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Phonon-Quasiparticle Interactions in Dilute Solutions of He3

in Superfluid He4: III. Attenuation of First Sound Above 0.2'K
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Utilizing a previously developed phonon Boltzmann equation we extend to higher tempera-
tures an earlier calculation of first sound attenuation in dilute solutions of He3 in superfluid
He . The present calculation takes into account thermal phonon-Hes scattering and is valid
up to about 0.7'K. The results are in good overall agreement with experiment.

I. INTRODUCTION

In this paper we extend to higher temperatures
the theory' of ultrasonic attenuation in dilute solu-
tions of He' in superfluid He~. For temperatures
below about 0.O'K for Hes molar concentrations
x of a few percent the primary mechanism respon-
sible for sound attenuation is absorption by the
He' impurities, a process which is kinematically
possible because of He'-He' interactions. In the
temperature range from 0.3'K to about 0. 6-0. 7 K,

attenuation due to thermal phonons becomes im-
portant. This latter process, to which we address
ourselves in this work, depends critically on the
form of the scattering of thermal phonons by the
He'. For temperatures above 0. 7'K rotons and
phonon-phonon scattering, neglected here, also
become important.

Because He'-He' scattering rates are so rela-
tively rapid, the phonon-He' collision integral
appearing in the phonon Boltzmann equation may
be evaluated under the assumption that the He'
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quasiparticles maintain local equilibrium among
themselves. This simplification makes it possible
to reduce the collision integral to a form which
may be easily handled; the details have been
presented in a previous paper. ' The yhonon-Hes
scattering matrix essentially contains only elastic
s, p, and d wave parts; for this reason the phonon
Boltzmann equation is exactly soluble. We are

thus able to obtain the sound attenuation for arbi-
trary frequency & subject only to the requirement
that for temperatures where Hes-phonon scattering
is important we must have +7& && 1, where v& is
the He'-He' scattering time appropriate to viscosity.
The hydrodynamic limit of our result is of interest
since measurements in this regime would equable
us to refine further our estimates of g&.

II. EQUATIONS OF MOTION

In this section we present the set of equations from which the sound attenuation will be derived. Lin-
earized equations will be used throughout. We start with the phonon and He' Boltzmann equations

Bn /Bt+V v V n —V ur ~ V n» =I3 h+I hq q q r q r q q q 3-yh yh-yh

and Bf /Bt+V e ~ V f —V e ~ V f =I3 3+I hp y p rp ry pp 33 ph3

together with the equation of motion for superfluid flow

m n Bv /et +n Vg =O.s

n and f are the phonon and He' distribution functions, e and v are the local He' quasiparticle and
q p ~ p q

phonon energies, rn4 is the He4 atomic mass, n~ is the He' number density, and p, , is the He' chemical
potential. I3 ph, I3 3, Iph 3, and I&h yh are the collision integrals for the various Hes and phonon col-
lision processes. In the presence of superfluid flow we have (in linear order)'

e~ =e +P'/2m+(Bm/m)p v s

and M~ =sg+q vs (5)

where q, is the He' chemical potential at zero concentration, 5m =m —m, is the difference between the
He' quasiparticle mass I and the He' atomic mass m„and s is the first sound velocity in pure He' at
zero temperature; &„m, and s depend on position and time through their dependence on density.

We now use equations (1)-(5) to obtain expressions for He' number conservation and overall mass,
energy, and momentum conservation. Summing (2) over all p, using (4), and noting that collisions
conserve He' atoms we have

here n~ is the Hes number density and the He3 velocity v3 is defined by

Z pf =n3(mv3 —Snv ).
p p 3 3 s

The equation expressing conservation of mass is

m, en, /Bt+m, en, /et+ V g =o,

where the total momentum density is given by

g =Zopf» +Z»qn»+m. n.v
y y q q 4 4 S

In linear order

Zgn =p„(vh-v),
q q ph ph s '

thus defining the yhonon normal velocity vph, the phonon normal mass density pyh is given by the Landau
result (working in unit volume)

p =Z (q'/3) en '/e(o = (2v'/45)(If'7')'/s'5'. (11)
ph q

n& = [exp(Pcoq) —1] is the equilibrium phonon distribution function and P = 1/KT. Using (7). (9), and
(10) we may rewrite (8) in the form
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in which p~ =m4n4 —Snm3 —pph is thp superfluid maes density,
The equation for conservation of momentum may be derived by multiplying (2) by p and summing over p,

multiplying (1) by f and summing over q, and noting that total momentum is conserved in all collisions;
me find that

