THE PHYSICAL REVIEW

FIG. 1. The upper sequence of terms is calculated by diagonalizing the complete $4f^6$ matrices, assuming hydrogenic eigenfunctions. Only the lowest term with a given *L* is represented. The lower sequence of terms is calculated in the approximation that (a) the character of the eigenfunctions of the terms in question is determined principally by the coupling $(I \times I)L$; and (b) within the *I* term of f^3 , tensors of rank 6 predominate.

to Racah.⁸ For our purposes, it runs

$$(-1)^{L} \left\{ \begin{array}{c} L & 6 & 6 \\ 6 & 6 & 6 \end{array} \right\} \simeq \frac{P_{L}^{\left(\frac{1}{2}\right)}}{13}$$

for small L; but it does not work well for L > 6.

Application of these ideas can be made to a wide variety of allied problems. For example, the highest S, D, and P terms of f^4 should result from the coupling $(P \times P)L$, since P is the uppermost term of f^2 for which all $m_S = \frac{1}{2}$ or all $m_S = -\frac{1}{2}$. We should therefore expect the ordering $E_S > E_D > E_P$, which holds for p^2 , to be satisfied for the highest terms of f^4 . A detailed calculation⁹ shows that this is indeed so. The chief advantage of this kind of approach is that it gives a broad understanding of relative term energies in certain circumstances; to obtain really accurate results a superposition of all possible basis states is required.

*This work was partially supported by the United States Atomic Energy Commission.

¹B. R. Judd, Phys. Rev. <u>162</u>, 28 (1967).

²B. R. Judd and L. Armstrong Jr., Proc. Roy. Soc. (London) to be published.

³J. B. Gruber and J. G. Conway, J. Chem. Phys. <u>34</u>, 632 (1961).

⁴A. R. Edmonds, <u>Angular Momentum in Quantum</u> <u>Mechanics</u> (Princeton University Press, Princeton, N.J., 1957).

⁵C. W. Nielson and G. F. Koster, <u>Spectroscopic Co-</u> efficients for the p^n , d^n , and f^n Configurations (Massachusetts Institute of Technology Press, Cambridge, Mass., 1963).

⁶E. U. Condon and G. H. Shortley, <u>The Theory of Atomic Spectra</u> (Cambridge University Press, New York, 1935).

⁷B. R. Judd, <u>Operator Techniques in Atomic Spectros-</u> <u>copy</u> (McGraw-Hill Book Company, Inc., New York, 1963). ⁸G. Racah, Ergebnisse der exacten Naturwissenschaften

(Springer-Verlag, New York, 1965), Vol. 37, p. 69. ⁹J. P. Elliott, B. R. Judd, and W. A. Runciman, Proc.

Roy. Soc. (London) $\underline{A240}$, 509 (1957).

Atomic g Electrons*

B. R. Judd

The Johns Hopkins University, Baltimore, Maryland (Received 15 April 1968)

A scheme is presented for giving a complete classification of the states of the atomic configurations g^N . Repeated terms are separated by diagonalizing an operator e that has, as its analog in the f shell, the operator that classifies states according to the group G_2 . Properties of e that are typically group-theoretical in character are noted. Tables of fractional parentage coefficients and the energies of the terms of maximum multiplicity are given.

A glance at Charlotte Moore's compilation of atomic energy levels¹ reveals that single g electrons have been observed in many atoms and ions. Theoretical preparations for g^2 were made as long ago as 1938 by Shortley and Fried.² Shudeman,³ Karayianis,⁴ and Wybourne⁵ have counted and partially classified the states of g^N . The classification, as it stands at present, is inadequate because many like terms (i.e., terms with the same quantum numbers S and L) are not separated by the groups used. It is the purpose of this article to give a method of uniquely specifying the states of

the g shell. Such a method is particularly valuable at a time when interest in super-heavy atoms and complex atomic configurations is increasing; but as will be seen from the subsequent discussion, it uncovers a theoretical problem that is of considerable interest in its own right.

The scheme we choose to adopt for defining the states of the g shell is based on a separation of the electrons according to their spin orientations, $m_{\rm S}$. All those electrons with spin up are considered to lie in a space A; all those with spin down in a space B. A state of g^N is defined by writing

$$|([\lambda_A] \tau_A L_A \times [\lambda_B] \tau_B L_B) L M_L \rangle , \qquad (1)$$

as has been described in detail elsewhere.⁶ The tableaux $[\lambda_A]$ and $[\lambda_B]$ are both of the type [11...1]; the number (α or β) of symbols 1 gives the number of electrons in each space. Evidently

$$N = \alpha + \beta$$
, $M_S = \frac{1}{2}(\alpha - \beta)$.

