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A general expression is obtained for the breathing mode and the surface-distortion modes
of a negative ion or electron bubble in liquid He at low temperatures. The electron is as-
sumed to be in a spherical potential well of finite depth. The modes are damped because of
the excitation of compressional waves in the surrounding fluid. Numerical calculations indi-
cate that the breathing mode gives rise to a broad resonance in the vicinity of 10 sec
and that there is a rather sharp quadrupole distortion mode with frequency varying from
1.6&&10 to 5.6 X 10 sec as the external pressure varies from 0 to 20 atm.

I. INTRODUCTION

The problem of excess electrons in liquid helium
has been the subject of considerable. research. ' '
The theory due to Ferrell' and Kuper' suggests that
the excess electron is not in direct contact with the
liquid. Instead it creates an almost macroscopic
spherical bubble for itself by quantum kinetic
pressure, which balances the surface tension and
hydrostatic pressure at the surface of the bubble.
The radius of the bubble varies from 10 to 16 A
with hydrostatic pressure. ' The depth of the
potential well for the electron is found to be ap-
proximately 1.0 eV from photo-ionization experi-
ments. 4 Periodic discontinuities in the mobility of
both positive and negative ions in He II have been
found by Careri and others. ' It has been suggest-
ed that these discontinuities are due to the forma-
tion of quantized vortex rings found in the wake of
these ions by Hayfield and Reif. However Cope
and Gribbon' propose that head-on collisions be-
tween rotons and vibrating electron bubbles can al-
so give rise to such discontinuous steps in the mo-
bility. The expression they use for the modes of
vibration of the bubble is due to Rayleigh for the
surface vibrations of a spherical droplet of incom-
pressible fluid. This model is too simple since it
ignores the quantum nature of the electron inside
the bubble. In this paper we develop a theory of
the vibrations of the bubble taking into account the
quantum kinetic pressure of the electron. The re-
sults are radically different from Cope and Grib-
bon's and do not support the explanation of the Ca-
reri mobility steps suggested by these authors.
Other recent work based on a somewhat different
bubble model is in qualitative agreement with our
results.

A general expression for the breathing and sur-
face modes of the bubble is derived in Sec. 2. The
electron is assumed to be at the center of a spheri-
cal potential well of depth ~,. The surrounding he-
lium liquid is treated as a compressible fluid and
classical expressions are used for the energy due
to the surface tension and the hydrostatic pressure

r =a+6(6)
&(tl)=Z a I' (cose)n n n

(2.1)

where the prime indicates that the sum over n be-
gins with n = 1. The coefficients an will be regard-
ed as infinitesimal. To second order, the surface
area 8 and the volume ~ of the bubble are given by
Rayleigh';

S=4wa'+2m+ (2n+1) '(n'+n+2)a ' (2.2)

V= (4w/3)as+ 4wag (2n+ 1) 'a 2
n n

' (2.3)

The Hamiltonian of the trapped electron is to sec-
ond order in an

H(a)- V,[6(r-a)~ (8)--,' 5'(r-a)& (&)'] (2.4)

where 6 is the Dirac delta function, a prime indi-
cates differentiation, and H(a) is the Hamiltonian

of the liquid. The driving force which activates
the surface modes of the bubble can be either an
electromagnetic field or a sound wave, in the z
direction. The resultant radial deformation & (8)
of the bubble may then be expressed as a function
of the polar angle. The Hamiltonian of the elec-
tron is next perturbed to second order in &(8) and
the resultant change in kinetic pressure is calcu-
lated in terms of the electronic wave functions of
the unperturbed spherical well. Use of the bound-
ary conditions at the surface of the bubble and the
Born-Oppenheimer approximation yields a general
expression for the modes of vibration of the bub-
ble. Section 3 gives the results of numerical cal-
culations of the frequency and damping constant
for the breathing mode and the quadrupole surface
mode. Similar work has been done by Gross and
Tung-Li in the limit of an infinite spherical poten-
tial well and an incompressible fluid.

