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Thermodynamics is extended to systems moving with relativistic velocities. It is
shown that one is led naturally, although not necessarily, to the thermodynamics of Ott,
if one maintains the first and second law in their original form. The classical theory
of Planck et al. can also be obtained in the case of a homogeneous fluid; the difference
with Ott s theory is that the fluid alone is regarded as the thermodynamic system,
rather than the fluid together with the box in which it is enclosed. Subsequently, a
third form of relativistic thermodynamics is obtained by replacing the first law with a
covariant equation expressing conservation of both energy and momentum. This leads
to a formulation in which not only 8 but also T and PQ are scalars. The discussion of
heat transfer between systems with different velocities is thereby simplified. It is shown
that such processes are irreversible even for equal temperatures, unless the velocities
are equal too.

l. INlRODUCIION 2. THE NONREI. ATlVISIIC CASE

The problem is to extend the laws of thermody-
namics to a system moving with relativistic veloc-
ity u. If u is taken to be a constant, this is sim-
ply the problem of transforming the thermodynamic
properties of the system to a different frame of
reference. However, one zvants to treat u as an addi-
tional thermodynamic variable subject to adiabatic
variations. That amounts to extending the usual
space of thermodynamic variables by adding three
dimensions, corresponding to the three components
of u . Thermodynamics of moving systems is
therefore more than simply an exercise in Lorentz
transformations.

The first law of thermodynamics is affected, be-
cause the work O'A now consists of the usual term
representing the work done by expanding, CA. &,
plus an additional term O'A~, representing the work
involved in varying u, that is, in accelerating or
decelerating the whole system.

The second law is affected because Kelvin's
principle, "No cyclic engine can convert heat into
work, " receives an extended meaning: "not even
when the engine employs acceleration and decelera-
tion ot' the system (to relativistic velocities). "

The above remarks also apply to the nonrelativ-
istic case, but that. case is trivial. One has O'A„
= —Mu ~ du, where M is the mass of the system and
is constant. ' For the "internal energy" U one sim-
ply takes

U= U'+Mu ',

where U is the internal energy of the system at
rest. The first law then states

O'Q =dU+O'A,

=dU dA dA,
Q

=dUO+dA

Thus the two additional terms cancel and every-
thing reduces to the usual thermodynamics of sys-
tems at rest.

Incidentally, we note for future use that, for a
homogeneous system, (1) may be written in the
form
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dq=dU- u ' d5+PdV,

where V is the volume, P is the pressure, and
4=ASu is the total momentum of the moving
system.

The relativistic case is less trivial for the fol-
lowing reasons.

(i) U cannot be decomposed in a kinetic energy
term and a term U' depending only on the interne, l
state.

(ii) The rest mass M is not constant, since any
heat transfer d'q represents energy and therefore
mass. Similarly the work dAy. .done On expanding
decreases the rest mass.

(iii) The transfer of heat and work between mov-
ing systems implies the transfer of mass and hence
of momenttim.

-1/2
where y = (1 —u') . If we now choose as a
natul'g. extension'~ of the definition of internal en-
ergy

U(V' P, u)=yU'(V', P),

e have for pure accelerations

dU+O'A =O.
It follows that the first law remains valid if one
postulates that d'Q= 0 for pure accelerations. That
is, the (as yet unknown) differential form 8 q in
three variables contains no term with du, in agree-
ment with the physical interpretation of d q as heat
Supplied to the system

In order to maintain the second law in its cus-
tomary form (5) one must have

3. KKAS SION OF lllB MHMjDYNAMIC SPAIX

For simplicity we take as our; system a gas en-
cloSed in a box. %hen at rest, it has two thermo-
dynamic variables, the volume Vo and the pres-
sure P. Moreover, of the three components of u

Ve only consider the x-component, to be denoted
by u. The generalization to more variables is
obvious.

The thermodynamic space now has thx'ee dimen-
sions, corresponding to the variables V', P, and

u. In the plane u = 0, the thermodynamic quanti-
ties Uo To and So are given as functions of V o

and P by the usual thermodynamics, Moreover,
two differential forms d'A' and dq' in the vari-
ables V and P are given, obeying

(YQO =dUO+d'Ao,

Todgo d Qo (3)

Our task is to extend the definition of these quanti-
ties to the domain' -1&u( 1, in such a way that
the firSt and second law remain valid.

