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Neutron Diffraction by Liquid Zinc*
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The paper presents results on neutron diffraction by liquid zinc at 450'C. The measured
structure factor differs greatly from the x-ray structure factor reported earlier, but agrees
reasonably well with a theoretical Percus-Yevick structure factor for hard spheres. The
electrical resistivity calculated using our structure factor is about half of the measured value.
It does not seem that this large difference can be accounted for by small errors in the struc-
ture factor or the pseudopotential. Inadequacy of the Born approximation has been suggested
as one possible cause of this disagreement, the other being rather large errors in the calcu-
lated pseudopotentials. The possibility of the existence of a law of corresponding states be-
tween various liquids is examined and found to be unlikely. An effort to explain the structure
with a quasicrystalline model has met with qualitative success.

INTRODUCTION

Diffraction of x rays by liquids has been a sub-
ject of considerable interest for several decades, '&'

mainly from the point of view of getting an insight
into their static structures. Neutron diffraction,
on the other hand, though comparatively new, has
given useful information especially for some liq-
uids which are not very amenable to x-ray scat-
tering experiments. The interest in these experi-
ments has grown considerably, after it was shown
that the structure factor involved is connected in a
direct way with the dc electrical resistivity of the
liquid metal. In this paper we present results of
our measurements on diffraction of neutrons from
liquid zinc at 450 C. Only one x-ray diffraction
measurement on liquid zinc has been reported
earlier. 3~4 This measurement showed an unusual
structure factor in the sense that a hump was found
before the main diffraction peak. This has not
been observed in any other metal.

In Sec. I we present briefly the experimental set-
up and the observations. The derived pair corre-
lation function is presented in Sec. II. In Sec. III,
the structure factor is described in terms of the
Percus- Yevick formulation for hard spheres and
the dc electrical resistivity is derived from the
measured structure factor and a pseudopotential
due to Animalu and Heine. In addition, the possi-
bility of using a law of corresponding states is
discussed, and finally, the data is fitted using a
quasicrystalline model. Section IV gives a
summary.
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thin aluminum radiation shield. The sample was
kept at 450 C.

Figure 1(a) shows the diffraction pattern. The
dots show the raw pattern and the crosses show
the corresponding background with the empty
Vycor casette. The net pattern is shown in
Fig. 1(b) after applying corrections for the empty

I. APPARATUS AND EXPERIMENTAL DETAILS

The measurements were carried out at the 1-MW
swimming pool reactor PRR-1, at the Philippines
Atomic Research Center, using a conventional
neutron diffractometer' which gives incident
neutrons of 1.17 A.

Zinc of 99.8% purity was sealed in vacuum in a
Vycor tube of 10-mm inner diameter and 1.5-mm
wall thickness. The sample was heated by means
of two heaters, one at the top of the Vycor tube
and another at the bottom. The temperature was
read using thermocouples attached to each of these
two heaters. The whole assembly was held in a
vacuum chamber after having been covered by a
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FIG. 1. (a) The signal (zinc+ container) (o) and empty
container (x) counts in a.rbitrary units when 1.17 k
neutrons are scattered from them. (b) The normalized
net counts (o) with the bars showing the statistical errors;
open circles show earlier neutron results of Egelstaff
et al. (Ref. 17) with bars showing the systematic plus
statistical errors; the thick line is the final extended
structure factor used for calculating the pair correla-
tion function; the dashed line is the result of a Percus-
Yevick hard-sphere model calculation, and the long- and
short-dashed line is the x-ray structure factor (Ref. 3).



242 DASANNACHARYA, NAVARRO, IBARRA, CHATRAPHORN, AND LEE

casette' and multiple scattering. ' In our case we
find that the multiple scattering is about 15% of the
primary scattering. The casette contribution, on
the other hand, should be less than that shown in
Fig. (1) because of the transmission of the neu-
trons through the sample. This reduction is about
20% of the measured empty casette intensity and,
after taking account of fast-neutron background, is
almost entirely compensated by the presence of
multiple scattering. We have, therefore, sub-
tracted the empty casette counts without any
correction. The pattern is a total of several runs,
and the errors shown are only due to statistics.
The measurements are carried out up to a wave-
vector transfer of about 7. 3 A

' which is the
maximum wave-vector transfer attainable with the
present setup.

