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For the case in which the zeroth-order wave function is a single Slater determinant of ar-
bitrary orthonormal spin-orbitals, the exact wave function can be expressed in terms of a
cluster-type expansion. If perturbation theory is applied in the standard (and systematic)
fashion to the Schrodinger equation for the cluster functions, a generalized form of Rayleigh-
Schr5dinger perturbation theory (GPT) is obtained. Although GPT is quite flexible, the form
presented in. this work is chosen so that the terms initially calculated in GPT correspond as
closely as possible to the starting points in the theories of Sinanoglu, Kelly, Conkie, Nesbet,
and others.

The first™order corrections to the wave function in GPT are written in terms of one- and
two-electron functions which respectively describe the perturbative corrections for the mo-
tion of one and two electrons in the field of the remaining electrons which are in their ground-
state orbitals (i.e., perturbative Bethe-Goldstone-like equations). This is a more physical
starting point than the first-order wave function of ordinary Rayleigh-SchrMinger perturba-
tion theory (OPT), and GPT should be much more rapidly convergent than OPT.

By analogy with OPT, GPT also has a 2g+ 1 rule, a variational principle for the gth-order
energy and the 2+th-order wave function, and interchange theorems of douhle-perturbation
theory. As in OPT, the equations of GPT can be solved by the use of correlated functions;
however, in GPT, &0 is not required, and the zeroth-order spin-orbitals need not all be
eigenfunctions of the same one-electron Hamiltonian.

Q„=Q,Q, =Q,Q„
i[El']„)=2 "'(I-P~) il(l)l'(2)),

(l.lb)

(l.lc)

I. INTRODUCTION

The iheories for the description of electron cor-
relation in atoms and molecules of Sinanoglu,
Szasz, Nesbet, and others begin with approximate
Schrodinger equations (in different forms) describ-
ing the stationary states of a pair of electrons
which are moving in the field of the remaining elec-
trons which are in their ground-state orbitals. ' 'o

Although the results presented in this work are val-
id for the case in which the zeroth-order wave func-
tion is a single Slater determinant of arbitx'ary or-
thonormal spin-orbitals, the discussion in the
first three sections is limited to the simplest case
of a closed-shell Hartree-Fock (HF) Eeroth-order
wave function.

VYhen approaching the problem of electron corre-
lation by ox dinary Hayleigh-Schrodinger perturba-
tion theory, the first-order corrections to the
wave function are written in terms of first-order
pairs. If (I& ii = 1, , Kj denote the occupied spin-
orbitals in the zeroth-order HF wave function, '~

0,= 1(1)-Z, di(1))&I(1) i, (1.1a)

where P» is the operatox which permutes the
space and spin variables of particles one and two,
then the first-order pairs uEII "'(l2) are the solu-
tions to the uncoupled Bma~ inhomogeneous inte-
grodifferential equations,

@12[&fI -&0(12)Wff. ' "(12)

-@12(I/r 12) i [Il']12) = 0, (1.2)

where H, (i) is the HF Hamiltonian for particle f,
&,(12) =Ho(1)+&e(2), effl =sf+ef~ is a sum of HF
orbital energies via

H (i)l&(i) = e&l&(i), (1.3a)

for all k ~ N and f (12) arbitrary
From the homogeneous part of Eq. (1.2), we see

that the pairs see the full HF Hamiltonian, and the
inhomogeneity (or "forcing" term) is the product of
the perturbation to the HF Hamiltonian and zeroth-
order occupied spin-orbitals. This Eq. is, howev-

and Q~, is a projection operator which makes any
pair function strongly orthogonal to the HF orbitals
which are occupied in the zeroth-order wave func-
tion, i.e.,

fd(l)f~(l)912f (12)= 0 (1.3b)
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er, a rather poor description of the physical situa-
tion, since when electrons originally in spin-orbit-
als E and l' are excited, they do not see a field due
to electrons in / and l'. Instead, they interact via
the full electron repulsion 1/x» (in 'atomic units).
Furthermore the zeroth-order energy of the pair
of electrons, &~~» is inadequate, since it counts
the repulsion between the electrons twice, and
hence should be replaced by &fE~-(El' I (1-P12)/
r121ll'). Therefore if we define the two-body po-
tential

Vlf, (12)=—— Q [Kff(i)+Kf,f, (f)]
1

s=1, 2

x2' )[
12

where K&&,(i)
= (l(g) I (1-P. )/r. If'(p))

(1.4a)

