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A uniform method of determining upper and lower bounds on phase shifts is presented
for three-body problems in the case that two of the particles are identical, by taking
s-wave triplet e -H scattering as a model. The method of evaluation of the upper bound

involves replacing an effective optical potential by its separable lower bound in the
integrodifferential equation, which is then solved numerically. At this state of the calcu-
lation an error of 20%, at the maximum, is reported. Variational methods for the im-
provement of this calculation and potentialities of this approach for the study of e -H
scattering in the inelastic region are discussed.

I. INTRODUCTION

A great amount of insight into the collision pro-
blems has been achieved in recent years by the de-
velopme1. .of methods of obtaining bounds. '~ ' In-
ability to solve the problem exactly has led the theo-
rist to formulate upper- and lower- bound princi-
ples on quantities of interest in order to understand
the experimental results. In the case of the sim-
plest unsolved three-body problem of e —H scat-
tering, the most outstanding contributions on the
lower bound are those of Spruch and his collabora-
tors, ' although others have also made significant
contributions. ~ '~ '& '~ ' Schwinger s variational
principle also yields a lower bound. More recent-
ly, Sugar and Blankenbecler' have given a uniform
method of finding both upper and lower bounds, but
have applied it only to simplified examples. The
aim of this paper is to develop and illustrate such
a method for a model three-body problem includ-
ing the possibilities of exchange effects.

As a model, we have chosen to determine upper
and lower bounds on s-wave e —H scattering in
the triplet state. The theory of electron-hydrogen
scattering has been widely discussed in the litera-
ture, and our approach should be contrasted with
the work of Spruch, s calculations by Temkin, 4 a
study of the structure of resonances below the in-
elastic threshold by Chen, "and the optical-poten-
tial apprbach of Feshbach. " To find the upper
bound on the phase shift we replace an effective
optical potential by a lower-bound separable po-
tential. In the theoretical discussion, we derive
the theorems on bounds and methods to improve
the bounds by Schwartz inequalities. In particu-
lar, we write down the equation to improve the
upper-bound phase shift by dealing with the ne-
glected part of the effective optical potential by the
variational method. In actual treatment of the prob-
lem, we do not employ trial functions to calculate
the phase shifts from variational expressions. '
Instead, we write down the upper- and lower-
bound integrodifferential equations, by choosing a
symmetric projection operator P to include ex-
change effects, and solve them numerically.

In Sec. II we define the operators and boundary
conditions and settle the questions of notation.

II. DEFINITIONS

The s-wave scattering of electrons from hydro-
gen is described by the Schrodinger equation with
zero total angular momentum for two electrons in
the field of an infinitely heavy nucleus carrying a
unit positive charge. Such an equation can be re-
duced to the following partial-differential equa-
tion
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In Sec. III we discuss variational principles for a
three-particle system when two of the particles
are identical, and discuss improvable bounds. The
equations of triplet s-wave scattering in the e -H
scattering example are presented and solved in
Sec. IV, while Sec. V is devoted to discussion of
results.

Two outstanding results emerge from the pres-
ent treatment of the problem: (i) In the triplet
s-wave e -H scattering, Pauli s principle plays
an important role. We find that exchange effects
in low-energy scattering are more important than
virtual excitations of the hydrogen atom to higher
states. (ii) The maximum theoretical error at
energies reasonably close to the nonintegrable
singularity in the optical potential is about 20%
and stands to be improved by methods discussed
in the text. We feel this study provides a test of
the suitability of our kind of variational method
for predicting the behavior of the phase shift in the
region of the lowest inelastic threshold-an unsolved
scattering problem of extreme complexity.
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in rydbergs. In the Hamiltonian, two-body inter-
actions are included, while the three-body inter-
actions have been neglected. tPttriting

r,r,f(r,r,e„)=+(r,r,e„),

projection operators P and Q. Since we wish to
take into account the identity of the two electrons,
the projection operator P must be symmetric under
interchange of indices 1 and 2. Secondly, P4
should give the correct asymptotic behavior for
energies below the inelastic threshold, i.e. ,

we have the equation PC -4 (2. 5)

8' 8' ( 1 1 ) 1 8 .
e

8 as r, or r -~. A Pair of Projection oPerators sat-
b'~' By2' r, g2' sin8» ~8» ' 8 8» isfying the above conditions are

Q =Q,Q, and P= 1 —Q, (2.6)

+ V,(r,)+ V,(r,)+ V„(r,r, ) E—e(r,r,e„)= 0, (2. i)