II. RESULTS

A. Structure Factor and Pair Correlation Function

The intensity of neutrons of wavelength ) getting
scattered through an angle 28 is given by the well-
known expression

I(Q) =I. +I h(Q) =N[(b')-(b)']

+N(b)2 {1+[(N-1)/V]

&&4 t' ~[ ( ) 1] 2 slnqrd ]

where Iinc and Icoh(Q) denote the isotropic inco-
herent and the angle-dependent coherent scattering
at the wave- vector transfer Q = 4v(sin8)/X, N give s
the number of particles in a volume V, (b) repre-
sents the average scattering amplitude of the
scattering centers, and g(r gives the pair corre-
lation function. We can rewrite Eq. (1) as

I(q) =r. + [I ( )-I. ]{1+[(N-1)/V]

&&4mf [(g)r-1] 'r[(si nq)/rQ)r] rd), (2)

where I(~) =-( b') gives the total scattering at large
Q. This leads to the structure factor i(Q)+1, given
by

i(q) I( ) I 4mnf[g(r) 1]r2 dr (3)
inc

Fourier-transforming this, one obtains

n[g(r)-1]= (1/2v J J Q'i (Q)[(sinqr)/Qr)]dq, (4)

where n is the atomic number density. One notices
from Eq. (3) that an absolute measurement is not
necessary since i(Q) is a ratio. This may, however,
be desirable in certain cases. ' Further, to get the
structure factor one should know two constants-
Iinc and I(~)

The most common method for getting Ijnc in
neutron measurements is to smoothly extrapolate
the measured pattern at small Q to the forward

direction and correct for Icoh(0), which can be
easily estimated from the known isothermal com-
pressibility. Once this is known, one uses the
fact that the correlation function g(r) is zero at
r =0 to get the second constant I(~). This gives,
from Eq. (4),

-2v'n = J{[I(q)-I(~)]/[I(~)-I.„]/Q'dq (5)

Jo™~q2I(q)dq 2v'nIt„

max
(6)

where Qmax is the maximum value of the wave-
vector transfer up to which measurements have
been carried out. Since zinc scatters coherently,
our problem simplifies to the extent that the sec-
ond term in Eq. (6) drops out.

As a starting point, we got an I (~) from Eq. (6)
less the second term, and used this to normalize
the data and get the structure factor. The smooth
i(q) was then used to obtain the first g(r) on an
IBM-1620 computer by feeding in the structure
factor at b, Q.= 0. 1 A ', and using Simpson' s rule
for performing the integration. Since our mea-
surements are confined only up to about 7. 3 A
we felt it advisable to use the methods suggested
by Kaplow et al. ' to increase the range of Q for
i(Q). Accordingly, we extended the data up to
Q =15.0 A '

by performing integrations back and
forth between i(Q) and g(r) The. final i(Q) and
g(r) are shown with solid lines inFigs. 1(b)and 2
respectively. The i (Q)+1 up to roughly 2kF,
where ky is the Fermi wave vector is listed in
Table I, and some relevant numbers related to
g(r) are listed in Table II.

B. Errors

The errors involved in the measurements and
the analysis of this kind have been discussed exten-
sively in literature (see Ref. 2 for details) in con-
nection with both x-ray and neutron scattering. '
We would like to make only a couple of general
remarks which seem relevant but have not been
sufficiently emphasized. The first point is with
regard to the determination of Iinc. It has been
noted'~' that a small error in Iinc, due to an
error in extrapolation at small Q, will introduce
only a very small error in g(r) because the inte-
grand in Eq. (4) involves a product of Q and i(q).
This, while reasonable for x rays, seems mis-
leading for the neutron case for the following rea-
son. It can be easily seen, by considering the
relative magnitudes of the various terms in Eq.
(5), that a small change b,i in I;„cwill not change
I(~) appreciably. The net result of this, therefore,
will be to change the i(Q) in Eq. (4) from
[I(q)-I( )]/[I( )-I,„,]to [I(q)-I( )]/I( )-It„c-~i].
If, for example, O, I is 5% of I(~)-i.nc, which is
not uncommon in measurements, i)q) will change
by 5% tkrougkout the range of measurements [and
so also will g(r)]. This effect, therefore, will not
be confined to small Q even though the extrapola-
tion is made in that region.