(1.4b)

would be a much more physical starting point for
a perturbative approach to the problem of the de-
scription of electron correlation in atoms and mol-
ecules. The pairs uffl(12) in (1.5) are the Bethe-
Goldstone (BG) correlation-correction pairs [the
full BG pairs are l[ll']12)+upi(12)] which were ob-
tained by Sinanoglu by varying part of the energy
expression from a simple cluster-type wave func-
tion' ' and were also shown in paper I" to result
from a summation of a certain class of contribu-
tions to the wave function to all orders of perturba-
tion theory. These BG correlation functions
(whic?. are different from Nesbet's BG pairs as
discussed below) are the perturbative pair correc-
tions for a pair of electrons moving in the field of
the remaining electrons which are in their ground
state orbitals. As shown in paper I,~2 a knowledge
of these BG pairs would enable the evaluation of
the vast majority of diagrams calculated by Kelly
(to all orders of OPT) for the Be atoms. »~" ln
Kelly's Be calculation, he obtained better than
90/o of the correlation energy. Furthermore,
when these BG correlation functions are small in
the sense that (sled~ Iuff~) «1, these BG pairs are
essentially equivalent to Sinanoglu's "exact pairs"
which describe the stationary states of a pair in
the field of the remaining electrons. '~ "~»

These BG pairs can be taken to be the first ap-
proximations in a generalized form of Rayleigh-
Schr5dinger perturbation theory (GPT). (GPT is
sufficiently flexible so that Sinanoglu's exact pairs
could also be chosen to determine the first-order
corrections to the wave functions. ) As discussed
in paper I, these BG pairs can be solved by the
use of a correlated basis set and (1.5) may be
solved variationally. GPT may also be written in
the form of what is commonly called a variation-
perturbation theory. ' lt also has a 2n+ 1 rule that
knowledge of the wave function through nth order
of GPT enables a calculation of the energy through
(2n+ 1)st order of GPT to be made, and double

is the difference between Coulomb and exchange
operators, the pair equations

@12[ fly- 0(12)- gi( ) ) ff (12)

(1.5)

GPT also has interchange theorems. ' Further-
more, in the general case (discussed in Sec. IV)
of a zeroth-order wave function which is a single
Slater determinant, the spin-orbitals need not be
eigenfunctions of the same one-electron Hamilto-
nian, and we do not require a knowledge of the
Hamiltonian of which the zeroth-order wave func-
tion is an eigenfunction. '~

As mentioned above, in paper I the BG pairs
were obtained by summing certain terms in OPT
to all orders, and this summation procedure was
extended to provide approximate equati. ons for the
description of single and triple excitations in the
wave function and correlation energy. " However,
there is often an uneasiness associated with the
summation of certain terms to all orders of OPT
since it is hoped that OPT converges (at least as-
ymptotically), even though there are a large num-
ber of terms in higher orders which are not calcu-
lated, partly because of the cancellation between
different terms in the same order of perturbation
theory. Thus, it may be argued, summation of on-
ly some terms to all orders may not enable this
cancellation to occur, agd the final results ob-
tained from such a theory may be completely er-
roneous.

Physically, we expect that the perturbative BG
pair functions should provide a good description
of electron correlation in atoms and molecules,
and therefore any systematic form of perturbation
theory in which these pairs determine the first-
order corrections should be expected to be more
rapidly convergent than OPT. GPT can therefore
be used to justify certain summations in OPT,
even though a large number of contributions have
been omitted. The results of diagram summation
to all orders of OPT in paper I can be used to ex-
press a given order of GPT (for the correlation en-
ergy and/or wave function) in terms of OPT.

The starting point in the derivation of GPT is the
Schrodinger equation for the wave function when it
is written as a cluster-type wave function. These
equations also form the starting point for a gener-
alized form of configuration interaction (Cl) (in
which a correlated basis set may be employed)
which reduces to ordinary CI if orbital expansions
are used. The "exact pairs" of Sinanoglu'~' and
the BG equations of Nesbet' are approximations to
generalized CI.

The nice property of GPT as opposed to general-
ized CI or the BG equations of Nesbet is that in the
latter method, (in order to be completely consis-
tent) for a given size of basis set, successively
larger secular equations must be solved, while in
higher orders of GPT the sizes of the matrices do
not greatly increase. The flexibility of GPT en-
ables us to use our physical intuition to speed up
convergence by tailoring GPT to the specific needs
of a given problem.

II. GENERALIZED CI

The zeroth-order wave function 40 is a closed-
shell HF wave function" (the case of a single Sla-
ter determinant of arbitrary orthonormal spin-or-
bitals is discussed in Sec. IV), where
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CO=EN g l, (f)=aNyo,
i=1

(2.1)

(2 2)

and the jl;!i = 1, , N} are the ground-state HF
spin-orbitals. If we define

(2.3)

then the exact wave function P may be written as a
CIustei expansion

(2.4)

where jwf}, jwp }, and jwII I }are one-, two-,
and three-particle "cluster" functions, respective-
ly. These cluster functions are antisymmetrized
so that

8 w = (m! )"'w
m l1. . . lm l1 lm

and they are strongly orthogonal to the ground
state HF orbitals, i.e.,

(2.5a)

(2.6b)
1 2 m ll. . . l~ ll. . . l~.

