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A model of hard spheres immersed in a uniform background potential, which has been suc-
cessfully applied to the calculation of atomic self-diffusion in liquid metals, is shown to give
a quantitative description of the velocity of sound, the compressibility, and their tempera-
ture dependences in liquid metals of widely different masses, valences, densities, and melt-
ing points.

INTRODUCTION

Recently the pseudopotential method has been
suggested to describe metals, but the actual calcu-
lation of properties depending on rearrangement
of the atoms-the atomic properties —has not been
so far very successful. '~' The difficulty' is mainly
due to the critical dependence of the atomic prop-
erties on the detailed behavior of the "screening, "
which awaits a better understanding of exchange
and correlation among valence electrons at elec-
tron densities found in normal metals. '~4

However the pseudopotential formulation is con-
sistent with a pair-wise interaction as a valid rep-
resentation of the interaction energy between elec-
tronically screened ions. The justification for this
concept may be found in a perturbation expansion
of a total energy of a metal, which to the second
order can be written as the sum of two terms, one
indePendent and one dePendent on the distance be-
tween ions. '

Lacking at the moment, for the above reasons
and because of the additional difficulty of treating
the liquid structure itself, an accurate calculation
of the compressibility and velocity of sound in li-
quid metals, we describe here a simple approach
based on a model, which although semiphenomeno-
logical in character has yet provided a successful
quantitative description of atomic self-diffusion. '

THE MODEL

The structures of all simple liquids, metallic
and nonmetallic, are very similar near their melt-
ing points. This shows that the atomic distribution
in the liquid is rather insensitive to the details of
the potential, ' to the extent that with a good approx-
imation it can be understood as a result of packing
of hard spheres. ' Recent molecular-dynamics cal-
culations have further substantiated the preceding
observation. ' This suggests also that the struc-
ture of liquid metals is largely determined by the
short-range repulsive forces.

We accordingly describe the basic entities com-
posing a liquid metal system to be hard-sphere-
like; we imagine them, apart from some subtle-
ties, as the Ziman neutral pseudo-atoms, '~' and
we think of them as essentially free particles im-
mersed in a uniform (without gradients) potential
which will provide the cohesion that the hard-
sphere gas otherwise lacks.

This picture is supported by the well-known
form of writing the total binding energy E (per
atom) of a metal, ' which when calculated to the
second order in a perturbation scheme can be con-

veniently separated into two terms

NE=NE +~ ~
V( ) (l)

i,j(i') ij
where F-0 is a quantity dependent on the volume of
the system but independent of the positions of the
ions, V(r) is an effective pair interaction energy,
and N is the number of the atoms in the system.
The effective pair interaction V(r) results from
the sum of a direct Coulomb interaction between
the ions and an indirect pair interaction through
the electrons, the so-called band structure ener-
gy. Although the general form of V(r) has been
shown to be characterized by a very strong repul-
sion of very short range and by a much weaker
and much longer-ranged component at large ~, its
detailed behavior has not yet been established re-
liably, because of the difficulty of evaluating bare
ion potentials and an accurate form of the "screen-
ing. "~~4 It should be remembered, of course, that
because of the free-electron-like nature of liquid
metals, the contribution to the energy from the
atom-position-dependent terms is very small with
respect to the large contribution of the volume-
dependent terms contained in Eo, which are pri-
marily responsible for the cohesion. Since the
pair interaction terms provide a negligible contri-
bution to the total energy, and having before rec-
ognized the prevailing role of the short-range re-
pulsive interatomic forces in determining the
structure of a liquid metal, we feel justified in ap-
proximating the effective pair interaction V(r) by
a simple hard-sphere potential. This is positive
and infinite for distances less than 2o and zero
otherwise. We consider 0 as an approximate mea-
sure of the radius of a pseudo-atom.

We are then assuming that the total binding en-
ergy E of our system is completely determined
by E„which will supply the cohesive energy
that our hard-sphere fluid otherwise lacks. Be-
cause the term Eo is not dependent on the ion sep-
aration, it leads to no forces on any particle; thus,
while supplying the cohesion to the hard-sphere
system, it does not change the equilibrium config-
urations of the particles. These are identical to
what they would be in a fluid of hard spheres at
the same density but without the E, energy term.