The second point concerns with the determination
of the two normalization constants using a crite-
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i(Q) + 1

TABLE I. Structure factor of liquid zino at 450'C.

i(Q) +1 &(Q) +1

0. 0

0. 1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0, 9

1.0

0. 016

0. 020

0. 024

0. 028

0. 031

0. 035

0. 039

0. 043

0. 046

0.050

0. 054

1.8

2. 0

0. 065

0. 076

0. 084

0. 092

0. 108

0. 127

0. 146

0. 173

0.216

0.291

0.389 3.2

0. 518

l. 063

1.306

1.684

2. 202

2. 429

1.565

1.090

TABLE II. Positions and magnitudes of peaks and valleys in H(r)=4m n (g(r) -ll. r is in A and H(x) in atoms/A.
I gives the number of atoms under the first peak of 4m ng(r).

2.71

5.90

7.3 7. 00

8.04

10.26

3.5

3.0

2. 65

11.30

12.35

13.44

14.64

2, 4

2. 15

I = n j t 4wr g( ~) dr
ri

r&= 2. 00

rion suggested by Rahman" and used bv different
authors in some recent pRpex's. ~2& ~3 DasannacharfR
and Rao'4 have examined this in some detail and
conclude that it is enough to consider the case
when p, =0, in that test. Kith this specia1ization
the criterion reduces to

nf 4m~'[g(r)- I-]dr

=(2/s) f Qi(Q)f, vsinQrdQdr

I ~, .
( )

3(sinQL Ql, cosQI,)d-or n=2, ,

Q'i Q-
(QI-)-'

for L,&~c, (vb)

where r is the so-called distance of closest
approach, below which g(r) is zero. Physically,
this condition is derived from the fact that the
total number of atoms, excluding the one at the
origin, is zero be1ow z=r~. A much simpler

criterion comes out, however, when one uses the
fact that g(r) itself is zero [instead of
f4''g(r)dh = 0]. This gives

-n=,
~

Q' (Q,tdQ for 1.&x .2' .
One will immediately notice that this is Eq. (4)
itself, in the region of x&z~. With reference to the
correlation function, it means that there are no
ripples in g(r) [or 4m@'g(r)] in the region of ~&ac.
If this condition holds, Eq. (I) will automatically
be satisfied. " Hence, it is enough to try to get a
g(r) which is free from ripples at small r This.
has been also the criterion followed by Kaplow
et QE«

In our case we started with an I(~) given by Eg.
(4) with the experimental value for n and tried to
reduce the ripples by extending the data and
modifying the normalizing constant up to an
arbitrary point. The final g(x) is presented in
Fig. 2. Figure 3 shows the effect on the g(x) of
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FIG. The pair correlation function for liquid zinc
at 450'C.

The errors on these points are statistical plus

Ref. 4).
systematic. We notice a good agreement ( 1en a so see

We have also compared our results with a cal-
culation in which a hard-sphere model is assumed
for the liquid and the i(Q) is evaluated using the
Percus-Yevick formulas [Fig. 1(b), dashed

A
lines . The explicit formulas have been g'v bgiven y

shcrof t and Lekner, "and we have calculated
the curve for the case when the packing density
for hard spheres is assumed to be 45%. This
packing density for hard spheres, according to
Ashcroft and Lekner, gives the best fit to the
structure-factor data for most of the liquids. It
is also possible to calculate the packing density
from the experimental density and the po 't'
of th

posl ion
o e first peak in the radial distribution function. "
This comes to 45. 5% for zinc. Our data can be
fitted fairly well with a hard-sphere diameter of
2. 43 A as calculated from the measured density,
0. 0597 atoms/A', of the liquid.

Coming now to the question of calculating the
resistivity of liquid zinc Ziman" and Bradl

20
ra ey

et a/. have shown that to the lowest order in
perturbation, the resistivity p of liquid metals is
given by the relation

3' 1 2k'y
p2'53/2(4/4(0 V(Q)[i(Q)+1]qdq), (9)

/'

/
-IO- /

O.O

I I

0.5
I I I J I I

I.O
I I I I I I I I I I I

I.5 2.0 2.5

FIG. 3. The effect of a 1% change in I{~) on the pair
correlation function.