The eigenfunctions of the angle-dependent operator
in the above equation are the Legendre polynomials P -P~+ P2-P~P2

where Q, = 1 P, and—P, is the projection operator
which pl ojects out the hydlogenlc ground state in

where V,(r,) = —2/r„V2(r~) = —2/r2, and V»(rp2) = 2/r» the coordinates of the electron carrying the index
1. The above choice insures that the two electrons
will never be in the ground state at the same time.
From (2.6), the operator P is

sine» e PI (cos»)8
~8&2

=-I(f + 1)P) (cose»).

where we chose

P = fbi(i)r, &&ri(i)idr„

P = fbi(2)r, &&r,i(2)idr, . (2. 7)
Under exchange, r, ~ r„ the three coordinates of

the s-wave problem transform according to r,
and 8» = + 8». The Hamiltonian operator, being in-

variant under the interchange of particle identities,
then admits solutions which are symmetric and anti-

symmetric, or singlet and triplet in the present
case, having the properties

&r,ir '& =8(r, r, '), -
&1(1)Ir, ) = tr„(~,) = v 2r, e 'P, (cose„) (2. S)

Integration over the angles 8» is also implied by
the integral sign. Note that

e (r,r,e„)=+++(r,r„e„) (2. 2) For the antisymmetric function 4, the following
relations hold:

The boundary conditions on the scattered particle
at energies below the inelastic threshold are such

that +(r,r2e») satisfies

e(r,r,e„)- U„(r) sin(nr, + 8) (2. 2)
(2. 9)

Hence, in coordinate representation, P4 is

as r -~, where U»(x) is r, times the ground-state
wave function of the hydrogen atom.

%e introduce a pair of projection operators P and

Q which project out orthogonal parts of the Hilbert
space. " Then

Pe =&r, l 1(1))4 (r)-&r i 1(2))4(r,). (2. 10)

It satisfies the boundary condition (2. 5), and accord-
ing to (2. 3),

4 (r)-sin(br+5 ) as r-~

and the following coupled equations are obtained
from the Schrodinger equation

P(H E)(P+Q)+=0, Q-(H-E)(P+Q)e=o,

and C (0) =0

ls also required. Define

(2. iS)

which we can formally solve for Q+:

1
Q4

Q&E H)Q
QHP4 ~

obtaining for P4'

IPHP+ PHQ E H QHP -E]P4 = 0.1 (2.4)

The Hamiltonian operator H has already been de-
fined in coordinate space; now we shall define the

If we project onto the ground state of one of the
particles, Eq. (2.4) is an integrodifferential equa-
tion in the variable of the other particle. Neglect-
ing the energy-dependent potential Wq, the exact
solution of this equation gives a lower bound on the
phase shift (we shall prove the bound principle
later in the section). If, in the energy-dependent
denominator of W@, we replace the Hamiltonian
operator QHQ by a lower-bound value of its lowest
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binding energy (Ef ) and include the now-separable
term Wq in the integrodifferential equation, then
we state that the solution would yield an upper or
lower bound if the separable W@ is positive or neg-
ative definite in the energy range of interest. In
the case where all three particles are distinguish-
able, the integrodifferential equations reduce to

differential equations, and the nature of the bounds
on the phase shift is well known. ' But if two of the
particles are indistinguishable, and the equations
are no longer second-order differential equations,
then proofs of the variational character of the
phase shifts on effective potentials should be given.
This we accomplish in the following section.

III. VARIATIONAL PRINCIPLES

The operator equation

P, (PHP E)P9—=0

written out in coordinate representation reads

(d /drp+k, ')4 (r)= V2(hz)4 (r~)+(U„(h, ')I V»(r', r)l U„(r, '))4 (r}
&U„-(r, ')n V„(r, ', h)I4 (r, ')) U„(h,),

where k ~ =E+ 1 in rydbergs. Using the zero-partial-wave Green's function defined by

(d'/dr, '+k, ')g»(h, r, ') =5(r, —r, '),

we can formally write the solution of (3. 1b) as

Uo(r)4 (rz) = U»(h)&uo(korz)+ f+, fo fo dz»'dh, 'dh2'go(hz, r, ')Uo(r)

~U„(r, ')[V(h')+V„(h, 'h')][U„(h, ')4 (h')-U„(h')4 (r, ')],

where

go(rz, r, ') =k, '&u(koh, &)vo(k,r»), ~(k,r, ) =k,hj, (k,r, ), v, (k,r, ) =kg;n, (k,r,), and cos8»=z».