We approximate E, by the sum of two terms:
the kinetic energy of a free-electron gas, and a
negative energy term, B/V"', which contains-
the energy of interaction of the valence electrons
with the ion, and the energy of interaction of the
valence electrons with themselves. 9 is a con-
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Here N is the number of atoms in the system;
K is the Boltzman constant;
T is the temperature ('K) and T~ that at the

melting point;
A is an adimensional constant;
Z is the number of valence electrons per atom;
E is the total binding energy per atom;
8+ is the Fermi energy;
Um is the volume of the system at the melting

point;
U is the volume of the system;
P is the pressure;
Pg is the pressure of a hard sphere.

We consider the pressure of the hard sphere to
be well described by the Reiss, Frisch, and

stant to be defined later and V is the atomic vol-
ume of the system. This simplified form for the
binding energy can be understood on the basis of
the Wigner and Seitz (WS) calculation" as extend-
ed to polyvalent metals. " The WS method, which
approximates the atomic cell with a sphere of
equal volume, seems in fact even more suitable
for the description of liquid metals, ' which have
average spherical symmetry, than to solid met-
als. Here we make two additonal approximations:
(a) the ions are considered as point ions. This ap-
proximation follows from the observation that the
volume of the %S sphere is large with respect to
the ionic core volume, this being even more so at
liquid densities. Accordingly we may neglect the
positive repulsive term contained in the energy of
the lowest state of the valence electrons; (b) the
correlation energy per atom of a free-electron
gas is approximated by the well-known semiempir-
ical formula" (0.284Z'"e'/V'") —'(& v)» &. Here Z is
the number of valence electrons per atom and e is
the electronic charge.

This form of the correlation energy is as accu-
rate as the several existing formulas, which on
account of the difficulty of the calculation for elec-
tron densities as found in metals, have been de-
rived by interpolation.

With these assumptions, all contributions to the
binding energy (i. e. , Coulomb, exchange, correla-
tion, and the energy of the lowest state of the va-
lence electrons), except the Fermi energy, show a
negative & power in the volume dependence, and
they indeed add to a negative term.

The constant B could accordingly be estimated;
however, for the calculation of the compressibil-
ity and velocity of sound in liquid metals, we de-
termine B by the more accurate procedure of con-
sidering the pressure of our system to be zero at
the melting point.

For simplicity in the following, we write B in
terms of a dimensionless constant A defined by

B =3k(V )' KT
m m

We then write the energy and pressure of our sys-
tem as:

Lebowitz formulation, "which is known to be
quite accurate also at high density, namely,

P V/NKT = (1+@+g')/(1-q)', (4)

Assuming Pv/NKT-0 under normal conditions at
the melting point in Eq (2) and .recalling that q
=0.45, we find

A =10+ a5ZE (T )/KT (7)

We can then write, after a simple differentiation
of the pressure with respect to the volume,

a(0)=KTg ~
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where yT is the isothermal compressibility de-
fined by yT=-(1/V)(SV/SP)T, A is defined by Eq.
(7), and the temperature dependence of the pack-

where g is the packing fraction defined as g = &37Tg'

xN/V, where a is the hard-sphere radius.
It is worthwhile to notice that such a hard-sphere

radius is expected to be temperature-dependent.
'this is not surprising as the hard-sphere radius
is essentially some average of the repulsive part.
of the pair interaction.

%e assume that all simple metallic liquids at
their melting point shows the same packing frac-
tion g(T~) =0.45, since this value has been shown
to fit the diffraction data of a number of different
liquid metals. '

%e can derive the temperature dependence of the
hard-sphere radius, and then of the packing frac-
tion, by the variation of the total pressure with
temperature at constant volume. This has been
measured for alkali metals, "and recently the
range of the data has been extended for sodium. '~

We here assume that the temperature variation
of the hard-sphere radius is the same for all met-
als; this can be shown to be true to a good approx-
imation for alkali metals, where data at constant
volume exist.

By using Eqs. (3) and (4) and considering the vol-
ume to remain constant at the value V~ at normal
pressure, we obtain from the data

1+g (T)+q~'(T) T
—3.7+6. 3

~V T
(5)

where T~ is the melting temperature at normal
pressure in degrees Kelvin and nVis the packing
fraction at constant volume. The variation of the
packing fraction gU with temperature is plotted in
Fig. 1. The packing fraction g at normal pressure
is then found by the following simple relation:

q=q (T)v /v. (8)
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ing fraction and then of the hard-sphere radius is
determined at each temperature by solving Eqs.
(5) and (5). In particular, at the melting point we
obtain:

a(0) =(27+~5aZE /SCT )-~

good approximation, "CJ /CI =1.15 for all metals,
the velocity of sound SBS= (f ZEF/M)'" calculated
by Bohm and Staver" is also shown. Their result,
although obtained in a more sophisticated way, can
be interpreted as deriving only from the compres-
sibility of a free noninteracting electron gas. '8

The agreement of s~ from Eq. (11) with experi-
mental data"~' seems to be very good; the trend
in each valence group is also obtained. The im-
provement over the BS result is noticable espe-
cially for polyvalent metals.