We will first make a few remarks about the
structure factor itself. This has been measured
earlier by x-ray diffraction, ' and has been used

y various authors to calculate the electrical
resistivity of liquid zinc with good results. We
have compared our measurements with x- ray
structure factor in Fig. 1(b). The agreement is
poor. The reason for this is not known. In the
same figure, we have also plotted with open circles

of E
the results of some recent neutron measurem t

gelstaff et al. " The measurements were done
remen s

specially to look at small wave-vector transfers.

changing I(~) by 1'%%uo, and clearly brings out the
sensitivity of the ripples to this quantity. Inciden-
tally, this also shows why we plot g(r) and not
rg(r) or 4''g(r). The plots of rg(r) or 4''g(r)
tend to suppress the oscillations at small x and do
not clearly bring out the extent of the errors
(compare Figs. 2 and 5). The value of n calculated
by taking the best line through the points below
r =rc comes out to be 0. 057 && 10'4 atoms/cc. This
is roughly 5% lower than the measured density. "

III. DISCUSSION

where V(q), i(Q)+1, and kF are the Fourier trans-
form of the screened pseudopotential, the structure

for h
actor, and the Fermi wave vector respect' live y,
or t e i&quid. Using the Fourier transform of the

but
pseudopotential as given by Animalu and H

'
erne,

u modified for the change in density, we have
calculated the resistivity of liquid zinc at 450 C.
The calculated value comes out to be 19.1 p. Q cm
as compared with an experimental value of 37. 4
p, Q cm. The resistivity was also calculated for

out. On s
the case when V(Q) was changed by 0. 01 R th b-y roug-
ou . n subtracting 0. 01 Ry the resistivity changes
to 18.4 0
to

p. cm, and, on adding the value increase
22. 0 p, Q cm. Therefore, the maximum difference

due to these changes is 13%.
The resistivity of liquid zinc has been calculated

several times earlier, "~" "and these are
summarized in Table III along with the potential
and the structure factors used in these calculations.
It is not surprising that our calculated value is
similar to that given by Ashcroft and Lekner, since
our structure factor is reasonably well described
by a Percus- Yevick formula for hard spheres. It
is also noticeable in the same table that all the
calculations using the x-ray diffraction pattern
give a reasonable agreement with the experimental
value. Whatever the potential used, the calculated
value is within+ 20%% of an average calculated value
of 39 p, Q cm. In fact it was shown first by
Springer, "and then by Wiser, "that the variation
in the potential has maximum effect on the resis-
tivity in the case of monovalent metals, and that
it is much less for polyvalent metals. It seems
reasonable to assume that it is not more than
25 to 30'%%uo. Our calculations confirm this as do
those of Adams and Leach. " It therefore seems
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TABI K III. Resistivity of liquid zinc calculated using several potentials and structure factors.

Reference (year) Structure
factor

Resistivity

22 (1963)

24 (1964)

Ref. 22

Fit to Ref. 22

x ray

35.3

24 (1964}

23 (1965)

25 (1965)

26 (1966)

Fit to Ref, 22
+0.01 Ry

-0.01 Ry

a
Heine-Abarenkov

Ref. 21

Ref. 22

x ray

x ray

x ray

x ray

38.7

34. 0

26 (1966) Ref. 22
+0.015 Ry
-0.015 Ry

x ray
38
37

18 (1966)
a

Heine-Abarenkov Percus-Yevick
hard sphere

16.6

18 (1966) Ref. 21 Percus- Yevick
hard sphere

18.6

Present work Ref. 21 neutron 19.1

Present work Ref. 21
+0. Ol Ry'

-0.01 Ry
neutron

22. 0
18.4

V. Heine and I. Abarenkov, Phil. Mag. 9, 451 (1964).

certain that no minor change in the potential will
bring about an agreement between the theory and
the experiment.