Because of the alignments of the spins in the A space, only those L_A values occur that correspond to the terms of maximum multiplicity in g^{α} . There are several duplications. The distinguishing symbol τ_A is required to separate a pair of F terms when $\alpha = 3$ or 6, and the pairs D, G, and I when $\alpha = 4$ or 5. Similar remarks apply to the B space.

A direct way to give meaning to the symbols au_A and τ_B is to construct coefficients of fractional parentage (cfp) for the terms of maximum multiplicity in g^3 and g^4 . If we use the scheme (1), there is no need to construct any other cfp, since we can always exploit the electron-hole symmetry in the A space or in the B space when necessary.

However, it is highly desirable to have some systematic procedure for constructing the cfp of the duplicated terms. In the case of the f shell, the classification through the group G_2 is equivalent to diagonalizing the scalar two-body operator

$$e' = \sum_{i>j} \left[(\underline{v}_i^{(1)} \cdot \underline{v}_j^{(1)}) - 2(\underline{v}_i^{(3)} \cdot \underline{v}_j^{(3)}) + (\underline{v}_i^{(5)} \cdot \underline{v}_j^{(5)}) \right],$$

where $v^{(k)}$ is a single-electron tensor operator with reduced matrix element $(2k+1)^{1/2}$. The operator e' transforms according to the representations (111) of R_7 and (00) of G_2 .⁷ Although there is no analog of the group G_2 in the case of g electrons, we can nevertheless construct an operator that is scalar and transforms according to the representation (1111) of R_{9} . It is

$$e = \sum_{i>j} [11(\underline{v}_{i}^{(1)}, \underline{v}_{j}^{(1)}) - 14(\underline{v}_{i}^{(3)}, \underline{v}_{j}^{(3)}) - 5(\underline{v}_{i}^{(5)}, \underline{v}_{j}^{(5)}) + 8(\underline{v}_{i}^{(7)}, \underline{v}_{j}^{(7)})].$$

Any operator belonging to (1111) must have vanishing matrix elements for the singlets of g^2 , and this condition enables the coefficients in the above expression for e to be obtained.

The procedure of Redmond⁸ is the most convenient for calculating the required cfp. The results are set out in Tables I and II. All duplicated terms can be separated by diagonalizing e, and the eigenvalues $\langle e \rangle$ are included in the tables. What is especially remarkable is the frequent occurrence of repeated eigenvalues. For example, in g^4 we find $\langle e \rangle = 15$ four times and $\langle e \rangle = -9$ four

TABLE I. Coefficients of fractional parentage for g^3 .

				g^2					
g^3	$\langle e \rangle$	$D^{\mathfrak{A}}$	^{3}P	^{3}F	^{3}H	³ K			
^{4}P	-29	$27^{\frac{1}{2}}$	0	$14^{\frac{1}{2}}$	$13^{\frac{1}{2}}$	0			
${}^4\!F$	11	$126^{\frac{1}{2}}$	7	$12^{rac{1}{2}}$	$33^{\frac{1}{2}}$	$32^{\frac{1}{2}}$			
${}^{4}F'$	-24	$6006^{\frac{1}{2}}$	0	-52	$2816^{\frac{1}{2}}$	$-486^{\frac{1}{2}}$			
${}^{4}G$	-9	$2970^{\frac{1}{2}}$	$363^{\frac{1}{2}}$	$-1372^{\frac{1}{2}}$	$-275^{\frac{1}{2}}$	$960^{\frac{1}{2}}$			
^{4}H	11	$6435^{\frac{1}{2}}$	$-1859^{\frac{1}{2}}$	$546^{\frac{1}{2}}$	$1650^{\frac{1}{2}}$	$2380^{\frac{1}{2}}$			
^{4}I	-9	$429^{\frac{1}{2}}$	0	$52^{\frac{1}{2}}$	$-275^{\frac{1}{2}}$	$102^{\frac{1}{2}}$			
${}^{4}K$	-2	$3861^{\frac{1}{2}}$	0	$1105^{\frac{1}{2}}$	$-704^{\frac{1}{2}}$	$-2052^{\frac{1}{2}}$			
^{4}M	15	$13^{\frac{1}{2}}$	0	0	$3^{\frac{1}{2}}$	$-10^{\frac{1}{2}}$			

^a The number D is a common divisor for all entries standing to the right.