We should note that Eq. (2.4) is a perfectly general
way of writing the exact wave function when the ini-
tial approximation is in the form of a single deter-
minant (with the proper symmetry, of course). In
practice we are usually forced to truncate (2.4) ei-
ther by keeping only some of the cluster functions
and/or by expanding these functions in a limited ba-
sis set. For instance, if only the one- and two-
particle cluster functions are kept, and the energy
from such a wave function is varied with respect
to these cluster functions as well as the ground
state orbitals (in order to maintain self-consisten-
cy between the jlq'} and the jwf, wII~}), the nonlinear,
coupled eigenvalue equations of Sz3,sz are ob-
tained'~ (provided the jlf}are kept orthonormal
and strongly orthogonal to the jwf, wff~}).' Such
nonlinear equations could serve as the basis for a
perturbative expansion; however, a linear set of
equations is much more suitable. Besides, we usu-
ally can assume that we initially have a good ap-
proximate wave function ~'0 which would not be ap-
preciably altered by the inclusion of the single and
double excitations (see Sec. V of paper I).

The cluster functions in (2.4) could be decom-
posed quite generally, following Sinanoglu, into
what he calls linked and unlinked parts. 'y2 Howev-
er, if we vary the energy from such a wave func-
tion, we mould again get nonlinear equations.
Therefore, the correlation energy from the wave
function in (2.4) is varied by making arbitrary

changes in all of the cluster functions to obtain the
Schrodinger equation for the cluster functions as a
set of coupled linear inhomo geneous, integrodiffer-
ential, eigenvalue equations. The eigenfunctions
are the cluster functions, and the eigenvalue is the
correlation energy ~E =E-EHF.

Before explicitly writing down the resulting equa-
tions, a few interesting points should be noted. We
can expand the cluster functions in terms of a cor-
related basis set if desired, and if a linear expan-
sion is made, the resulting equations for the expan-
sion coefficients are just the secular equations.
Thus, the Schrodinger equation for the cluster
functions can serve as a basis for a generalized
CI as well as providing the starting point for gen-
eralized perturbation theory.

The equations for Sinanoglu's "exact pairs" re-
sult from keeping only one of the pair functions
wfl' in (2.4) nonzero and varying the correlation
energy. This gives us a set of uncoupled Iinear in-
homogeneous eigenvalue equations for each "exact
pair" and pair correlation eenrgy '~'~ 9(Sinanoglu's
derivation differs from this procedure. ) Nesbet's
BG equations are also special cases of general-
ized CI. His BG pairs result if only ml, elf, Kllf
are kept nonzero and are expanded in an orbital ba-
sis set, while his three-particle BG equations are
obtained by keeping ul, wl, wl, all, all,
ul jlII, all~if .' Although Nesbet's N-body BG equa-
tion (i.e., the complete CI equation) gives the ex-
act wave function, the necessary computational
work increases enormously when going, e.g. , from
Nesbet's two- to his three-particle BG equations
when the same size basis set is chosen. This
points to the need for perturbative solutions in
which at each stage smaller matrices must be
handled.

Since the equations of generalized CI are linear
and coupled, they can be written most compactly
in matrix notation. Let w be a column vector of
the 2+—1 different cluster functions whose indices
are ordered (superscript T denotes transpose of a
matrix),

''' IN-I' N' '' ll. IN' (2.6)

= 0 otherwise.

The Schrodinger equation for the eigenvalue 4E

The oPerators which act on these cluster func-
tions can be collected into a (2 -I)&& (2 -1) ma-
trix &H whose elements are labeled by the indices
which label the cluster functions. The components
of &H inside the one-, two-, and three-electron
blocks of this matrix are summarized in Table I.
The remaining components of &H may be obtained
by induction. Vfe should note that the diagonal com-
ponents are like E -8 operators for n particles
moving in the field of the remaining N-n electrons,
which are in their ground-state orbitals. Define
the (2N-1)-dimensional column vector I
whose components are

(2 7)
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pAQLE I. Components of the one-, thoro-, and three-particle blocks of ~ for the case in which the zeroth-order ap-
proximation is a closed-shell Hartree-Fock wave function. Other components may be found by induction.

EH/ l

ll', ll'

=Q [H (1)-K//(1)Q -(. ].

=-q X, (1)q, l ~/'.

= q [a (12)+ V, , (12)-~„,lg

ll', ll» =9» [//»], —[«'], -e„~/»/, (~)e„, /»

/lt ll»

/I, 'l» ll'l»t

1
Q [/II /Ill ] [//I ] / or / I ~ ill or llt/

12

Q1 [H {123~+V//I/» ~123~ 6////»]p ~h re ~/////I ~/+ ~// + ~/» t @1 3 @ Q Q

3
and V„,,„(u3) =q Q —— Q Q Z (i)+ Z

i&j=1,2, 3 ij a=/, /', /» i=1 a&b=/, /'/"
( ) —

l )i qiXj2

1
AH [/It/ /I»l ] [/litt ] /I or /ll ~ l»t or l»ll

//'/» ll"'l "» 123 1212

ltl ~ /III l»» or lt»»
~

2
„—-Z &,, ), ('l) ~' ~&(N)Q ./l

ll' l»

48/» //, =&8, „~ (all /")
t

/l'l", /l'

//till /lttl

/ll /II /»I l»l/

l »I /»tl //
I /I/

ill ill l»l

3

i=1
0 l»l l»fl ~ l /I or l»

ll //» /

3
q g I (i pu pu)