It has also been pointed out'8 that any error in
establishing the peak position correctly in the dif-
fraction pattern will affect the resistivity to a
very large extent. In our case, a uniform con-
traction of the diffraction pattern by an amount
such that the first peak of i (Q) changes by 0. 1 A
(- 3. 5%), increases the resistivity from 19.1 to
22. 2 gQ cm, that is, by about 16.5%. A change,
of 0. 1 A ' in q, however, corresponds to a fairly
large and unlikely change of 1' in the scattering
angle. This combined with an increase of 0. 01
Ry in the potential brings the resistivity to 25. 6
pQ cm, which is still only about 70% of the ex-
yerimental value.

In view of the above discussion, we are led to
conclude that the good agreement obtained earlier
between the experiment and the theory was fortu-
itous, and no small change in the pseudopotential
will lead to the correct value for the resistivity.
The answer to the discrepancy should be found
either in a rather large change in potential or in
a modification of the theoretical formulation itself.
The latter course has been suggested by Green-
field" on the basis of his measurements of the
temperature dependence of the x-ray structure
factor in sodium, but several objections have been
raised in that connection.

Finally, coming to the problem of the structure
of the liquid, one can either try to describe the
radial distribution function on the basis of a corre-

sponding-states relation, or on that of a model.
Paskin, ' for example, argues for the cause of the
corresponding states, and concludes that for many
purposes the corresponding-states relation is
probably good enough. The same idea is implied
when Ashcroft and I.ekner" use the Percus-
Yevick theory for hard spheres, with a constant
packing density, for calculating the resistivity of
25 metallic liquids. In our case me have done two
types of comparison. First, we have compared
our 4vr'n[g(x)-Ij with the experimentally deter-
mined radial distribution functions for Pb, Hg, Sn,
and Al. Second, we have calculated the radial
distribution function based on the quasicrystalline
model of Kaplow et al. '

Paskin has comyared the radial distribution
functions for Ar (fcc), Na, Rb, Cs (bcc), and In
(tetragonal) using a scaling factor proportional to
the cube root of the atomic volume, (I/n)'I'.
Fessler et a/."have compared Al, Pb (fcc), and
Hg (rhombohedral). As the scaling factor, they
have used the nearest neighbor distance obtained
from a fit with the quasicrystalline model. ' This
mill, however, not satisfy the necessary condition
that the values of 4m n below the distance of
closest approach should exactly correspond to each
other for various elements obeying the law of
corresponding states. Ne therefore follow Paskin
in using a scaling factor (1/n)'~'. It is worth
mentioning here that if one wants to compare the
radial distribution functions up to large distances
it is important to select the proyer scaling factor,
since any small difference in this mill get multi-
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plied as one goes to larger x.
In our comparison, we will confine ourselves to

the distances involved and will, for the moment,
not consider the actual magnitudes of the radial
distribution function. In Table IV we list the ratio
x~/r& of the distances at which the respective
peaks and valleys occur in elements A. and I3. We
have also listed the ratio (n&/n&)'~' of the scaling
factors, in the fifth row. If the corresyonding-
states relation holds, the numbers up to the fifth
row in any column should be the same. This is
obviously not the case. The difference in these
numbers is as much as 15%when the comparison
is made with Hg or Sn and 7% when the comparison
is made with Pb or Al. It can be easily verified
that these numbers will be constant (within 2%)
only when one compares Al with Pb or Hg with Sn.
Hen(. , we conclude that the law of corresponding
states is not applicable in the form described
above.

There are, however, some noteworthy features
in the table. One can see that the first peak can
always be described reasonably well by the scal-
ing factor obtained from the density (row VII).
Also, the ratio rg/x~, beyond the second peak,
remains constant for any pair A/B. This can be
seen from the fourth row in which we have given
average ratio taken over a total of nine peaks
and valleys. The maximum deviation is less than
2%. These conclusions are strikingly brought out
by plotting these numbers as shown in Fig. 4.
Here we plot individually, for different pairs of
these five elements, the ratios of the positions of
the peaks and valleys, instead of the average
r~/r& The s. haded region gives the average of
the last nine points (five valleys and four peaks)
with a width of 2% on each side. Clearly the atomic
scaling factor (the square) is beyond this region
in all the cases except Pb/Al and Hg/Sn.