More precisely, by "extending the definition"
we mean defining three functions U(V', P, u),
S(V', P, u), and T(V', P, u), and two differen-
tial forms 5 q and CA in the same three variables
'Vo, P, and u, such that

BS (V', P, u)/Bu = 0, or S(V', P, u) = S '(V", P),

Thus the entropy is independent of u, that is, the
entropy transforms as a scalar. " In the three-
dimensional theirmodynamical space, the surfaces
8 =constant are cylinders parallel to the u axis.
(Fig. 1).

5. EGlENSIONOP I'AM3 IQ

So far we are still free to extend the definition of
temperature by choosing for T any positive func-
tion of t/', P, and u„or alternatively of V T
and u,- provided that it reduces to 9' for u=0. 7he
second law (5) implies that one inust then put

dqo T(V') T', u)
+0

However, if O'Q is to be an extensive quantity, the
ratio T/T' cannot depend on V', so that

T= T'g(T' u) dq dq'g=(T' u).

Here g(T, u) is an arbitiary positive function,
subject only to the condition that g(T', 0) = 1. The

O'Q =d U'+O'A,

TdS =dq. (5)

$ = ('.Onst.

For u=O, they should reduce to U', S', T', and
Gq', dA'. Moreover, in irreversible processes,
8 should always increase.

4. EXIKNStON l3F THE FLJNIONS UAAQ S

Let the system be at rest iii a state (V', P). Its
rest mass equals U' (wheii the arbitrary constant
in U is chosen appropriately). In principle, the
system can be accelerated to any velocity at the
expense of mechanical work, without affecting the
intern~, l state of the system. ' The amount of
work required is

—ttA = d[U /(1 - u2)' 2j = Uody, FIG. 1. The extended therInodynilnic space.
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second law can tell no more about g.
For further information one has to return to the

first law, which one would like to maintain in the
form (4). On substituting the results obtained so
far, . this becomes

g O' Qo = yd Uo + d.A V,

where dA V=OA —O'A is the work done when the
system, moving with Ke velocity I, expands.
Since such work is typically measured as the in-
crease of mechanical energy of a second system,
connected with the first one and moving with the
same velocity u, one has

O'A =ydAV . (s)

Hence, if one chooses g to be equal to y, Eq. (7)
coincides with (3), so that indeed (4) is satisfied.
Thus, for this g, and only for this g, the first
law remains valid in the form (4).

6. THE THERMODYNAMICS OF OTT

We have thus rederived the transformation for-
mulas of Ott'

T y To dqo yugo

The first law (4) can be written more explicitly as

O'Q=dU- U'dy+yPdV'

If one desires, one may express U'. , Vo, and P
in terms of the quantities referring to the labora-
tory frame, U=y U' and V= V'jy. The pressure
P is not changed by a Lorentz transfor~ation. ~

It is possible to write (10) in a form similar to
(2). The momentum G of the system is yeU" and
one has

u dG = y u'd P' + U'dy = yu'd U' + u(d G)~,

where (dG)* denotes the variation of G while the
rest mass U' is kept constant. Thus (10) may be
written

7. THE THERMODYNAMICS OF PLANCK

The classical theory of Planck et al. 8 amounts
to takingg=l/y =(I -p')'I' so that

.T Tk (1 g2) 1/2 (11)
1/2 1/2

d Q = CQO(1-s') = (1 —u') (dU~+Pd V'). (12)

Qn the other pand, they chose to define the inter-

dQ=dU-s(dG)" +&RA V"

The fact that one has to write (dG)~ instead of dG
is the essential remark of Oft. It exhibits clearly
that any change in moment+in due to the change in
rest mass should not be included in the accelera-
tion work dA„. Such changes of rest m@ss occur
when hept or work is exchanged wit/ another sys-
tem,

nal energy for u 0 0 by

U(V', P, u)=y(UO+I PV'),

instead of Ott' s definition (6). Similarly the mo-
mentum was defined by

G(V, P, u) =yu(U'+PV') (14)

With these definitions, Eq. (12) may be written

dg=dU-udG+PdV.