[ (lily) )q123 1r" M3 23 1'
i&j=1

=0 l/» &/ /' ltl

l, ll'l» ll'/» l

=E-EHF and eigenfunction w is [see (8. I4) and
(8.iS)]

4Hm+ I = 4Ew. (2.8)
The elements of ~H are defined only mhen the rom
(and column) indices are distinct, i.e.,
AHI I I@ is def. i.ned for I;&l&, fm&l„,
etc. The matrix multiplication in (2. 8) is, of course.
only defined whenthe column indices of AH match (when
in the same order as) the indices of w. Because the

functions in m are antisymmetric, they are invari-
ant if multiplied by (-l)PP where I' permutes the
spin-orbita1 indices. The e1ements of &8 as pre-
sented in Table I do not necessarily have their rom
indices ordered. Hence, if &z and Pz are the per-
mutations of the rom and column indices of an ele-
ment of 4H necessary to put them in the same or-
der as those of the elements of m mhic this ele-
ment of &H multiplies, a factor of (-I
must be introduced. (In Sec. III we shall encounter
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terms of the form (w7 l&H lw) for which both row
and column indices of ~H must be ordered Proper-
ly )

If 4 o were chosen as a single Slate r deter minant
of arbitrary orthonormal spin-orbitals (see Sec.
IV), the components of nH would be slightly modi-
fied, and the inhomogeneity would also contain a
nonzero one-electron part.

In order to obtain a perturbative expansion of w
and 4E, ~H is separated as

gH = gH(o) ~ ygH(z) + y2gH(2) + ~ ~ . (2.9a)

then w and ~E may be expanded as
w=w '+&w' '+~ w'' '+''' (2.9b)

= QQ (9 ) + g Qg (1 ) + g2Qg (2 ) + ~ ~ ~ (2.9c)

and if I is also expanded in powers of the perturba-
tion parameter ~, terms of the same order in A.

are equated to give the equations of GPT. It is
clear that &H may be decomposed according to
(2.9a) in a large number of ways. Thus we could
generate a large number of forms for GPT. The
order parameter ~, could in principle, be as-
signed to the elements of ~H in conjunction with
the size of these operators in a given problem.
The particular choice for the decomposition of ~H
has been made in order that w('& be composed of
the perturbative BG pairs of (1.5).

Q(0)y (o ) = g (o )y (0 ) (3.1)

be the unperturbed problem. We seek a solution to
the Schrodinger equation

(3.2)

where
e= a«)+ ~B(»

P=e(0)+X,

((() (0)
i (i)) =

(&&)
(0)

i p (0)) = 1

E && &
—

((&) &o &
i lJ &1 &

i (&) &o &)

(3.3a)

(3.4a)

(3.4b)

OPT is obtained by substituting the expansions

X = py (1 ) + g2y (2 ) + ~ ~ i

g =g (0 ) +~ (1) + $2@(2 ) + ~ ~ ~

(3.3b)

(3.3c)

into the inhomogeneous Schrodinger equation for g

[(II&0) E (0&) + y(IJ(&) E (1))]&&

~ g(If (1) E () &)y (0 & = +E (p (0) ~ )&) (3 5)

where hE =E-E' '-E('&= (p«'IH&'&iX) (3.6)

and then equating the coefficients of ~" for all n
—0 1

In (3.5) the first term is of the form nH&& and the

III. GENERALIZED PERTURBATION THEORY

GPT is very similar in structure to OPT." In
fact the two different types of perturbation theories
are formally identical in the sense that given a gen-
eral property of OPT (i.e., a property which we
shall call independent of the specific nature of the
Hamiltonian), a similar property exists in GPT.
In order to demonstrate this formal similarity,
OPT is written in a special form.

Let

second represents the inhomogeneity, but the right-
hand side contains both p' ' and g. The left-hand
side of (2.8) is of the same form as the left-hand
side of (3.5), but the right-hand side of (2.8) does
not contain the unperturbed function explicitly.
However, if we let

P(0) = I i&&) &0))((0 (0&
i (3.7a)

(3.7b)then P(o&y—= y.

and (3.5) becomes using (3.6) and (3.7)

P (0)[(fI(0) E (o)) p &&()&I(1) E (1))]Q(0))&

+~ (0)p (l)y (o) —gg~ (3.8)

In (3.8) ()) &0& no longer appears multiplied by nE,
a.nd hence (3.8) is formally identical to (2.8) if we.
take

gH = gH(o)+ ggH(1) I = yI(z) (3 9)

and make the substitutions

P «&[(H&0&-E &0&)+ &({Ho' E&'&-)]P «'- EH, (3.10a)

X (3.10b)
~(o&g(i)@(o& (3.10c)

(3.10d)

and replace ordinary multiplication by matrix mul-
tiplication. Thus, any property of OPT which is
independent of the structure of 8('&, IJ('&, p('& is
also a property of GPT because of the analogy
(3.10) between Eqs. (2.8) and (3.8).

