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Transport coefficients are computed near the critical mixing point of a classical binary
liquid mixture by considering processes in which one transport mode breaks up into several.
The conclusions are that, when the concentration has its critical value and the temperature is
near the consolute temperature, the diQusion coefficient does not go to zero as fast as
(Bp&2/Bx)P ~, but only as fast as $ = IiT-Tc I, where ( is the temperature-dependent co-
herence length; that the shear viscosity has at most a logarithmic divergence; that the ther-
mal diffusion coefficient has at most a very weak divergence; and that the thermal conductiv-
ity has no divergent part. A result very similar to that of Kawasaki and Tanaka is found for
the bulk viscosity.

I. INTRODUCTION

In several recent papers, correlation function or
equivalent response function techniques' ' have
been applied to the problem of calculating the
apparent divergences" in transport coefficients
near critical points. In particular, these methods
have been used to predict the apparent singular
behavior of the shear viscosity'~'~'~' and bulk
viscosity or sound-wave damping constant'~'~' of
a binary liquid mixture near its critical mixing
point.

In this paper the perturbation formalism for
transport coefficients of Ref. 9 and the "scaling
laws" "-~ for static correlation functions are
used to discuss this same problem. The basic
difference between our work and that of the above
authors'-' is this use of the scaling laws rather
than the Ornstein-Zernike theory to estimate
correlation functions. The scaling laws probably
yield more accurate estimates very close to the
critical point.

The next section of the paper is devoted to an
analysis of the diffusion coefficient and shear
viscosity based upon the work of Ref. 9. The
final section explains how a more detailed theory
leads to the same results for D and g, and to
additional information which the simpler analysis
of Sec. III does not yield.

II. CONNECTION BETWEEN BINARY
MIXTURE AND LIQUID-GAS CASE

The calculation of transport coefficients for the
case of a binary liquid mixture is very similar to
that for the case of a liquid gas. The basic dif-
ference is that there is one extra variable and
thus one more transport mode in the mixture than
in the liquid-gas problem.

The thermal conductivity of a mixture is, from
experiment, ' apparently nonsingular near the con-
solute temperature. This suggests that the ther-
mal conduction mode is irrelevant for our purposes,
and provides the basis for the calculation of this
section, since the calculation of transport coef-
ficients for the mixture is essentially the same as
that for the liquid-gas case if the extra transport
mode may be neglected.

In this section of the paper we assume that the

thermal conduction mode is irrelevant. Then we
can obtain the anomalous contributions to the bulk
viscosity p and diffusion coefficient'~ D of a mix-
ture near its consolute temperature by simply
identifying the appropriate variables with those
of a one-component gas and using the results of
Ref. 9 for the anomalous transport coefficients
near the liquid-gas critical point.

A. Connections Among Thermodynamic
Variables

The basic connection to be made among the
thermodynamic variables of the two problems is
that between the order parameters "~" Thus
the order parameter in the phase separation
problem, the concentration of one component of
the mixture minus its critical value" ~" is to be
identified with the order parameter in the liquid-
gas case, the density minus the critical density.

A more complete list of identifications is given
in Table I. In addition to the connection between
the order parameters, there are also connections
between their respective conjugate thermodynamic
variables as well as their derivatives with respect
to these variables. The relation between the
specific heat at constant pressure for the mixture
and the constant-volume heat capacity for the
gas has been given by Rowlinson. "

There is one extra intensive variable, the pres-
sure, in the mixture case. However, for our
purposes the pressure is irrelevant and thus does
not affect the correspondences.

The identification of variables given in Table I
is not perfect because P, the "critical exponent"
which describes how the jump in the order parame-
ter goes to zero near the second-order phase
transition, "~' is different for the two cases.
For the mixture, "

P = 0.31; while for the liquid-
gas system, "P= 0.34-0.35.

B. Connections Among Transport Processes

To make further progress we have to give the
connections among transport processes. The
basic correspondence to be made is that between
modes in which the order parameters enter.

%hen the temperature is near the consolute
temperature, the two diffusive solutions of the
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TABLE I. The variable in the mixture problem is to
be identified with indicated variable in the liquid-gas
problem. The subscripts (1) and {2) refer to the two dif-
ferent species comprising the mixture, and m denotes
the mass of the particles.

Binary mixture Liquid gas

x(concentration)
~12 ~1/~1 ~2/ 2)

(sx/sp &2) i
t

T
C

p (density)
p (chemical potential)

(sp/sv)
~ T

T (temperature)
C

TABLE II. Identification of transport modes in the
mixture problem with the corresponding modes in the
liquid-gas problem.

hydrodynamic equations describing the mixture
can be approximately broken up into a mode
dominated by mass diffusion and another by ther-
mal conduction. " The mass diffusion mode is
of course the mode into which the order parame-
ter enters.