As mentioned earlier, our comparison applies
only to the distances involved and not to the actual
magnitudes of the radial distribution functions.
This does not seem necessary since, within the
present accuracy, the correspondence of magni-
tudes does not seem to hold even for substances

1.4

1.0
1.4

A= Pb B*Zn A=Hg 8=Zn A~Sn B= Zn

1.2-

wMMWmmm~v-mme~~

lp
ci A= Al B~Zn

1.5
!

A~Sn Bi Al

Pc%
~ I I I I I I

Pi P2 Ps Pe Pe Pe

&&P&W&~wwwwww~~~ c'

A& Pb B~Al

~ -~~ -~~

~ A ~ Hg B~ 5n

P, Ps Ps Pe Ps Pe

I

Pi

A~ Hg B*AI

(r„jr )

(nB/nA) /3

Average of last

nine points + 2%
\ ~ ~ I

like Pb and Al which have the same structure in
the solid state."

In view of the fact that a law of corresponding
states cannot be found, we have tried to fit a
specific model to our radial distribution function.
We have chosen the quasicrystalline model be-
cause of its simple physical meaning. The pro-
cedure followed for the fitting was similar to that
prescribed by Kaplow et a/. ' The solid lattice
was first expanded uniformly in its linear dimen-
sion by 2/o and then each 5 function in the radial
distribution function of the solid was broadened
into a Gaussian and damped. Finally, the density
was adjusted to the experimental value. The re-
sult is shown in Fig. 5 with dashed line. The full
line shows the experimental 4iir'n[g(r)-I]. The
fit was done manually, and the final value shown

FIG. 4. Dots (o) show the ratio of the corresponding
peak and valley positions in the radial distribution
functions of elements A and B. The hatched region is
the average of the last nine points, that is, the second
valley to the sixth valley in the radial distribution
function, with a 2% width on each side. The open square
shows the cube root of the ratio of the densities and

represents the atomic scaling factor. P is the ~th

peak index.

TABLE IV. Comparison of the radial distribution functions of different metals.

A/"B Pb/Zn Hg/zn Sn/zn At/Zn

Peak 1

Valley 1

Peak 2

1.27

l.33

1.33

1.15

l. 20

1.18

1.31

1.29

1.07

1.09

1.07

IV

( B/ A)"'

1.33+ 0. 020

l. 245

l. 28+ 0. 015

l. 136

1.303+ 0. 02

1.147

1.099+ 0. 02

1.041

f(IV-V)/V] && 100 +6.8 +11.0 +13.6 +5.6

VII [(I-v)/v] x loo +2, 0 + l. 2 +2. 9 + 2 2

The ratio presented in this row is the average of the nine ratios from the second valley through to the

sixth valley including the peaks in between.
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8.0-
6.0

4.0-
2.0

t

-2.0
CP

-4.0

-6.0

4.0 6.0 8.0

r(E )

LIOUID ZINC AT 450OC

Experiment

Quasi- cryetolfine Theory

IO.O 14.0 I6D

FIG. 5. Comparison of the experimental radial dis-
tribution function of zinc at 450 C with a calculation
based on the quasicrystalline model.

IV. SUMMARY AND CONCLUSIONS

The structure factor i(Q) +1 for liquid zinc at
450'C has been measured using neutrons. The
pair correlation function g(x) and the radial dis-
tribution function 4''n[g(r)-1] have been derived

is not necessarily the best possible. The figure
clearly shows that the radial distribution function
can be fitted reasonably by starting from the
parent solid. The agreement is only qualitative
and definite disagreement can be seen. The
period of oscillations, however, is reproduced
fairly well. Similar conclusions were reached
by Kaplow et al. ' and Fessler et al."

In making the fit to our data we took the ratio
c/a = 1.856, which is the value at room tempera-
ture. It is known that as the temperature increases,
the ratio decreases towards the ideal value. How-
ever, zinc melts before the ideal value is reached.
It would be of interest to see whether an ideal c/a
ratio would give a fit to the data. We have not
been able to do this because of the lengthy nature
of these calculations.

from the structure factor. Both i(Q) andg(r) are
very different from the x-ray measurements re-
ported earlier, but are in good agreement with the
neutron measurements. Our structure factor
shows a reasonable agreement with the Percus-
Yevick structure factor for hard spheres with a
packing density of 45%.