II. THE GENERAL EQUATION FOR THE
MODES OF VIBRATION OF AN ELECTRON BUBBLE

Let the shape of the bubble be described in spher-
ical coordinates by the equation
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of an electron trapped in a spherical well of depth
Vo and radius a.

At equilibrium under a uniform pressure P the
bubble is spherical, all the coefficients an vanish,
and the equilibrium value of a is determined by the
condition that the total energy Etot(a) be a mini-
mum. This leads to the equation

dEO-O(a)/da —= Vg '(a) = 8woa + 4wpa (2.5)

where R«(r)/r is the normalized radial wave func-
tion and E« the eigenvalue in the ground state of
H(a). When P equals the external hydrostatic pres-
sure Pe, the solution of (2.5) will be denoted by ae.
Similarly, the equilibrium values of S and V are
denoted by Se and Ve. Deviations from static equi-
librium are described quite generally by letting
the shape of the bubble vary according to (2.1),
where we now insert

a=a +a
e 0 (2 6)

The pressure on the surface of the bubble becomes
pe+2 p(8), with

nP(8) =g P P (cos8). (2 7)

where Ee~ is the ground-state expectation value of
(2.4). It should be noticed that terms linear in a,
actually vanish because of the equilibrium condi-
tion (2.5). The total energy (2.8) is then

E =E +aS +p V +g (2n+1)-~
tot 00 e e e n

&(2K a 2+4wa p a ), (2.9)nn e nn'
where E» is the ground state energy of H(ae) and
the effective spring constants E„are computed
from (2.2), (2.3), and (2.4). The result is

K =4wo'(n'+n+2)+8wp a -2V0R00R00'n e e

~o0 +'

oo gn
(2.10)

where E&n and R&n(r)/r are, respectively, the en-
ergy and the radial wave function for the jth state
of H(ae) belonging to the nth spherical harmonic.
Here and in the following a prime denotes differ-
entiation with respect to r and all functions of r
are to be evaluated at x=ae if no explicit argu-
ment appears. For n = 0 the term j= 0 is not includ-
ed in the sum in (2.10).

If the shape of the bubble and the pressure at its
surface are allowed to vary with time, a time-de-
pendent disturbance will result in the surrounding
liquid. Such a disturbance is described generally
enough by a linear combination of kinetic poten-
tials of the type

y h (kr)e P (cos8), (2.11)

The unprimed sums in (2.7) and in the following
include n=0. The total energy Etot of the ion can
now be expanded around the equilibrium values.
We have, to second order in an and pn,

E =E )+0'S+P V
tot el e

+S f np(8)n(8) sin&d8, (2.8)

where k and & are related through the sound veloc-
ity c

K =QC ~ (2.12)

In (2.11) and in the following hn is short for h„'",
the spherical Hankel function corresponding to the
boundary condition of outgoing waves at infinity.
The normal component of the velocity at the sur-
face of the bubble should equal the time derivative
of (2.1). This implies

p h '= -i~a
n n n

(2.13)

The pressure exerted by the liquid on the surface
of the bubble is of the form (2.7), with

p = Scop+
n n n

(2.14)

xj +x 'dj (x)/dx
b = p2n+ liin- n n n

n ' ' xh +x 2dh (x)/dxn n n
(2.16)

where x=kae =&sac/c, and x„ is given by (3.1) be-
low. We expect then to observe the vibrational
modes of the bubble as resonances in the ampli-
tudes of the scattered acoustic wave. [Compare
(2.16) with (3.2) below. ]

The spring constant &n can easily be evaluated
in closed form as follows. First we eliminate a'

in favor of the experimentally accessible quantity
Pe by using (2.5). Then (2.10) can be rewritten,
for n & 0, omitting from now on the subscript e,
since all quantities are evaluated at equilibrium

K = -2wpa(n+2)(n-1)+ (2V R 2/a)
n 0 00

&& [4(n'+n+ 2)-aR„'/R

-V0a'G (a, a;E )] (2.17)