In the limit x, -~, the phase shift is defined by

4 (r, )- &u, (k,r, ) —tan5, v, (k,r,),

(3. la)

(3. lb)

(3.2)

(3.3)

and turns out to be

tan50 = —k, ' f"' J f dz»'dh, 'dr, ' U„(r,') &v,(k,r, ') [V2(r, ') + V»(r, 'r, ')] [U„(r,')4 (r, ') —U„(r,')4-(r, ')], (3.4)

The limit at infinity and the definition of tan5, would stay the same if we were to start with the equation

U„(r,)4'(r, )+ U„(r,)4'(r, ) = U„(r,)~,(k,r, )

+ f f J dz»'dr, 'dh, 'g,(r„r,')U„(r,)U„(r,')[V,(r, ')+ V»(r, 'r, ')][U»(r, ')4 (r, ') ~U»(r, ')4 (r, ')] . (3.5)

The positive sign refers to the spatially symmetric wave function. For a proof that this is the correct
integral equation for elastic scattering from the hydrogen atom in its ground state, we refer the reader to
Wu and Ohmura. '~ The difference between their Hamiltonian and our definition in (2. 1}should be kept in
mind. The only angular dependence in our equations comes through 8», and under the interchange of parti-
cle labels, ~, -x„ it transforms as 8» +8». Also our Green's function is real.

Though in what follows we will restrict our derivations to elastic scattering in the lowest channel, gener-
alization to other channels is obvious. ' It is convenient to introduce the reactance matrix by

tan50 = —ko '(X I U, I 4'0 )= Ko (3.5)

(3.7)

where y = U»(r, )&o,(khz), Uz= V (r,)+ V»(r, r, ), and%', = U»(h, }4 (r) + U»(r, )4 (r, ) The forma. l solution of
(3.5) is

140 ) = (1 —G,oUz)-'I y) =Rig),
where G„=g,(r, , r, ')U»(r, ) U»(r, ') . The reactance matrix becomes

Xo = —ko '(ylU, RI }t), (3.3)
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and the resolvent exists because the Green s function involves one free and one interacting particle.
In order to establish bounds on the phase shift, we are led to examine its dependence on the potential.

Suppose that U, depends upon a parameter X; then differentiation of (3. 8) with respect to X yields

(d/dX)5 (X) = —k„'cos25 (X)(yIR(X)[dU2(X)/dk]R(X) l)f) = —ko-'cos~5 (A)(4'0 (X)I[de(X)/dk] I4'0 (X)), (3.9)

which shows that the phase shift is monotonic in the potential. +, (A, ) is the exact solution of (3.7). Now
choose

with U,
' - U2". Then we find, upon integrating (3.9),

5 (1)—5 (0)= —k f, Wcos25(X)(4, (A)IU, '- Ua"I'k, (X)) (0.
Thus, the larger (more repulsive) the potential the smaller the phase shift. For attractive potentials the
inference should be reversed. Hence, to bound the phase shift one has only to write smaller and larger
solvable potentials than the original. The techniques for doing this are already available. ' In the follow-
ing, the techniques of Sugar and Blankenbecler are extended and applied to the three-body problem with
two identical particles.

For a positive definite U„Schwarz s inequality says that

U ) U Iq) ((ql U, Iq) ) '(ql U, —= U,

where (q I.and Iq) are column and row vectors made up of an arbitrary set F; of trial functions. A function
from the set Ez is of the form

F, +(r,r,) = U„(r,)f,.+(r,) + U„(h,)f,+(r, ) .
The phase shift for the potential Us is given by

tan5, = —k,-'()t I U, lq) ((qlU, —U,G„U, lq)) '(ql U, lj)

in matrix notation. This expression for the phase shift is the same as the Schwinger s variational princi-
ple for the two-body scattering. For Um

)0, (3. 11) is a minimum principle and 50e )5„while for U, (0,
(3.11) is a maximum principle and 50e ~ 50. The phase-shift bound is always improved if the number of
trial functions Ff in the set is increased. If in the set Ff, one of the fg s turns out to be equal to 4, then
the phase shift given by (3. 11) is exact.