In the liquid-gas case the thermal conduction
mode is the mode into which the variable with the
large critical fluctuations enters. This is so
because the entropy contains the large fluctuations
of the density; i. e. , C~ and (Sp/Sp)T diverge in
the same manner near the critical point. Thus
we identify the mass diffusion mode in the mixture
problem with the thermal conduction mode in the
liquid-gas problem. The full list of correspon-
dences is given in Table II. The thermal diffusivity
A/pC&, rather than the thermal conductivity A. ,
has been identified with D, since it is this quantity
which determines how fast the thermal mode re-
laxes.

The characteristic frequencies sD*, s&*, and
s~* are defined as in Ref. 9. That is, sD* is the
inverse diffusion relaxation time evaluated at
wave number q-g ' and D* is the diffusion coef-
ficient evaluated at this wave number and frequency.
Similar definitions hold for s * and g~ and s&*. 7l
and X*. All these frequencies go to zero strongly
near the consolute temperature. In Table II, g
denotes. the temperature-dependent coherence
length. " When the concentration has its critical
value and the temperature is near the consolute
temperature, $ diverges as tT-T I ", where»
probably v=~2.

For the purposes of this section, the thermal

conduction mode and sound-wave modes of the
mixture are identified with the sound-wave modes
of the liquid-gas system. In Ref. 9 it was found
that the sound-wave modes made no contribution
to the low-frequency transport coefficients under
the assumption that the strongest form of the
scaling laws held. We are assuming here that
the heat-conduction mode and sound waves are
irrelevant, so that we can write down the singu-
lar parts of the low-frequency transport coeffi-
cients by referring to Ref. 9 and the identifica-
tions in Table II.

The singular part of the shear viscosity is
given in Eq. (3.30}of Ref. 9 for the liquid-gas
case. This then implies that the wave vector and
frequency-dependent shear viscosity of the mix-
ture is given by

g(q, s}- I T Te I'-
for q( $ ' and s( sD~ when the concentration
has its critical value. In Eq. (1), s is the imag-
inary frequency (Laplace transform variable) de-
scribing the disturbance. Equation (1) implies
that g does not diverge as a power of T-T~
near the consolute temperature, but has at most
a logarithmic divergence or strong cusp.

The singular contribution to the zero wave vec-
tor and frequency thermal conductivity for the
liquid-gas ease is given by Eq. (3.29) in Ref. 9,
which is

&(0, 0)/ I T- T I l T- T& I (liquid-gas).

The left-hand side of the above equation is pro-
portional to A/pC&, since C& diverges as
tT-Tt &. From our list of correspondences

this then implies that

D(0, 0)- IT-Tel

for the concentration having its critical value.
Like the thermal diffusivity, D may be written

as a transport coefficient L, divided by a thermo-
dynamic derivative (Bx/Sp12)~ ." Then, since
near the consolute temperature ex/epl2)&T- IT-T~ t & with y greater than or about unity, "
Eq. (2) implies that the transport coefficient L
diverges as lt T- T~ l

v & . Since v = —,', the behavior
of D described by (2) seems to be in rough agree-
ment with the experiment of Chu, Schones, and
Kao" who studied the mixture isobutyric acid
water and also with the experiment of Chen and
Polonsky" on the mixture n-hexane-nitrobenzene.

Binary liquid mixture

Mass diffusion mode
D

D
Viscous flow

n
s * q*$ /p

Thermal conduction
sound waves

Liquid gas

Heat conduction mode
P/pc )

s *
A. ~$ 2/pCT P

Viscous flow
7l

s 0$ /p

Sound waves

III. MORE DETAII.ED THEORY

The results (1) and (2) are based upon the
assumption that no appreciable contribution to the
anomalous parts of the transport coefficients
comes from the heat-conduction mode. In this
section, the results of a more detailed calcula-
tion, which employs the formalism of Ref. 9 but
which is independent of the above assumption,
are presented.

The firm predictions of this theory are relations
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among the transport coefficients. To exti act the
individual transport coefficients from these rela-
tions, assumptions must be made about the way in
which the thermal conduction mode enters. Thus,
the only information that this theory gives are
these relations, unless we know from experiment
the behavior of one or more of the transport coef-
ficients.

A. Firm Relations Among Transport
Coefficients

The firm prediction of the detailed analysis
relating the anomalous part of the diffusion co-
efficient and g* is

(3)

for q&$ ' and s&sr!*. This relation corresponds
to Eq. (3.27) of Ref. 9 which gives X/pCp in terms
of g* for the liquid-gas transition.

According to the detailed theory, there is also
an equation connecting D* and the dominant singu-
lar contribution to g in the frequency range
s(sD*, namely,

j singular (4)

for q& $-'. The derivation of (4) follows that
whichled to Eq. (3. 19) of Ref. 9 for the connec-
tion between q and X~/pC& in the liquid-gas case.
Equation (4) describes a result which is essentially
similar to that obtained by earlier authors, '»'~'
save that we have not assumed the Ornstein-Zernike
form for the static correlation functions, nor that
D- (Bp12/Bx) in deriving it.