We have introduced here the notation Gn(r, r'; E)
for the radial coefficient of the nth spherical- har-
monic with zero azimuthal quantum number in the

where p is the density of the undisturbed liquid. It
can be verified a Posteriori that the Born-Oppen-
heimer approximation is valid, so that at each in-
stant the bubble takes the equilibrium shape under
the pressure P(8). This implies that Etot is sta-
tionary with respect to an, or

K a +4wa mp =0. (2.15)n n e n

Equations (2.12) through (2.15) lead to an eigenval-
ue equation for the vibration frequencies &„,
which are in general complex. The corresponding
solutions for the kinetic potential decay exponen-
tially in time and increase without bound with the
distance from the bubble, because of (2.12). Al-
though such solutions in themselves are devoid of
physical significance, a knowledge of the complex
eigenfrequencies is quite useful. Thus, if an ex-
ternal driving force is added, it is found that there
are resonances in the response of the system.
Physically, the external driving force may be an
electromagnetic field acting on the trapped elec-
tron or an incoming acoustic wave (see Wang'0).

It can be shown that the partial wave amplitudes
bn of the scattered acoustic wave for unit incident
intensity are given by
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expansion of the Green's function for a spherical
well, at energy E. The coefficient G„obeys the
differential equation

1 s 8 n(n+1) + V(r)-E
262

xG (~, r';E) = , 6(~—~'),-1 (2.18)

with

)isPs/2m = E-
fi'n'/2m = V, +E. (2.20)

Matching the two solutions at r =a, we obtain

G (a, a;E) = -(2m/h'a')(h '/h -j '/j ) '. (2.21)

When E=E,O, o.' and P are related by

o. coto.'a = -p (2.22)

and a manageable expression can be obtained for
K

For n= 1, we expect on physical grounds to find
no restoring force, because it can be seen that E,
is proportional to the second-order energy change
when the bubble is rigidly shifted; this change
must of course be zero. One can also verify ex-
plicitly that &, vanishes after substituting G, as
given by (2.19) into (2.17).

For n= 0, formula (2.17) should be modified by
replacing G, (a, a;EM), which diverges, by the lim-
it (for E going to E„)of

Gc(a, a;E)-R„'/a'(E -EM). (2.23)

The resulting expression is also derived by a
more direct method in the next section.

HI. NUMERICAL EVALUATIONS OF THE
BREATHING AND QUADRUPOLE MODES

For the following it is convenient to introduce
the dimensionless variable x =ha = &ua/c. The nat-
ural frequencies of the problem, in dimension-
less units, are

x =(a/c)(Ã /4wpa )il . (3.1)
n n

where V(r) equals -V„ for i' &a and vanishes for
x)a. For r'=a, the solution of (2.18) with appro-
priate boundary conditions is

G =Aj (nr) r &a
n n (2.19)

=Bh (iPr) r)a,

Then the eigenvalue equation for &u is, from (2.15)
and preceding equations,

xdh (x)jdx = -(xjx )sh (x) ~

n n n
(3.2)

We now proceed to an evaluation of the complex
frequencies of the lowest modes of vibration.

Breathing Mode

For n =0, the eigenvalue equation (3.2) can be
solved explicitly to give the eigenfrequency

ic, = (cx,/a)[(1--'x ')'"--.'fx, ] (3 3)

The spring constant E, is most easily evaluated di-
rectly from the formula

ff, =dEs„/da'+8 (wcp+a), (3.4)

from which once again we can eliminate cr by use
of the equilibrium condition (2.5). Putting

y=Pa/(1+Pa), (3.5)

we have from (2.20) and (2.22)

VcRcss(a) = -dEcc/da = yh as/ma, (3.6)

and we obtain

Quadrupole Oscillations

Next we look for solutions of (2.17) for n =2,
since, as we saw, there are no modes with n =1.