U- U= —yu PV', G —G = —yuPV

Variation of P" with constant u and P. entails an
increase of the wall energy,

d(U- U) = —yu'Pd V'= (y —y) MV'

This is the difference between the term PdV
= y-'PdV' in (15), and the term y Pd Vain (10). The
term PdV represents the work done by the gas on
the wall plus surroundings, whereas PdP' is the
work done by the gas plus wall on surroundings. "

Nevertheless, (15) is not a satisfactory formu-
lation of the first law. One objection is that it only
applies to homogeneous systems (or to systems at
least having the same pressure throughout their '

volume), inasmuch as the definitions (13) and (14)
are confined to that case. The other objection is
that, for other processes than a variation of P',
the separate terms in (15) have no clear-cut phys-
ical meaning. For example, a pure acceleration
gives d'

Q =, 0 only by a clever cancellation of the
variations of all three terms. The term -udG is
not just the acceleration ener'gy O'Au, since do in-
volves a term with dU" and is therefore nonzero
when heat or work is exchanged at constant u. The
term Pd V is not just the work done on expanding,
since d V involves a term with du and is therefore
nonzero when the system is accelerated wit/ con-

The question is whether this is a reasonable ex-
tension of the first law to moving systems.

The essential difference with Ott is that one nose

regards as the thermodynamic system the gas in the
box alone, and not the gas and box together. In
fact, U and G are the energy and momentum of
the gas molecules. They do not form a four-vec-
tor' because the gas alone is not a closed, self-
contained system, but is subject to forces exert-
ed by the walls. The walls of the box contain
stresses necessary to counterbalance the gas pres-
sure. In the rest frame these stresses do not
carry energy or momentum (provided that the walls
a,re rigid), but viewed from a moving frame they
do. The reason is that tQe time components of the
four-dimensional stress tensor represent energy
and momentum density"; these components are
zero in the rest frame, but become nonzero after a
Lorentz transformation. This gives rise to an en-
ergy and momentum of the walls. Hence one must
make a distinction between the 0 and G of the gas,
and the four-vector U and G of the total system.

It follows that the energy and momentum due to
the wall stresses are
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stant V'.
Because of these objections to Planck' s formu-

lation, we now return to the choice (6) for the in-
ternal energy„

8. HOMOTACHIC AND HETEROTACHIC PROCESSES

So fax only two kinds of processes have been con-
sidered: (i) exchange of heat and work between
sya".ems having the same velocity (which are the
processes of ordinary thermodynamics and will be
called "homotachic "(, and (ii) processes in which
u varies adiabatically with constant V, and P
("pure accelerations" ). They sufficed to define
the thermodynamic quantities in the whole thermo-
dynamic (In', P, u) space, because any point in
that space can be reached from an arbitrary start-
ing point by a chahi of such processes. Yet a num-
ber of "natural" but not logically compelling choices
had to be made.

(i) We chose to extend the definition of Uby
writing (6) .

(ii) We chose to maintain the first law in the
. form (4).

(iii ) We chose to maintain the second law in the
form (5).

The task remains to show that these choices are
compatible with Kelvin s principle for other pro-
cesses too. Such other processes are those which
involve a di~ect heat transfer between systems
moving uith different velocities ("heterotachic pro-
cesses"). In this case, however, the momentum
transfer inherent in exchange of heat and work does
affect the velocities of the systems. Hence at
least part of this momentum transfer should be
counted as work O'Au. This complication has been
analyzed by Ott, but we shall now propose a dif-
fei"ent formulation of relativistic thermodynamics,
in which this momentum transfer need not be taken

- into secount explicitly.

9. A THIRD FORMULATION OF RELATIVISTIC
THERMODYNAMICS

Let u& = (y; yu) be the four-velocity of the sys-
terii, and U =u~U' be its energy-momentum four-
vector. Let K& be the Minkowski force acting on
the system; if there are no other interactions, X&
gives rise to a pure acceleration described by

As it is a scalar, it is identical to the heat supply
measured in the rest frame. The second law (5)
remains valid when T is defined as equal to the
temperature T in the rest frame.

Thus we have obtained a different formulation
of relativistic thermodynamics, in which both OQ
and T are scalars. " However, the first law is
now replaced with the covariant equation (18). This
equation does not give the heat supply OQ' itself,
but instead gives the four-vector OQ&, from which
OQO can be found according to (19). Alternatively
one may write directly

OQ'=u dU +u d'A&
Vp,

' (2o)