Bg/~t=(S/St)(~PP&f +n35mv +~ fbn +P hv +P v )p3 8qqph888
(T)(I/ )V V

i
~ (pp/ )5f +~-(~qq/4')4 3 0 ph y Q

(13)

6fy and 5ng are the deviations of the distribution functions from global equilibrium and Py{T) is the pres-
sure of a flee Fermi gas composed of particles of mass m and having number density n~.

We may rewrite V Q {pj/m)5fp in the hydrodynamic limit' as

0.Z (LTp/m)6f =Z (p' p/3m)fy' +Z-[pp. v/m-(I)' p)v/3m]y

=Z~ Q'/3m)Vf~ —g3[V3v3+ —, V(V v3}j (14)

where g3 = Py(T) v~ is the He' first viscosity and 7~ is the He'-He' quasiparticle collision time appropriate
to viscosity. More generally, whenever vk « i~+i/a&I, where v is a typical He velocity, qs in (14)'is
replaced by g~(l —ir&&o}

The equation for energy conservation can be derived if we inultiply (1) by sq and sum over q, multiply
(2) by p'/2m and sum over P, and add the results taking into account overall energy conservation in col-
lisions; me obtain

(S/&f) + (p'/2m)5f +Z sq5n +-5PJr)& v3+s'p hV. @ h=o. (15)

In deriving {15)the thermal conductivity of the He' has been assumed negligible; this assumptior. is valid
for temperatures greater than about 20-.";0 m'K'~~ for the He3 concentrations considered.

For convenience we reproduce at this point the expression given in II (Eq. 44) for variations in g„

8p, 8& 867

4 sg4 n~, f~ 4 884 8 . ,f~ P q 884 8 „f~
g p p 4 "p

When working in the linear approximation, the derivatives at constant n and fp in (16) may be replaced
by equilibrium derivatives at constant ts3 and total entropy 8; hence,

where' ul=(n4/s)(ss/Bn4) ~
= 2. 7, and' u2=(n4/m)(8m/sn4) = 1.24.

53 4 e3, 8

Our first step in this section ie to derive an expression for the attenuation of first sound in terms of the
response of the Hes and the phonons to a local variation 5n4 in the He4 density. Only longitudinal varia-
tions are considered here. We vrork with the Fourier transformed forms of the equations given in the
previous section. Combining (17) with equations (3), (6), (12), and (15) gives

+
6 g

—f42 2 8
h

—3(QI +Q2){40)J,s$4p4 4 8 p Qp p

Here p~ =m~n~ and we have introduced the notation



8n o 8no
6n =q q 4(q)=q — q-- Z P(k q)4 (q).

q 8(0 807
q /=0

the average value of aquantityA(q) is defined as (A) =-(1/p hZ (q'/3)(an '/&~ A(q).

5ns/6n» and 54/5n» are the total variations 1n n~ and 4' due to variations ln n». For the low temperatures
and low concentrations of interest we rgay set

Bn4 ne 8 8
~ % 8 '

8n~ ns 8 +
n4

the zero concentration result, where 0, = 0, 28 is the fractional excess molar volume of He in He~. The
attenuation amp11tude txf of first sound associated with the solution of (18) for (8 near sk ls easily shown
to be

nf = (v/2s)(l + n + 5m'/m») Im(5n /5n») + ((op h/2s'm, ) Im(6/5n»)[3 (u, +u, )(4, ) —(1 —u, )v h] (20)

to lowest order in x and pph/p, . Note that tph=vs -(4g (see Eq. 10).
We must now calculate the He' response 5n, /5n» and the phonon response 5(4 (q)) /5n, to He' density

variations. It is clear that it will be necessary to include in 5n, /5n» terms of order pph/p» corresponding
to phonon drag on the motion of the He' quasiparticles. To zero order in pph/p, and x the quantity
5(4(q)) /5n» is determined solely by He -phonon scattering and absorption processes