I Discrepancies are found, as expected, for Ag
and Cu, where an extra correction to the energy
due to overlap of electron shells of neighboring
atoms is probably needed; and for the "semimet-
als" Bi and Sb, which have been found to undergo

' structural changes in the liquid range. " Sb shows
also an anomalous temperature dependence of the
velocity of sound, which increases above the melt-
ing point up to a maximum. "

In Fig. 2 the temperature dependences of the ve-
locity of sound for Rb, Zn, In, and Sn are shown
as derived by Eq. (10), and experimental values
are also indicated.

The agreement is very good considering the sim-
(10) plicity of the model and the sensitivity of tempera-

ture coefficient of sound velocity as a probe.
and for the velocity of sound,

1 C 1(2ZE' = ~c AT 27+&(&IfT )

In Table I we compare s~ calculated by Eq. (11)
with the experimental values taken from Smith
et a/. "for a number of metals, we assume to a

CONCLUSION

We have shown that a simple model of hard
spheres in a uniform background potential is able
to describe successfully the compressibility, the
velocity of sound, and their temperature depen-
dences in normal liquid metal of widely different
masses, densities, and melting points.

Table I. Comparison of the calculated and measured velocity of sound in liquid metals. The experimental data have
been taken by R. T. Smith et al. , Advan. Phys. 16, 515 (1967); S~ is the calculated velocity of sound at the melting
point according to the formula

8 = ((ZT /M)(C /C )(27+)x ~&ZE /M' )]"&

Cp/Cz, has been taken equal to 1.15 for all metals, Ã/V is the mean atomic density, FJ. the Fermi energy, yy the iso-
thermal compressibility, SBS= (&ZEy/M)~ is the Bohm and Staver result for the velocity of sound [D. Bohm and
T. Staver, Phys. Rev. 143, 36 (1966)], T~ is the melting temperature, I the atomic mass, and Z the valence. Veloci-
ties of sound are in units of m/sec.

Na
K
Rb
Cs
Cu
Ag
Zn
Cd
Hg
Al
Ga
In
Tl
Sn
Pb
Sb
Bl

373
338
313
303

1356
1233
693
594
235
934
303
429
575
505
601
903
544

23
39.1
85.48

132.91
63.54

107.88
65.6

112.41
200.61

26.97
69.72

114.82
204.4
118,70
201.21
121.76
209

$x &~ZZy/KT~

13.2
9.2
8.6
8.5
8.2
6.6

42.5
40.5

103
46

168
95
66

128
100
112
146

2960
1810
1140

880
2580
1740
4180
2850
2100
8750
5430
3760
2760
4630
3350
5340
3940

2500
1720
1103

890
2700
1920
2610
1840
1220
4900
2850
2041
1580
2440
1900
3150
2080

~ exp

2526
1890
1260

967
3460
2710
2712
2166
1478
4670
2873
2315
1625
2464
1776
1893
1649

exp/ ~
1.01
1.1
1.12
1.02
1.28
1.4
1.02
1.17
1.2
0.96
1.01
1.11
1.03
1.02
0.94
0.6
0.8

KT (N/&))(T

0.025
0.028
0.028
0.028
0.0285
0.0297
0.014
0.015
0.008
0.014
0.005
0.008
o.o11
0.006
0.008
0.006
0.007
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The consistency of the model with a previous de-
scription of the atomic self-diffusion in liquid met-
als and the possibility of correlating sound veloc-
ities with self-diffusion coefficients by the same
hard, -sphere radius give us some confidence in the
basic correctness of the assumptions made. In or-
der to improve the agreement between calculated
and measured velocity of sound and then to reach

a detailed microscopic description of this quan-
tity, a better understanding of the interatomic
forces and their volume dependence in metals is
probably needed.
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FIG. 2. Temperature dependence of the velocity of
sound. The numbers to the right of the figure are the
temperature coefficients of the velocities of sound in
m/sec deg. The experimental ones indicated are the
smallest and largest measured, reported by M. B.
Gitis and I. G. Mikhailov (see Ref. 19). The calcu-
lated ones, when they are plotted in pairs, are the
low-temperature and high-temperature values; this
means that the temperature dependence is slightly
nonlinear. The abscissas give the temperature in
'C, and the ordinates the velocity in m/sec. The
plots begin at the melting points.
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