10. VERIFICATION FOR HOMOTACHIC
PROCESSES

When heat is transferred between two systems
having the same velocity, then in their common
rest frame the thermal energy transfer is O'Q',
and the thermal momentum transfer is zero. As
OQ& is a four-vector, one must therefore have in
an arbitrary frame OQ& =u&OQ'. Similarly, trans-
fer of mechanical work O'A P in the rest frame does
not entail momentum transfer, because, when the
gas expands, the force on the piston is always
balanced by an equal and opposite force, if the
exyansion is to be reversible. Hence one also
has in an arbitrary frame O'A

~& =u&d'Ay'.
Thus, if all exchange of heat and work takes

place homotachically, the general equation (18)
reduces to

u OQ'=dU -If' dr+u OA

This equation can be decomposed into two equa-
tions by separating the components yarallel and
orthogonal to the four-vector u . With the aid
of the identity

The four-vector OQ& defined by this equation will
be called the "thermal energy m-omentum transfer. "
On the other hand, the "heat supply" will be de-
fined as the component of this four-vector along the
four-velocity,

u OQ =OQ'.
p, jx

dU /dr= P'du&/dr=A (16) dU =d(u P') = P'du +u dP'
P P tL

where v is the proper time of the system. Note
that' u u =1, and therefore

p, p,

u E =0.
P

I et CAy& represent the mechanical energy and
momentum transferred to another system, for in-
stance, by expanding. We now write as the rela-
tivistic extension of the first law

one finds for the component parallel to u&

O'Q =dU +dA.

which is simply the first law for the system at
rest. The orthogonal component yields

0= Udu —E dv',
p,

gQ =dU +dA
p, ILL P,

=dU -K dv'+O'Ay (18)

which is simply the equation of motion (16) for the
system as a whole.

This shows that, for homotachic processes and
pure accelerations, (18) reproduces the familiar
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results. The entropy is, according to Sec. 9,
given by d8 = ct Q'/T', which is of course also the
familiar entropy.

11. APPLICATION TO HETEROTACHIC
PROCESSES

Suppose two systems, a and b, interact with
each other, but with nothing else. Then U a
+ U&b is constant and O'Ay& +O'Ay&b =0. Hence

cTQ +dQ =0. (22)

However, unless the systems have the same
velocity,

dQ +cTQ W 0.

8"hen thermal energy and momentum axe trans-
ferred, the heat lost by one system is not neeessaxi
ly equal in amount to the heat gained by the other
system. ' The reason is that the heat contents of.

the transmitting agency (e. g. electromagnetic
waves) is not the same for all observers. '& For
they use different frames when decomposing the
thermal energy-momentum four-vector in energy
and momentum.

More precisely, let b emit ra,diation, which in
its rest frame has energy q, and is isotropic and
ther~fore carries no momentum. In this frame
d'Q& =(-. q; 0, 0, 0). In an arbitrary laboratory
frame

cTQ = —u q.b b

P

If this radiation is absorbed by a, one has accord-
ing to (22) and (19)

cTQ =u q, dQ =u u q.a b a a b

P P
'

V P

Note that u~ u& =(1 —u') =y, where u is the
relative velocity of a and b. It follows that

dQ +cTQ =(y —1)q&0.

The increase in total entropy is

black bodies a and b be separated by a thin metal-
lic sheet (Fig. 2). With respect to the laboratory
frame, a and b have velocities ua and ub parallel
to the sheet, and the relative velocity of b with
respect to a is u = (ub —ua)/(1 —uaub) . Body a
fills the space between it and the sheet with biack-
body radiation; in the rest frame of a the energy
density pa is a universal function of the rest temper-
ature Ta'. Similarly the space between b and the
sheet is filled with blackbody radiation moving
with velocity ub. So far there is no interaction
between a and b.

Let a sa:all hole of area M be opened in the
sheet during 4t. The transmitted radiation will
be proportional to AAht; since this is a scalar
it does not matter with respect to which frame
orie measures 4A and 4t. Also the velocity of
the sheet is irrelevant.

The radiation leaking from a to b can be compu-
ted in the rest frame of a to be 4pa4A4-~. It
carries no momentum component parallel to the
sheet, as is clear from symmetry. '~ Thus one
has in the rest frame of a

O'A~ =0, dU =(- —,'p &Add; 0, 0, 0).

For brevity we absorb the factor 46Ab, t in pa,
and obtain

cTQ =dU = —(p; 0, 0, 0).