The caIculation of Im(5n3/5n») is straightforward. We use Eq. (15) to eliminate Zp P~5fp in (14)
[with the factor (1 —iarvv)) included] and substitute the resulting expression for the He' stress tensor
in (13). We then use (3) to eliminate p» in (13), (12) to eliminate vs and finally (6) to eliminate v3, Assum-
ing Pph&&mn, we find, to first order in x and Pph/P„and for ~=sk, that

Im5n /6n»= —(4P+v), /Smn»s')[I/(I+&osv ')]+/ /ms)lm(5/5n, )((@g—', g . &2(@,) ),—ph 4 'ph

where'=(m»/m)[I+o. +(5m/m»)]=1. 30. With this result, (20) may be rewritten as

nf = (2~'&'/Ss'p»)[g, /(I+(g'v '}] +((op h/2s'm, ) Im(5/5n, )[(Su, +Su, —X)(4,)q ph

(21)

—(1 -u, —X/3)v h+ —,X(42)]. (22}

The first term in (22) is the attenuation due to the He' viscosity.
To calculate the response of 4(q) to variations in n» we turn now to the phonon Boltzmann equation,

given in II [Eq. (27)] as

8nm 8n
Q + V»co» v»n» —sq ~ V»(sq+q v )

q q r g r S 8(d

8n o

8(d

4(q)+g ~ (v, —v ) —4, g ~ (v, —v )

v, (q)
'

v, (q)

@I(q')
+ Q ( )PI(cos8 ) +I

hE1T/q q p p

4, = P 6(P,s) is the local equilibrium value of 4,(q). In deriving the right side of (23) it was assumed
that the He quasiparticles were in local thermodynamic equilibrium at temperature K/P, = T, = T+ 5T,
and velocity e,. The phonon-He' scattering lifetimes vf(q) are given by

v, (q) =4. 35n»/xsq, v, (q) = 5. 96n»/xsq, vf(q) =5.48n, /xsq' =— (q)vfor I -3.

The time 7@ characterizing phonon absorption and emission by the He quasiparticles is given by

X'q'v„[I + (hsq/2vKT)']
'(q) =—[P T)/p, ]— (28 3 [ I(5+s q/K2v)'T] + qs' v'

Since all of the vI (q) are equal for I ~ 3, the phonon Boltzmann equation is exactly soluble for tempera-
tures below roughly 0.6-0, 7'K where the phonon-phonon collision integral I&h &h is negligible.
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Upon Fourier transformation, (23) becomes

((o-sky+i/r ) 4(q)+sky(6s+gv/ ) =i4, /r +i4jr, +ir4i/t, +ir(i) —2/, )/r + iI', (g)4,/t„ (25)

where f =k g and for simplicity we have used the notation 1/t, = 1/v, —1/r„ 1/t, = 1/r, —1/v„ I/rz
= 1/ru + 1/r„and 1/rz = 1/v', + I/r(i. We may set (o = sk in (25) since the solution for 4 (q) will be used
only in (22). Two equations relating 40, 4)„and 4, may be obtained by taking the I =0 and I =1 angular
moments of (25). A third relation is obtained by solving (25) for 42(q) and taking the I =1 moment of the
result. Solution of this system of equations yields for 4,

iI, i iI, I, I,/5- iI,
e, (s)12(s)=(l, r4 1

3s ~—1, ~
4 1 v, + 3 +3 (1 /

K

i(or

4(o't v' 3(1+i/(or ) J s (or
P K a a

2 iI~
I, ~+

(or, (1 i+/(or ) 4(or, (1+i/(or ).a a'
(26)

iI~ jI, &I 1
where D(s)=(r 1'+3 (1

'.
/ ).

—
4

' (1 ~ 1/tsr ) —
3(1 .