If in (2.9a), we endowed nH with a second-order
part also, some relationships between OPT and
GPT could also be established provided I also has
a second-order component.

Some properties of GPT which can be inferred
from Eqs. (3.10) are as follows "

(1) The "2n, +1 rule of perturbation theory" which
states that knowledge of the wave function (i.e. , w)
through nth order of GPT enables the calculation
of AE through (2n+ 1)st order of GPT,

(2) the existence of a variational principle for
w(n) and gE(2n), and

(3) the interchange theorem of double-perturba-
tion theory which could be demonstrated by includ-
ing a second perturbation y. W in (3.5) and (3.8)
which would give rise to extra terms in these equa-
tions which would be analogous to a component of
4H and I of order p.

In the remainder of this section, the lowest-order
equations of GPT are discussed along with a
brief presentation of examples of properties (1)
and (2) above. Generalized double -perturbation
theory is briefly discussed in Sec. V.

From (3.6), using (3.10), we have

bE =I w= (I Iw)
T-
2N

(II I iwf I ), (3.11)) 12' 12

i.e., matrix multiplication is implied. Equation
(3.11) thus presents the correlation energy of a
closed-shell HF system as the sum of pair-corre-
lation energies, since for this case I only has two-
pa, rticle components [see {2.7)]. In order to fully
utilize the analogy (3.10), the decompositions of
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where wt denotes a set of antisymmetrized trial
cluster functions, is always a rigorous upper
bound to the correlation energy. In fact, the vari-
ational principle

6(bE)t jbwt = 0, (3.15)

is equivalent to the Schr5dinger equation (2.8)."
&E "& and w' & can be obtained variationally since

F&'&[w ]=I w +w I+w ~bH "&w
t t t -t t (3.15a)

and 5F &/&5w = 0t (3.16b)

are equivalent to (3.12), and by (3.13), the station-
ary value of F "& is bE&'&. Equations (3.16) actual-
ly correspond to a variational solution for each in-
dividual BG pair and pair-correlation energy. '~'~"

The second-order functio'ns are determined by
the equations

&H+&w +&+~H&'&w &'& = 0. (3.17)

Since w& & consists only of pair functions (for
closed-shell HF), w&'& consists of one-, two-,
three-, and four-electron functions just as in OPT.
Equations (3.17) are uncouPled linear inhomoge-
neous equations for these one-, ~ ~ ~, four-electron
functions. Thus, the solution of the second-order
functions of GPT (which would give the fifth-order
energies. ') involves a set of smaller matrices than
obtained in Nesbet's three-body BG equations (i.e.,
"second order" in his theory).

OPT has the structure dependent property that
the second-order four-particle functions are com-

b(H and I in (3.9) have implicitly been assumed.
Thus the lowest order of w is first order, "and
from (3.11), the lowest order of bE is second or-
der.

The equation for the first-order "wave function"
w +& is therefore

H~o&w &x&+I= 0 (3.12)

If ~H& & is taken to be the diagonal part of ~H, and
&H" & is the off-diagonal part; then comparing
(3.12), (2.7), and Table I with (1.5) shows that w"'
is composed solely of the BG perturbative pairs de-
scribing the correlation corrections for a pair of
electrons moving in the field of the remaining elec-
trons, which are in their ground-state orbitals. "y"
From the numerical calculations of Kelly, Nesbet,
Sinanoglu, and Geller et al. ~'~' ~"~' ~ ' in which
they evaluate a correlation energy which should be
roughly similar to that obtainable from

QE (2) = lfw (1) (3.13)

we can see that the lowest order of generalized per-
turbation theory when starting from closed-shell
HF should be expected to provide quite good corre-
lation energies and probably good wave functions.

Functions obtained from GPT could be used to
calculate rigorous upper bounds to the correlation
energy by using the cluster-type wave function
(2.4). Equivalently, (bE)t defined by

wt~bHwt+wt+I+I~wt
(bE) = (3.14)

IV. "ARBITRARY" SINGLE SLATER DETERMINANT

If GPT were only applicable to cases in which the
zeroth-order wave function is a closed-shell HF
wave function, it would be extremely restrictive.
The extension of the results to Cover an "arbitrary"
single Slater determinant as the zeroth-order wave
function is not completely general, but it is obvi-
ous that generalized perturbation theory could be
obtained when C o is a symmetry-restricted sum of
Slater determinants. The algebra would, of course,
be tedious "

Often we start with a zeroth-order wave function
of the form

N
40=aN II P, (i),

i=1
where the (Pi(i =1, ~ ~ ~, Nj are called the ground-
state, or occupied, spin-orbitals. These ground-
state orbitals may all be eigenfunctions of th, e
same one-electron Hamiltonian I&,(i) = t(i) +u(i),
where t(i) contains the kinetic-energy operator
and the attraction between the electrons and the
nuclei and u(i) is some one-body potential which
describes some of the effects of the electron re-
pulsion. For the purposes of GPT, it is not nec-
essary to require that such a I&,(i) [or u(i)] exist;
and furthermore, if Co is the eigenfunction of
some Hamiltonian, we do not require a knowledge
of it." It is convenient, however, to require that

(4.1)

pletely expressible in terms of the first-order
pairs. ~~'3y2~ This property is lost when we use
GPT, but such a factorization might be expected
to give a reasonable approximation. ' ' " As dis-
cussed in paper I, we may wish to try to optimize
this approximation by introducing a set of varia-
tional parameters in this factorization and by us-
ing the usual variational principle of (3.14) and
(3.15) to determine these parameters. The results
of paper I can be used to express w&'&, w&'&, ~ ~ ~

as well as the cluster functions obtained from the
decomposition of &H as discussed in Footnote 20,
in terms of contributions from OPT."

