the computation of the matrix elements of the photo-ionization cross section completely ignores the effects of the departure of the static field from the two-point charge field, of the exchange of the free electron with the bound electron, and of the polarization of the bound-electron orbital by the free electron, One- center wave functions provide an easy means of studying all the above-mentioned effects which are found to be of significance in atomic systems.

Recently, Temkin and Vasavada' have analyzed the electron-molecule scattering problem in spherical coordinates. In addition, they have generalized the method of yolarized orbitals to treat the electron scattering from diatomic molecules, with specific application to H_2^+ . The chief idea of their method is the utilization of a singlecenter expansion for the target system. Their