The value of E, in the limit Pa —~ can be ob-

K =(h a'/ma )[2y+6y -2(o.a)'/

(1+pa)s]+4wpa, (3.7)

E, 8ji'w'-/ma +4wpa for pa -~. (3.8)

Representative values of E, and of the real and
imaginary parts of &0 are given in Table I for the
values of a determined experimentally by Spring-
gett and Donnelly. » It should be noticed that the
values of &, are very sensitive functions of a,
varying approximately as a-'". Thus uncertain-
ties in a affect rather seriously the estimated val-
ue of ~0. The results are also somewhat depen-
dent on the sound velocity c. For consistency, we
take the values of c at 1.5'K, the temperature at
which a was determined. " With all these limita-
tions in mind, the only conclusion to be drawn
from the results of this subsection is simply that
there exists a broad resonance in the neighborhood
of &, =10» sec ', the maximum of the resonance
shifting to higher frequencies with increasing pres-
sure.

TABLE I. The stiffness constant Kp and the real and imaginary parts of the frequency urp of the breathing mode, as a
function of pressure at 7.' = 1.5 K.

(at|n)
P

(g/cm')
c/a

(lOu sec i)
Kp

(erg/cmi)
Hemp

(ioii sec i)
-Im&

p

(iOii sec i)

0

8
12
16
20

0.1452
0.1508
0.1562
0.1607
0.1648
0.1685

1.472
1.985
2.374
2.715
3.036
3.356

48.5
93.1

129
162
198
238

0.777
1.35
1.75
2.11
2.46
2.84

0.222
0.526
0.770
1.00
1.26
1.57
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tained independently of the theory of Sec. 2 by no-
ticing that to first order a quadrupole distortion
is identical to a spheroidal distortion. The use of
Moszkowski's calculation" for the second-order
electronic energy change due to the spheroidal
distortion gives the following result for E,:

K, = 84.948 /ma~ —8spa. (3.9)

This agrees with the result of Gross and Tung-Li. '
More generally, E, can be obtained for finite V,
from (2.17) and (3.3). After some algebra, the re-
sult is

28 n' Pa
ma' (1+Pa)'

x~ (oa)' —1~-8vpa. (3.10)3(1+Pa)

From this, (3.9) is recovered in the limit pa —~,
oa —s. The eigenvalue equation (3.2) now becomes:,

x 2(f~s-4/2-9j/+9) = -/2(/2+3'~-3). (3.l 1)

This equation must be solved numerically for the
values of x,' at hand, which are somewhat larger
than unity. The results are given in Table II, the
values used for p and a being the same as for Ta-
ble I. The roots come in pairs, with equal and op-

TABLE II. The stiffness constant K2 and the real and
imaginary parts of the frequency ~2 of the quadrupole
distortion mode, as a function of pressure at T =1.5 K.

p K2 Re+2 -Imago 2
(atm) (erg/cm ) (1O sec ) (1O sec )

posite real parts and equal imaginary parts. One
pair of roots are almost pure imaginary, the oth-
er almost real. Only the value of v, =cxjapertain-
ing to the latter is given in Table II, as the form-
er does not correspond to a sharp resonance.

CONCLUSIONS

We conclude that the model considered indicates
the existence of a rather sharp resonance for
quadrupole distortions. It is hoped that experi-
mental evidence will be forthcoming to check the
calculations of this section. In particular, data
from acoustic attenuation and Raman scattering
off liquid helium in the presence of negative ions
should show peaks from which the vibrational fre-
quencies of the bubble can be obtained. Work is
in progress to calculate the expected results of
such experiments using the model presented in
this paper, which is more manageable than the de-
scription of the bubble "from first principles" em-
ployed by Gross and Tung-Li. ' In fact the two de-
scriptions are poite closely related and in a way
complementary. Our model has an unphysical dis-
continuity of the fluid density at the boundary',
Gross and Tung-Li avoid this, but they constrain
the electron in a well of infinite depth. Either of
these approximations however has little effect on
the answers obtained. The main difference be-
tween the two approaches is that we allow the vi-
brational energy of the bubble to be carried away
by exciting phonons in the surrounding fluid. '
Physically, this must be so, although a descrip-
tion of the dynamics of the fluid in terms of un-
damped phonons may not be appropriate for the
short wavelengths involved.

0

8
12
16
20

75.2
143
198
249
303
364

1.60
2.67
3.48
4.16
4.84
5.56

0.0434
0.122
0.208
0.296
0.399
0.532
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