Since (3.11) implies that

b,E (s ) —ifw (2) (3.18)

multiplying (3.12) by w 2&~, (3.17) by w u&~, taking
the complex conjugate of one of the resulting equa-
tions and subtracting converts (3.18) to

bE&s&=w& &)bH' (3.18a)

which is the simplest example of the 2n+1 rule of
GPT. By similar, and stamfaxd, '~ methods wt.'
could demonstrate properties +1 and (2) in higher
orders of generalized perturbation theory.

Now that we have established GPT for a closed-
shell HF system, it is of interest to generalize
this method to cover the case in which the zeroth-
order wave function is a single Slater determinant
of arbitrary orthonormal spin-orbitals. This lifts
the restriction that HF orbitals be used for closed
shells and also enables one to treat some open-
shell systems where, in practice, restricted HF
orbitals may be available. This treatment of an
"arbitrary" single-determinantal 4o is given in the
next section.
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(4 2)

where

the spin-orbitals {Pijform an orthonormal set.
If we define the single-particle energies

~ =(pIt+f& Ip),

TABLE II. Non-zero components of the one, two, and
three particle blocks of 64H (P) for the case of a zeroth
order wave function which is a single Slater determinant
of arbitrary orthonormal spin orbitals. Other compo.-
nents may be found by induction. Ho is defined in (4. 6).

1-J .
&~) „ '~

)&~l)
2P,

then

K (i) = Q p0
P occpd

x (i),
P occpd PP

(4.3)

Qi-&p" I tioI p'&, p" ~p'.

=-Q'»&p" Itt Ip &, p-~p .
Sp

Hpp p pp p
Q»3&p. '.IHol p.

.,
&

p„,„p

~&0) +~&1) —(4)&0) Iff l4) ) (4.4)
pp &p

= (6&H,) ~.
p,pp'

(4.8)
1

P
'P P,P, [PP'],2,—'"[PP'1,

2

in analogy with the form of the energy obtained
when 4'" is a HF wave function.

Define

pp'p" pp'

pp tpp p

a, (i) =- t(i)+If,(i) (4.6)

where I(l}l l l
-——&))12(p)—l[p.p.]12)

=0 otherwise,

and 6I (p) = &)) I(p)H0(1) I p.(1))
P 1 0 2

= 0 otherwise, (4.10)

where, obviously, the ff,(I) in (4.10) refers to the
quantity defined in (4.6).

From Table II, we see that 5&H(P) has nonzero
components when the row and column indices have
the same 'number of spin-orbital indices and differ
only in one of these indices. Furthermore, these
terms are proportional to the off-diagonal matrix
elements of the H, of (4.6}. Thus, in the event
that the {PiIi =1, ~ ~ ~, Nj are linear combinations

(4.9)

as the one-electron Hamiltonian for an electron
moving in the field of the N electrons which are in
their ground-state spin-orbitals. The {p;jane not
eigenfunctions of this H, . However, if we let
t«H (l) denote the Hamiltonian of GPT for a closed-
shell HF system as given in Table I, and if AK(P)
denotes the Hamiltonian appropriate to the zeroth-
order wave function (4.1), then

~H(p}=~H(l)
~,

+6~H(p) (4.7)

where &H(l) Il p implies that in Table I, e.g. ,

ei - the ep of (4.2),

Ho-the H, of (4.3),

Q -1- g Ip&")(p
P occpd

i.e. , l-P, l'-P', etc. The extra term 6t)iT(P) on-
ly has a few non-zero components, and these are
summarized in Table II for the one-, two-, and
three-electron blocks of 56H(p). The same sign
convention holds for 5&H(P) as does for &R(l) and
hH (l) I l p. The inhomogeneity now becomes

I(p) =1(l) l p+61(p), (4.8)

of HF orbitals, 6I(p) in (4.10) vanishes indentical-
ly, and 5&H(P) is written in terms of the HF off-
diagonal Lagrange multipliers, since the last two
terms in Table II also vanish identically in this
case. Thus the Schrodinger equation

AH(P)%+ I(P) = DEC (4 11)

reduces to the HF result (2.8), but is also easily
written in terms of localized HF spin-orbitals. 27~~'

The fact that the spin-orbitals {PiIi = 1, ~, Nj
need only be orthonormal, enables us to use differ-
ent kinds of orbital functions for different purpos-
es. For example, in'molecules Slater-type orbit-
als could be used for the core electrons and ellipti-
cal orbitals for the valence electrons if desired. 2'

When non-Hartree-Fock {pij are used and
hH& "(p) is the diagonal part of &H(p) while the
off-diagonal part of AH(P) and 1(P) are taken to be
first-order quantities, w'" contains both orbital
and pair functions which are the perturbative cor-
rections for one and two electrons, respectively,
moving in the field of the remaining electrons,
which in turn are in their ground state orbitals.
The 2n+ 1 rule agd variation-perturbation theory
for bE( } and C( } still hold for these "arbitrary"
{pij. If the {pijare "good orbitals, " then 4&"(pi)
should give results comparable to those achievable
with the 4'" obtained from HF orbitals.