/ )),
a 0

and I, =3 1+ ln I, I, =z(q)I„ Ii = 5[I, —3 —3z(q)I,J,z(q) (z(q) —1)
2 zq+1

with z(q) = I +i/(ov (q). 42, and 42, are given byz

42, = [(4, —U )/3+i4, /(ovJ/'(1+i/(or )

(27)

(2S)

(29)

and 24,/5 = 6s —4, —i(v —i),)/(or +4'2(1+i/(or ).
For use in (22), the quantities 6s/6n„6i)s/6n~, 6v/, /6n~, and 64),ie/6n~ may be replaced by their values
for x=0, p h/p~=0, and (o =sk. In this case we have 6s/6n4=su, /n, and 6v/s j'6n, =s/n, . 6v/, /6n, is
related to En, /6n, by He' number conservation; a short calculation along the lines of that given for
Im(6n, /6n4) yields 6v, /6n~=sX/n~. 4, le is given by

(3o)

42, = 6s —s6T,/T= s(u, 6n, /n, —6T,/T); (31)

as noted above 6T, is the variation of the local He' temperature. 5T, may be simply calculated when p h
= 0 by noting that when the thermal conductivity is neglected the entropy per quasiparticle, which depends
only on T,/Tf - m T,/n, '/', is a constant; the result is

6T,/T =-,' 6n, /n, —u, 6n, /n, .

Since to lowest order 6n, /n, =X6n~/n„we have

(n,/T)6T/6n, =-,' ~ —u, .

Putting together all the pieces, we arrive at the final formula for the first sound attenuation

(32)

(33)

2X' v), (op
h

u +u, —2X/3 2X
ph

1 s'p 3 1+w'r ' 2s'se ( ( 1 1/w'r ' ' 3 ) ™ss
4

(u, +u, —2X/3)
~r'(I'I/~ r )

+(u, +u, —2X/3)(3u, +3u, —2X+I)([(or (1+1/(o'r~')J '),
with 642(q)/6n~ now given by

(34)

s 6n, ' "2+(or '+ 4(or, + 3 15 (or + 3(or,(1+i/(or ) 4 t, (or 3(1+i/(or ) g

iI,
3 ' (or, (1+i/(ov' ) 4(ot, (1+i/(or ) ~

(35)
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The calculation of the He'-yhonon collision integral given in II used the assumption that the He' quasi-
paxticles were in local equilibrium among themselves. This xequires +a&&& 1 for temperatures where
the effects of I3 ph are important; this criterion is satisfied, for He concentrations of a few percent,
for frequencies less than about 100 MHz. Subject to this limitation our derivation of first sound attenu-
ation is exact for temperatures below 0.6-0. 7'K where rotons and phonon-phonon interactions may be
neglected and above about 0. 01 K where boundary scattering becomes imyortant.

We now present results of calculations of ultrasonic attenuation, using Eqs. (34) and (35). It must be
pointed out that for the frequency region in which experimental results are presently. available it is
necessary to use these general formulas rather than their collisionless or hydrodynamic limits (given in
the following section). The integrations involved in averaging over the phonon momenta have been per-
formed numerically,

Shown in Fig. 1 for a frequency of 20 MHz are the theoretical values of the attenuation in 1.3% solutions
and both the experimental' and theoretical values of the attenuation in 5% solutions. Figure 2 provides the
same information fox a frequency of 60 MHz, the experimental data also coming from Ref. 7. The attenu-
ation in 5. 5% solutions for frequencies of 15, 45, and 75 MHz is given in Fig. 3; except at very low T,
the experimental data for 15 MHz, are, on the average, approximately 1 dB above the calculated values.
The He viscosity lifetimes 7 used for the 1.3% and 5. 0% solutio~s have been constructed in I. v& for
the 5. 5/o solutions shown in Fig. 4 has been constructed in the following similar fashion. At low tempera-
ture we write v& in the form

7„=(x/r')[&+a(r/r„)'] .

The values A = 1.99 x 10 "sec-('K)'and B=2. 0 are determined, as in Ref. 8, by requiring that for each
of the frequencies 15 and 45 MHz the theoretical and experimental low-temperature peaks occur at the
same temperatures. At high temperatures v& has been related to its value in 5/o solutions by noting that
it scales inversely with concentration. For intermediate temperatures, a smooth interpolation following
7

&
in the 5% solutions has been used.