The electrical resistivity derived from our data,
using a pseudopotential due to Animalu and Heine,
is roughly half of the experimental value. It does
not seem possible to account for this large dif-
ference if reasonable allowances are made in the
structure factor or the potential. The explanation
may lie either in a large change in potential or in
the breakdown of the Born approximation, as sug-
gested earlier by Springer and Greenfield.

The radial distribution function for zinc is not
related to Pb, Al, Hg, or Sn by a law of corre-
sponding states of the type suggested by Paskin.
However, after the first two peaks the positions
of the peaks and valleys in the radial distribution
functions of any two elements can be made to co-
incide within 2% by a single scaling factor. This
factor is not related to the atomic volume in a
simple manner. The radial distribution function
for zinc can be described reasonably well by a
quasicrystalline model up to 10 A, though the
agreement between the experiment and the model
is not quantitatively adequate.
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Two equivalent microscopic formulations of quantum hydrodynamics are developed. Com-
mutation rules for hydrodynamical quantities are developed, and in particular, the commu-
tation rule for components of the fluid velocity operator is found to be in disagreement with

that derived by Landau. Vortex quantization is found to be a natural consequence of the theory.

I. INTRODUCTION

Theoretical investigations of superfluidity in
Bose systems have been characterized by two ma-
jor approaches, which we call the statistical ap-
proach and the quantum-hydrodynamical approach.
The former' assumes the existence, in the super-
fluid state, of a statistical order parameter which
is usually associated with an expectation value of
the field, g. The order parameter is complex and
the superfluid velocity, vz, is associated with the
gradient of its phase. The quantization of circula-
tion first suggested by Onsager2 thus follows from
the theory. Quantum hydrodynamics, on the other
hand, involves defining a specific operator for the
superfluid velocity. It was originated by Landau'
and further developed by Pitaevskii. ~ An alterna-
tive version of it was developed by Kronig, Thel-
lung, and Ziman. ' The aim of this paper is to re-
examine the quantum hydrodynamics of Landau,
clothe it in more modern dress, and try to draw
some new conclusions from it.

The main results of our analysis are the follow-
ing:

(a) Quantum hydrodynamics is presented in a
second-quantized formulation and the commutator
of the components of the velocity operator is
found to be zero, in contradiction to the result of
Landau.

(b) A field-theoretic formulation based on densi-
ty and phase operators is shown to be equivalent to
quantum hydrodynamics with the velocity operator
as the gradient of the phase operator.

(c) The velocity operator is shown to obey the
quantization-of -circulation condition.

By way of introduction, we here give a brief re-
view of quantum hydrodynamics. Describing the
Bose fluid in terms of many-particle wave func-
tions, Landau introduced a density operator and a
mass current density operator

N
p(F) = Q m.5(r-f'. )

i=1
N

and j(f') = —.Q [V.6(r-P'.)+ 5(r I' )V .]-.
2g 0 Z 2

respectively. He defined a Hermitian velocity op-
erator as

(1.3)

The most notable among the commutation rela-
tions between these operators is

[v (r), v (r'))=-iM(r-r')p ~(r)[V &&v(r)] . (1.4)
X

He further introduced a quasimacroscopic hydro-
dynamic Hamiltonian given by

H= fdf'{ ',v(r) p(r)-v(r)+E[p(r)]), (1.5)

where E[p] is an unspecified functional of p. From
this Hamiltonian he obtained hydrodynamic Heisen-
berg equations for p and 0, i. e. ,

p-
v = -[v~( v./e~s)x( +/svxe)v ]

-p-'v[p'(&/s p) (Ep-') ].

Later, Pitaevskii4 deduced directly f rom quantum
hydrodynamics the existence of ah excitation spec-
trum.

Kronig, Thellung, and Ziman' constructed an al-
ternative quantum hydrodynamics by quantizing a
Hamiltonian formulation of the dynamics of a clas-
sical fluid, treated as a continuum. They obtained
similar commutators and equations of motion to
those of Landau. In order to obtain Eq. (1.4), they
had to define the fluid velocity as the gradient of a
velocity potential plus extra terms, thus arbitrari-