Finally our analysis predicts that the singular
part of the bulk viscosity and D* are related by

tributions to D and g, we could employ the analysis
of Ref. 9 to derive (1) and (2). However, there is
a possible pitfall in the derivation of (1) and (2)
from (3) and (4): the heat-conduction mode. To
see this we have to consider the operators which
enter the analysis in some detail. In a mixture
there are two variables, the entropy and the con-
centration, which obey diffusion equations. To
use the scheme of Ref. 9 we must take proper
linear combinations of the operators representing
these quantities so as to obtain an orthogonal set
of local equilibrium states.

One of these operators, xop ——(nl op/(nl))
—(n2 op/(n2)), represents the concentration as
its autocorrelations are related to (sx/9!LI2)~ T
while the autocorrelations of its current yield'
the diffusion coefficient. The other operator whose
average obeys a diffusion equation is then

( ls (- q)x (q) I )

(lx (-q)x, (q)!) op

in the notation of Ref. 9. Here sop is the usual
entropy operator; i. e. , Tso -- '(energy density
operator) —(average enthalpy per unit mass)
x (density operator). The above operator has
autocorrelations which are related to C~ while
its current-current correlation function gives
&/pCp+Dk Z'(&p12/&x) p T/TCp where kg is the
thermal diffusion ratio. '4

If the ratio ( [sop(
—q)xo (q) I )/(}xop( —q)xo (q)! )

remains substantially inde endent" of q for q . ', the
"thermal" operator given above never mixes with
xo (ij) at any point in the calculation so that (1) and
(2 I can be derived. With this assumption the ther
mal conductivity is found to have no divergent part,
in apparent agreement with experiment. The ther-
mal diffusion coefficient is found to have the singu-
lar part

(Dk )(q, s)-!T T!(2v—o. -y-)/2
c (6)

V P

for s(sD* and q(g '. In Eq. (5), c is the sound
velocity, k& is Boltzmann's constant, and C& and

CP are the constant-volume and -pressure heat
capacities, respectively. The contribution to the
bulk viscosity described by (5) is essentially that
calculated by Kawasaki and Tanaka~ save that
again we have used the scaling laws to estimate
correlation functions and have not assumed a
specific form for D*. Equation (5) also corre-.
sponds to the singular sound-wave damping con-
stant in the liquid-gas case given by Kadanoff and
Swift' in their Eq. (3.24).

We emphasize again that equations of the type
(3), (4), and (5) are the only ones, without any
information from experiment, that our theory
gives.

B. The Thermal Mode

If (3) and (4) described the only singular con-

for s &s ~ and q (g
' and the concentration having

its critical value. Since the exponent" in (6) is
probably within one or two tenths of zero, this
describes at most a weak divergence Dk T.

However, if

s (ls ( —q)x ($) I) (Is (q)x (q) I)

for q&$ ' then the "thermal" operator will mix
with xop(q) in the calculation. We note that
Kawasaki' has discussed a similar point. If also
the entropy operator contains the large fluctua-
tions in xop, as is indicated by a mean field theory
calculation, the analysis which!ed to (1) and (2)
breaks down since the thermal conduction mode
enters in an essential way. In this ease we find
that both X/pC~ arid r! exhibit strong divergences
of the form I T - Tc ~

~ y+ a&I2 -
I T- Tc I

'Is
when the concentration has its critical value.
Since this result for A, is in apparent disagreement
with experiment, "we consider it unlikely that the
thermal conduction mode enters the problem.
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C. Conclusions

%ith the above piece of information from experi-
ment, the more detailed theory yields the results
(1) and (2) so that our analysis predicts that q has
at most a very weak divergence while D goes to
zero only as fast as ( ' and not as (&&y2/Bx)~ Z

.
The detailed analysis gives the result that A.

should have no divergent part while Dk& should
have a singular part described by (6).

Finally, Eq. (5), wher«Q. (2) i«o b«sed
for D*, gives the singular part of the bulk viscosity
which enters into the sound-wave damping constant.
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An analysis is given of the critical-point behavior of the two-parameter model which was
previously shown to yield results which agree with He data for the second virial coefficient
and for the coexistence curve. The critical-point exponents of the model are calculated and
found to be the same as those for a classical van der Waals gas. With the exception of the
exponent characterizing the specific-heat singularity, the results agree reasonably well
with published data on He .

I. INTRODUCTION

In a previous paper' a study was made of a
model which describes a systeQl of interacting

fermions at densities and temperatures for which
condensation of the gas could take place. The key
point of this model involves the usage of a certa, in
soluble model Hamiltonian, 2 which as shown by