Generalized double-perturbation theory is only
discussed briefly in the next section, since the re-
sults should be obvious from the analogy (3.10) of
Eqs. (2.8) and (4.11) with (3.8).

V. GENERALIZED DOUBLE PERTURBATION THEORY

The discussion of generalized double perturba-
tion is given for the case of a zeroth-order wave
function which is a single Slater determinant of ar-
bitrary orthonormal orbitals. " (The {pij of Sec.
IV. ) These results reduce to the HF case. If we
add the one-electron perturbation t&W = t&gi = 1 W(i)N

to the Hamiltonian H,"then the SchrMinger equa-
tion for the cluster functions is of the form [sub-
tracting (C, IWI 4,) in the same way that E&" is sub-
tracted in (3.5)]



~ ~n m@(&&, m)

n=O m=O
(m+nv0)

{5.4a)

l
s m~(sp m)

n&O m=9
(m+n~ 0, 1)

(5.4b)

and if (5.4a) and (5.4b) are both substituted into
(5.1), then, by equating coefficients of Hi&m, the
equations of double-perturbation theory are ob-
tained. The important point is that, because of
the analogy of (5.1) with the equation resulting
from taking X(a&'& -E&»}-X(If&'& -E&»)+ i (W

[&& H"&0'(p)+)EH&i& &(p)+ &idio&»]w
+Xi&'&0&(p)+ i&i&'&'&(p& = AEw (5 1)

where iiH(0 o&(P) =&H&0)(P), (5.2a)
nH&1, 0) (P) —gH&&) (P) (5.2b)

I""(p) =I(p), (5.2c)

and the quantities on the right-hand side of Eqs.
(5.2) are defined in Sec. IV. The non-zero compo-
nents of I' ~" are

I" "(P)=0 l~(1)-(P ~II ~P)J~P(I)). (5.3)

and 4%""is summarized in Table III, where the
sign conventions as to the interchange of row or
column indices is the same for 4W' ~" as dis-
cussed for 4H as discussed for ~H in Sec. II.

If the cluster functions and AE are both expand-
ed in a double power series in A. and p"

-(4'&& I W )40)) in (3.8), 13algarno's interchange theo-
rems are also valid in generalized double-pertur-
bation theory. "

As the simplest example,
~(x,x) y(z, o) 'f@,(o,x) + I(o,x) f@,(x,e) (5 5)

From (5.1) and Eqs. (5.4), the first-order cluster
functions are determined by the equations

gH&0, 0)(P)+&&,0) +1&1,0) (P) —(}

&() H &0&0) (P)fan&0&» + 1&0q» (P) —0

(5.6a)

(5.6b)

(5.V)

when the above result is substituted into (5.5).
The interpretation of (5.V) is already well under-
stood "and need not be discussed again here.
Higher-order interchange theorems can likewise
be established by analogy between OPT and GPT.

Thex'e is one further, point worth noting. When
second-order pxoperties, i.e. , ~"~~', are calcu-
lated (for one-electron W) starting from a closed
shell HF wave function (or an unrestricted HF
function for open shells), Eqs. (5.6b) correspond
to an uncoupled perturbation theory (containing all
orders in OPT). If b H&0&0) were taken to contain

We should note that the orbital corrections of
Cr"y" and 4"~" represent perturbative corrections
for an electron moving in the field of tI&e remain-
ing erectxons, which are in their ground state or-
bitals. Thus, these orbital corrections contain or-
bital corrections to all orders in OPT. Multiply-
ing {5.6a) by%' "t (5. 5b) by%" "t and taking
the complex conjugate of the latter equation and
subtracting lt from the former g1ves

~&1&» -1(&&0) tg&0, » +@&a,&& $1&(l,o)

TABLE HI. Non-zero components of the one-, two-, and three-particle blocks of 4 W for the case of a zeroth order
wave function which is a single Slater determinant of arbitrary orthonormal spin-orbitals. Other components may be
found by induction.
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p sp
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the whole one-electron block of &H, Eq. (5.6b)
would correspond to a coupled HF perturbation
theory. However, this coupled perturbation theo-
ry is not self-consistent since the excited orbitals
do not modify the HF field"

V. CONCLUSION

If the exact wave function is written formally in
terms of cluster functions, application of the tech-
niques of OPT to the Schrodinger equation for
these cluster functions leads to GPT. The simple
case of a zeroth-order wave function which is a
single Slater determinant of arbitrary orthonor-
mal spin-orbitals is discussed, but it is obvious
that more general cases can also be treated in a
similar fashion. Furthermore, if the wave func-
tion were written formally in another manner
(either exact or approximate), e.g. , a separated-
pairs model, any zeroth-order wave function
could be improved by the use of an analogous GPT
which would result from a perturbative expansion
of the Schrodinger equation peculiar to the chosen
form of the wave function.