Transformation to the laboratory frame yields for
this process

dQ (a-b) =-u p
p, p, a

In addition, radiation leaks from b to a, yield-
ing a second contribution to the thermal energy-
momentum transfer

CQ (b-a)= —u p
b

The total thermal energy-momentum transfer is
therefore

dQ = —ctQ = —u p +u p
a b a b

p, p, g a p, b

dg O'Q y 1d8 =
T 0 "+

T 0 =
T 0 T 0 q

a b a b

The heat supply to each system is, according to
(19),

This is negative for Ta'& y Tb', but that is not a
paradox. It is not possible without the aid of
Maxwell's demon to let radiation go from b to a,
without radiation from a to b. For this reason
Ott was not justified in using the above examyle
to prove that his transformation formula (9) for
the temperature is the only one consistent with
Kelvin's principle for heterotachic processes. "

A

12. THERMAL CONTACT BETWEEN MOVING
SYSTEMS

It is possible to further syecify the example,
such that the exchange of thermal energy and
momentum can be calculated explicitly. Let two

j.'IG. 2. Direct energy-momentum transfer between
moving systems.



N. G. VAN KAMPE N

dQ =-p, +rp5, dQ = P-5+rp,
a b

Again one finds that their- sum is not zero:

d'Q +d'Q =(r- l)(p +p&)) 0.

13. THE INCREASE OF ENTROPY

The variation of the total entropy is

ignores the fact that momentum is transferred, it
is not even a relativistically invariant condition.
Nor is the resulting equilibrium condition (24).

14. ADDITIONAI. REMARKS

A slightly modified way of expressing the same
thermodynamic formulas is the following. For
each system define a four-vector P& =u&/T'. Having
written the first law in the covariant form (18), one
may then write the second law in the invariant form

d8, dQ &Qd=go+go= po yo Pa+ T o yo)Pb
a b b ~ ~ b'

o T o l(P5 P&)+(r 1)
I T 0+T(a f f ' (f a)

As p increases wj.th To, the first term is positive
unless Ta'= Tbo. The second terr@ is positive un-,

less y = 1, that is, unless the velocities are equal.
Thus we find that the enA'opy increases, unless
both bodies have the same temperature and velo-
city. exchange of radiation between bodies with
the same temperatures (in their respective rest
frames), but different velocities, is an irrever-
sible yrocess. In other words, there is friction,
due to the momentum transfer inherent in the
transfer of radiation, as also mentioned by Gtt.

Unless the two bodies are completely isolated
from each other, they &ill exchange radiation
and thereby ayproach equal temperature and
velocity. Thi.s equilibrium state can be found
from the condition of maximum entropy:

d8 =0 when dU =0.

Indeed, this variational principle leads to

d8 =u dV /T +u dV /T&

In ordeg that the first ljne vanish for all variations
for which the second line vanishes, one must have

u /T =s /T5a

From this one finds easily the equilibrium condition

T =T-
y I =Qa b

a b '
p, p,

Note that the supplementary condition in (23) states
that 8 has to be maximized for fixed total energy
and total momentum. If one keeps the momentum
of each system separately fixed, one finds only one
equilibrium condition

1 1

T '[1—(u )']'=T5'[1 —(u )']' (24)

This result has been used" as an argument in favor
of the classical transformation formula (11). How-
ever, keeying the seyarate momenta fixed not only

Thus the concept of heat supply and its transforma-
tion properties is completely eliminated, although
the physical results are the same.

Although this payer is concerned with macroscoyic
thermodynamics, a fin@1 remark on the connection
with statistical mechanics should be made. For an
ideal gas in equilibrium the number of particles yer
unit volume in a momentum range d'p' is given in
the rest frame by the Boltzmann distribution

o/ of'(P') =const. e (28)

where e =[m'-+(p')'] is the energy in the rest
frame. If the gas moves with a velocity u with
respect to the laboratory frame, the distribution
observed in the laboratory is obtained by expressing
(26) in the transformed variables, "

f(p) =fo(p ) const. exy —
o( 2~~I&, (27)

=const. exp[-u P /T']

=const. exp[ —P P ],
LU, P,

(28)

where p is the energy-momentum four-vector of a
particle, It is easily seen that a similar remark
applies to Bose and Fermi statistics.

Equation (27) has been used" as an argument in
favor of the classical transformation formula (11).
It should be emphasized, however, that absolute
temperature is a thermodynamic concept, defined
by the second la~. Only when thermodynamics
does not uniquely determine the relativistic exten-
sion of temyerature is one free to make that choice
that is most convenient in statistical mechanics.