		g^3								
g^4	$\langle e \rangle$	D^{a}	$\overline{{}^4P}$	${}^4\!F$	${}^{4}F'$	${}^{4}G$	^{4}H	^{4}I	${}^{4}K$	4M
⁵ S	-18	1	0	0	0	1	0	0	0	0
⁵ D:	-33	$1120^{\frac{1}{2}}$	0	-3	$-572^{\frac{1}{2}}$	$175^{\frac{1}{2}}$	0	$364^{\frac{1}{2}}$	0	0
⁵ D'	15	$5280^{\frac{1}{2}}$	0	$1573^{\frac{1}{2}}$	$44^{\frac{1}{2}}$	819 ¹ /2	$-2816^{\frac{1}{2}}$	$-28^{\frac{1}{2}}$	0	0
${}^5\!F$	-9	$1848^{\frac{1}{2}}$	$231^{\frac{1}{2}}$	$-275^{\frac{1}{2}}$	$-208^{\frac{1}{2}}$	$-315^{\frac{1}{2}}$	$-385^{\frac{1}{2}}$	$-26^{\frac{1}{2}}$	$408^{\frac{1}{2}}$	0
⁵ G	2	$558558^{\frac{1}{2}}$	0	$148720^{\frac{1}{2}}$	$-47385^{\frac{1}{2}}$	$-13104^{\frac{1}{2}}$	$-137984^{\frac{1}{2}}$	$131040^{\frac{1}{2}}$	$80325^{\frac{1}{2}}$	0
⁵G′	-29	$40920^{\frac{1}{2}}$	$10571^{\frac{1}{2}}$	$-33^{\frac{1}{2}}$	$-5616^{\frac{1}{2}}$	$1365^{\frac{1}{2}}$	$-165^{\frac{1}{2}}$	$-13650^{\frac{1}{2}}$	$9520^{\frac{1}{2}}$	0
` ⁵ H	-9	$17160^{\frac{1}{2}}$	$2028^{\frac{1}{2}}$	$-1144^{\frac{1}{2}}$	$2888^{\frac{1}{2}}$	$-4680^{\frac{1}{2}}$	$-1760^{\frac{1}{2}}$	$-325^{\frac{1}{2}}$	$60^{\frac{1}{2}}$	$-4275^{\frac{1}{2}}$
⁵ I	-9	$112112^{\frac{1}{2}}$	0	$1001^{\frac{1}{2}}$	$-4732^{\frac{1}{2}}$	$-22295^{\frac{1}{2}}$	$10780^{\frac{1}{2}}$	$24752^{\frac{1}{2}}$	$48552^{\frac{1}{2}}$	0
⁵ I′	15	$583440^{\frac{1}{2}}$	0	$206635^{\frac{1}{2}}$	$5780^{\frac{1}{2}}$	$-33813^{\frac{1}{2}}$	$-89012^{\frac{1}{2}}$	$-70720^{\frac{1}{2}}$	$27000^{\frac{1}{2}}$	$150480^{\frac{1}{2}}$
${}^{5}K$	-9	$240240^{\frac{1}{2}}$	0	$1144^{\frac{1}{2}}$	$41472^{\frac{1}{2}}$	$22932^{\frac{1}{2}}$	$2618^{\frac{1}{2}}$	$-63869^{\frac{1}{2}}$	$57000^{\frac{1}{2}}$	$51205^{\frac{1}{2}}$
^{5}L	15	$194480^{\frac{1}{2}}$	0	0	0	$16796^{\frac{1}{2}}$	$-63954^{\frac{1}{2}}$	$9945^{\frac{1}{2}}$	$-33000^{\frac{1}{2}}$	$-70785^{\frac{1}{2}}$
^{5}N	15	$2856^{\frac{1}{2}}$	0	0	0	0	0	$425^{\frac{1}{2}}$	$660^{\frac{1}{2}}$	$-1771^{\frac{1}{2}}$

TABLE II. Coefficients of fractional parentage for g^4 .

^a The number D is a common divisor for all entries standing to the right.

times. Repetitions of this kind are characteristic of eigenfunctions belonging to a common irreducible representation of a group; and yet a detailed study has failed to uncover any group which is a subgroup of R_9 and which, at the same time, possesses as a subgroup the rotation group R_3 in ordinary three-dimensional space.⁹ At the moment, the reason for the repeated eigenvalues is obscure. It would be very interesting to see whether analogous repetitions occur for h electrons.

The tables of cfp have been used to calculate the energies of the terms of maximum multiplicity for the g shell. Although there are five Slater integrals $F_k(k = 0, 2, 4, 6, \text{ and } 8)$, the relative energies of these terms depend on only two linear combinations of these quantities, namely⁶

 $Y = 3(5F_2 + 10F_4 - 3F_6 - 68F_8)$

and
$$Z = 3(7F_2 - 35F_4 + 27F_6 + 17F_8)$$
.

If the radial eigenfunction R is strongly peaked at a certain radial distance a [i.e., if $R \sim \delta(r-a)$], then Z < 0; as the function broadens out, Z passes through zero and becomes positive. The zero corresponds quite closely to hydrogenic 5g eigenfunctions.¹⁰ To simplify the analysis, it is convenient to set Z = 0. All spacings (for terms of maximum multiplicity) involve just one quantity, Y. The term schemes can thus be drawn out subject to a single scaling factor; this is done in Fig. 1. The actual numerical values are collected in Table III.