The form of GPT presented here is quite flexi-
ble, and different decompositions of the "Hamilto-
nian" 4H can lead to slightly different models for
the lowest-order perturbative cor rections. This
flexibility of GPT may also enable decompositions
of ~H into orders which are in line with the nu-
merical orders of magnitude of these terms.

For the cluster-type wave functions, the sim-
plest and most physical form of GPT leads to
first-order corrections to the wave function which
are written in terms of orbital and pair functions
describing respectively the motion of one and two

electrons in the field of the remaining electrons,
which are in their ground state orbitals. These
functions are expected to give accuracy compar-
able to that obtainable from a calculation of Sin-
anoglu's "exact pairs, " Nesbet's BG pairs, or a
summation of the diagrams of many-body pertur-
bation theory as is done by Kelly.

Gpp' is a systematic form of perturbation t&cozy
and does not require the use oi HF orbitals. As
Conkie discusses, "the time spent in obtaining ac-
curate HF orbitals could probably be more effi-
ciently spent in determining corrections to fairly
good orbitals which are easily obtained. However,
if HF orbitals are available, GPT can be used
with some sort of localized orbitals'~ which would
"minimize" higher -order cor rections.

GPT should be much more rapidly convergent
than OPT. From the numerical calculations of
Kelly, Sinanoglu, Gelleret al. , and Nesbet, first-
order GPT should give very good correlation en-
ergies. Furthermore, the lowest-order equations
of GPT are "more physical" than those of OPT
and contain more information about correlation
(e.g. , the fact that certain orbitals are no longer
occupied when electrons are excited, the full elec-
tron repulsion between the excited electrons, etc. ).

Because of the formal analogy between GPT and
OPT, many of the theorems of OPT are also valid
for GPT, 33 namely, the "2n+ I rule, "variational
principles of 4E(2n) and %(n), and the interchange
theorems of double-perturbation theory. The spin-
orbitals of the zeroth-order wave function need
not be eigenfunctions of a one-electron Hamilto-
nian, and we do not require a knowledge of the ap-
proximate Hamiltonian of which the zeroth-order
wave function is an eigenfunction. s~
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Hanle-effect measurements have been made of the radiative lifetimes of the (3p 4p) D3

and D2 levels in argon (2PB and 2P6, respectively, in Paschen's notation) and the (1s2P) P
I

term in helium. The resulting free-atom lifetimes are v (D3) =3.16(16)&& 10 sec, 7 (D2 )
=2. 90(17)x 10 sec, and v (P) =9.90(84) & 10 sec. In addition, the following values for
the alignment depolarization cross sections due to collisions between ground-state and ex-
cited-state atoms have been obtained: 02( D3) = 2. 14(19)&& 10 cm at T = 292(5)'K, 0'2( D2 )
=1.14(22) & 10 cm at T =292(5) K, '02(P) =5.63(21)&& 10 cm at T =303(5)'K, and

02( P) = 5.84(33) && 10 cm at T= liquid-nitrogen temperature.

I. INTRODUCTION

In this paper, I report on measurements of the
radiative lifetimes of the (3P'4P) eDs and 'D2' levels
in Ar (2p, and2p„respectively, in Paschen' s nota, —

tion) and the (ls2P)'Pterm in He. ' The measure-
men s were made by means of the zero-field level-
crossing method (Hanle effect). ' In addition to the
free-atom lifetimes, values of the alignment depo-
larization cross sections due to collisions between
ground-state and excited-state atoms' are pre-
sented. Measurements such as these are of partic-
ular value in the interpretation of data in such
fields as gaseous discharges, astrophysics, and
atomic scattering.

With the zero-field level-crossing method, one
observes the scattering of resonance radiation by
an assembly of atoms as a function of an applied
magnetic field. This field is swept through zero,
resulting thereby in the crossing of the Zeeman

substates of each atomic level. The form of the
observed signal depends on the relative directions
and polarizations of the incident and reemitted
light, the direction of the applied magnetic field,
and the coherence time (apparent lifetime) and

g factor of the excited level, 4~' as described in
Sec. III.

In this work, the metastable levels (3p'4s) 'p,
in Ar (lss in Paschen's notation) and (1s2s) SS~ in
He served as effective ground states from which
the levels of interest (see Figs. 1 and 2) were
excited optically. The feasibility of using the S,
He level in this manner was demonstrated by
Colegrove and Franken' and, as in their experi-
ments, the metastable levels were populated by
running a discharge in the scattering cell. Since
radiative transitions from these levels to the
ground states are forbidden, a substantial density
of metastable atoms can be obtained.