%'e have shown that the choice made by Planck
et al. is limited to homogeneous systems and leads
to an awjrward formulation of the first law. Qtt's
choice is satisfactory for homotachic processes and
pure accelerations, but its ayylication to hetero-
tachic yrocesses is complicated by the necessity of
taking the guiding forces into account. The simplest
choice is to define the temperature as a scalar,
T= To, provided that one replaces the first law by
the covariant Eq.. (18) and distinguishes between
thermal energy-momentum transfer and heat. This
choice is also clearly favored by the statistical
formula (28). An equivalent, but slightly more
streamlined formalism consists in eliminating the
concept of heat altogether, using the second law
in the form (25), and using (29) for the statistical
distr lbutlon,
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~Processes in which the number of particles varies
will not be considered.

The velocity of light is taken equal to unity.
The acceleration process should of course be quasi-

stationary, i.e. , so slow that at all times the system
is in equilibrium. That implies that also the stresses
in the walls have time to adjust themselves. It is
therefore justified to treat the box as rigid, even while

I varies.
4An alternative choice is discussed in Sec. 7.
The often repeated argument that S must be indepen-

dent of I because it is the logarithm of a number of
states, appears to dissolve itself when one tries to for-
mulate it in precise terms.

.H. Ott, Z. Physik 175, 70 (1963).
This is not a thermodynamical statement, but follows

from the transformation properties of force and area.
M. Planck, Sitzber. Kl. Preuss. Akad. Wiss. , p.

542 (1907) or Ann. Physik 26, 1 (1908); A. Einstein,
Jahrb. Radioaktivitat und Klektronik 4, 411 (1907);
M. von Laue, Die Relativitatstheorie(Friedrich Vieweg
und Sohn, Braunschweig, Germany, 1921), 4th ed.

This fact is well known and has recently been em-
phasized in this connection by A. Staruszkiewicz, Acta
Phys. Polon. 29, 249 (1966) and F. Rohrlich, Nuovo

Cimento 458, 76 (1966).
'-See, e.g. , C. Mgller, The Theory of Relativity

(Clarendon Press, Oxford, 1952), p. 181.
~This distinction explains the difference between our

formula (8) [see also: H. Arzelihs, Nuovo Cimento 95,
799 (1955); S. Putterman, unpuhlished] and the formula
dA& ='Y &&yderived by T.W. B.Kibble, Nuovo Cimento
41B, 72 (1966).

&2The scalar product u I is defined as I - u
2 2 p p-N2 Q3

~ That means g = 1 in the notation of Sec. 5. Of course
one is still free to define T=T, ~Q=dQ, at the expense
of modifying the first law with a factor j/. This possi-
bility was mentioned by Ott, and advocated by P. T.
Landsberg, Nature 212, 571 (1966) 214, 903 (1967) .

~4This is the reason why we refer to O'Q as "heat
supply" rather than "heat transfer".

'5This was already noticed by F. Hasenohrl, Ann.
Physik. 15, 344 (1904).

Ref. 15, Sec. 4.
Momentum perpendicular to the sheet, however, is

transferred, but this can be cancelled by two guiding
forces, which prevent the two bodies from moving away
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The mblting curve of He has been measured to 12 m'K in order to see whether the
exchange interaction has caused the solid entropy to fall below its completely disordered
value of R ln2. For 12 m'K a T ~ 600 m'K, the melting curve data are described by
P=29. 107+0.25537(t) -0.05700(t) +0.01625(t)4 atm, where 100t = T-299.028 and T is
the absolute temperature in m K. The data points fit this equation with an rms deviation
of 0. 06 atm. Using this information and previous results for the liquid and solid molar
volumes and the liquid entroPy, the Clausius-ClaPeyron relation shows that Ssolid=R In2+16%
for 12 m K &T ~320 m'K. This places an upper limit of 3 m K on the magnitude of the
exchange interaction in solid He3 for molar volumes along the melting curve. The He4

melting curve was measured between 12 m'K and 300 m'K and found to have a slope of
0+0..007 atm/ K.

INTRODUCTION

The melting curve of any material provides in-
formation which relates thermodynamic properties
of the liquid and solid phases along the curve. This
is a consequence of the Clausius-Clapeyron equa-
tion

where P is absolute pressure, 7 is absolute tem-
perature, melt indicates that both phases are in
equilibrium, M is the difference in entropy be-
tween the two phases, and b, I/" is the difference in