In all cases, the overall agreement between theory and expeximent is quite good between 0. 04'K and
about 0. 7 K, the highest temperature at which the theory may be expected to be valid. The disagreement
near the minima in the curves for the 5% and 5. 5% solutions at the higher frequencies is probably attrib-
utable to the neglect of the exclusion principle in the calculation of the phonon lifetimes used in the phonon
Boltzmann equation. %e see no theoretical reason for the disagreement below 0.04'K. Deviation from a
T' dependence would be in contradiction with the Landau-Fex'mi liquid theory. '

The disagreement between theory and experiment above about 0. V'K is due to the neglect of phonon-
phonon interactions and rotons. The high-temperature peak in the attenuation occurs in a regime midway
between the collisionless and hydrodynamic limits. In the peak region, the attenuation is limited by roton-
phonon scattering, as in pux e He4, '0 augmented by the phonon-He' interactions; yreliminary calculations
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FIG. 1. Attenuation of first sound of frequency 20 MHz
in 1.3% and 5% solutions of Hes i.n He4. The solid lines
are the calculated attenuation; the data points are those
of Abraham et al. (Ref, 7).

FIG. 2. Attenuation of first sound of frequency 60 MHz
in 1.3% and 5' solutions of Hee in He4. The solid lines
are the calculated attenuation; the data points are those
of Abraham et al. (Ref. 7).
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FIG. 4. Lifetime for He viscosity in a 5.5%%uo solution of
He3 in He4.

based on this picture appear to explain the concentration and frequency dependence of the peak.
It is important to understand how sensitive our results are to changes in the parameters 7& and v~. Up

to about 0.4'K the attenuation is dominated by the He'viscosity and is insensitive to changes in 7I but quite
sensitive to any change in 7&. Thus, attenuation measurements pin down v& rather well up to 0.4'K.
Above 0.O'K our results are only mildly sensitive to changes in 7& and 7I . For example, a 30% reduc-
tion in 7& changes the attenuation by less than 10/0 here; the change is negative at temperatures near
0.4'K and becomes positive at higher temperatures. Above 0.4'K, a 50% reduction in v& reduces the
attenuation by less than 15%; in general, the change is an increasing function of temperature. We con-
clude that ultrasonic attenuation data do not provide a very sensitive measure of the lifetimes v& and
v~ for temperature between 0.4 K and 0. 7 K, a not unexpected result in the regime on the collisionless
side of the high-temperature peak.

IV. COLLISIONLESS AND HYDRODYNAMIC LIMITS

In this section, we give the limits of our expression (34) for the sound attenuation when Idr (& 1 where
T is a typical phonon lifetime; &o'r& will still be assumed small for temperatures where I3 ph is impor-
tant.

The wv )& 1 or collisionless limit is easily found to be

nr" ' =a X'(I~d'/s'p, )[g,/(I+(o'r~')]+(3IIIdp h/Ssp, )(l+u, )'.
ph

(36)

The second term in this expression is the usual"~" result for pure He~. For Hes concentrations of a few
. percent, this result holds for frequencies in the 10-100 MHz range for temperatures below 0. 1-0.2'K;
the second term is of no practical importance here.

The hydrodynamic limit is valid when +7 &&1 and w7
&
((1; it is given by

ni -(2X'&u'/3s'p~)q, +(Id'p h/2sp~)f3(u, +u, —A/3)'(v )+(l-u, —X/3)'(v ) +~5k.'(v )] (37)

where r„'=7u '+~, '. In (3V) the term proportional to (vu) gives the contribution from second viscosity,
this arises from energy exchange between the phonons and He'. The term proportional to (7 ) arises from
both phonon thermal conductivity and He quasiparticle diffusion. Lastly, the term containing (~~) is the
damping due to the phonon viscosity. Because of the relatively slow rate at which energy is exchanged
between the phonons and He, the second viscosity dominates these three terms; thus for purposes of
numerical calculation we have
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n Y ' = (2V(u'/3s'P, )q, +(3(o'P h/2sP, )(~, +~, &—/3)'(7 ),

which is plotted for a 5/o solntion in Fig. 5. From this exyression and that given in (24) for v~ we see
that measurements of the attenuation of hydrodynamic sound would provide an excellent means. of inferring
7'& over the temperature range from 0. 01 to about 0.7'K. Measurements in the required frequency range
(v( 100 KHz) are not, however, available.
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FIG. 5. Calculated attenuation of fix'st sound in a 5%
solution of Hes in He4 in the hydx'odynamic limit (uppex'
curve) and avexage value of phonon absorption lifetime
(lower curve);
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