FIG. 1. Relative energies of the terms of maximum multiplicity for g^2 , g^3 , and g^4 . The assumption for g^2 that $E({}^{3}H) = E({}^{3}K)$ corresponds closely to the situation for a hydrogenic 5g eigenfunction. As is made clear in Table III, the term patterns for other g^N configurations are simply related to the ones drawn out here.

TABLE	III.	Relative	energies	of ter	\mathbf{ms}	of maximum
	mu	ltiplicity	for g^N in	ı units	of	Y/12.

Configuration	L	Energy
g^2, g^7, g^{11}, g^{16}	Р	1001
	${m F}$	221
	H, K	-175
$g^{3}, g^{6}, g^{12}, g^{15'}$	P	91 ,
	${oldsymbol{F}}$	$485 \pm 286\ 276^{2/2}$
	G	455
	H	595
	Ι	-381
	K	-185
	M	-525
g^4, g^5, g^{13}, g^{14}	S	910 ,
	D	$576 \pm 592036^{1/2}$
	$oldsymbol{F}$	494 ,
	G	$240 \pm 303\ 300^{2}$
	H	350 ,
	Ι	$240 \pm 91396^{\frac{1}{2}}$
	K	-430
	L	-14
	Ν	-850

*This work was partially supported by the United States Atomic Energy Commission.

¹C. E. Moore, <u>Atomic Energy Levels</u> (U. S. Government Printing Office, Washington, D. C., 1949, 1952, 1958), Vols. I, II, and III.

²G. H. Shortley and B. Fried, Phys. Rev. <u>54</u>, 739 (1938).

³C. L. B. Shudeman, J. Franklin Inst. <u>224</u>, 501 (1937).

⁴N. Karayianis, J. Math. Phys. <u>6</u>, 1204 (1965).

⁵B. G. Wybourne, J. Chem. Phys. 45, 1100 (1966).

⁶B. R. Judd, Phys. Rev. 162, 28 (1967).

⁷B. R. Judd, Phys. Rev. <u>141</u>, 4 (1966).

⁸P. J. Redmond, Proc. Roy. Soc. (London) <u>A222</u>, 84 (1954).

⁹H. Wadzinski, private communication.

 10 A hydrogenic 5g eigenfunction gives a small negative value to Z, not a positive value as stated in Ref. 6.

Photo-Ionization of the Hydrogen Molecule

S. P. Khare*†

Laboratory for Theoretical Studies, Goddard Space Flight Center, National Aeronautics and Space Administration, Greenbelt, Maryland (Received 7 November 1967; revised manuscript received 25 March 1968)

One-center wave functions are employed to investigate the photo-ionization of the hydrogen molecule from its ground state $X(1s\sigma^{1}\Sigma_{g}^{+})$, from 700 to 300 Å. It is assumed that the residual ion is left in its ground state, and the free electron is in a $p\sigma$ or $p\pi$ orbital. Using the one-center wave functions for H_{2}^{+} for the internuclear distance equal to $1.4a_{0}$, the free-electron wave functions are obtained by solving the integrodifferential equations in exchange and polarized-orbital approximations. The oscillator strengths obtained in the polarized-orbital approximation are found to be in satisfactory agreement with the experimental data.

I. INTRODUCTION

Recently the author¹⁻³ has employed one-center wave functions for the hydrogen molecule to investigate the direct and the exchange excitation of the molecule due to electron bombardment. For these bound-bound transitions, satisfactory agreement between the theory and the experiment has been obtained. Hence it seems interesting to extend the use of one-center wave functions to the investigation of the bound-free transitions.

In 1960, Shimizu⁴ investigated the photo-ionization of the hydrogen molecule. He employed twocenter wave functions for H_2 and H_2^+ . However, the free electron was represented by a plane wave, which is not likely to be a good approximation. Flannery and Öpik,⁵ in 1965, reinvestigated the problem, again employing two-center wave functions for H_2 and H_2^+ . To obtain the wave function of the free electron, they considered its motion in the field of two positive charges, each of half a unit, separated by a distance. Thus, the solution of the continuum orbital was obtained for a one-electron system. The use of these solutions in the computation of the matrix elements of the photo-ionization cross section completely ignores the effects of the departure of the static field from the two-point charge field, of the exchange of the free electron with the bound electron, and of the polarization of the bound-electron orbital by the free electron. One-center wave functions provide an easy means of studying all the above-mentioned effects which are found to be of significance in atomic systems.

Recently, Temkin and Vasavada⁶ have analyzed the electron-molecule scattering problem in spherical coordinates. In addition, they have generalized the method of polarized orbitals to treat the electron scattering from diatomic molecules, with specific application to H_2^+ . The chief idea of their method is the utilization of a singlecenter expansion for the target system. Their