In Eq. (3.9) we have derived the variation of the phase shift with respect to a variation of the nonsym-
metric interaction potential U,(r„r,). It would also be interesting to see how the phase shift behaves as
the symmetric potential V»(r„r, ) in the exchange term in (3. 1b) is varied. Writing Eq. (3.1b) with the
aim of treating the exchange term as the interaction, we have

[d /dh, '+k,m+ (2/r, ) e '+2e 2]4 (r,) = —(U»(r, ')I V»(r, ', r, ) I 4 (r, ')) U„(r,), (3.12)

where we have used the expansion

m s'ilV(r», , r, ) = 2 —

& 1PI (cosa»)
Ox) +

and integrated over the angle 8». Also consider the equation

[d'/dk, '+k,'+ (2/r, ) e '+2e ']4, (r,) = —(U,o(r, ') I V»'(r, ', r, ) I 4, (r, ')) U„(r,),
where a perturbed V» would produce a corresponding change in the boundary condition in the wave func-
tion at infinity, such that

e, (r, ) - sin(kr, + 5, )

as x, -~. Then it is easy to verify that

fff U»(r, )C', (r2)[V»(r, , r2) —V,m'(r, , r, )] C', (r,)U, o(rm)dr, drmdz» = ko(tan50 —tan5, ) .
Now by introducing a parameter X in V» and proceeding as before, we obtain

(d/dX)5, (X) =[cos'5, (X)/k, ] ff fdr, dr, dz» U„(r,)4„(r,)(dV»/dh)O» (r,)U„(r,), (3. 16)
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a result which takes into account Fermi statistics in the triplet s-wave electron-hydrogen scattering.
From (3. 16) it is possible to obtain an, analog of (3. 10), but with a positive sign, implying that, for the
repulsive interaction potential V», the exclusion of the exchange term would give a lower bound on the
phase shift, while inclusion would improve it. This is borne out by the results quoted in Ref. 1.

Before we conclude this section we would like to mention possible methods for improving the bound
mentioned at the end of the last section. For purposes of this discussion we shall restrict the scattering
to energies below the first inelastic threshold. The energy-dependent potential Wq is negative definite in
this energy range. Thus, omitting WQ, the solution of the equation (2.4) for the phase shift gives a lower
bound. However, if Wq is reinstated m the equation but with QHQ replaced by its lower bound in energy
(Ei,), then the solution will yield an upper bound on the phase shift. We have evaluated a lower bound and
an upper bound for a particular choice of EL in the next section. The upper bound at this stage is by no
means the final word in achievable accuracy. It can be improved at the first stage by improving the lower
bound on the lowest-energy eigenvalue Ef of the Hamiltonian QHQ. A number of methods are available in
the literature for this purpose. "~" At the next stage one turns to the methods of Schwarz's inequality
discussed in this section.

In order to improve the upper bound at the next stage, let us pick up the potential term which we left
out of Eq. (2. 4i. This term is

(E —QHQ) i —(E —E ) '= V

and we assume that it is multiplied from the left by the operator PHQ and from the right by QHP. For the
scattering energies below the first inelastic threshold, Vq is positive definite. Hence by Schwarz s in-
equality

Vql q) (q I Vq
V V = - -I

I

=(E —Ei) '(Ei —QHQ)IP)[(PI(Ei —QHQ)(E —QHQ) IP)] '(Pl(Ei —QHQ). (3. 17)

[Here we have defined a new trial function IP) = (E —QHQ) ' iq)] . The improved upper-bound phase shift
5~ is given by the equation

tan(5 —6, ) =0, 'cos~5, (4, I (Ei —QHQ)l p) [(E—Ei) (pl(Ei —QHQ)(E —QHQ) Ip)

+Q I(Ei- QHQ)G, (EZ- QHQIP)] '(Pl(E —qHq)le, "), (3. 18)

where G„ is the Green's function formed out of the regular 4,~ and the irregular OOI" solutions of the
original equation for the upper bound 5,~.

IV. UPPER- AND LOPPER-BOUND EQUATIONS AND NUMERICAL EVALUATIONS

(4. 1)

ln Eq. (3. lb) integration over the angle 8» can be performed trivially, as only the l = 0 term in the
partial-wave expansion of V» gives the nonzero contribution. The equation for the lower bound is then

[dm/dr +(2/r) e +2e +ko2] 4 (r) = —8e [I(r)+J(r}],
I I

where f(r) = f r'e C (r')dr', J(r) =r f e 4 (r')dr'.

For the upper bound, we have to add the term

—PiHQ E E QHP4' = E E (P, V»P V,2P —PV,22P)'0
1 1

L L

to Eq. (3. 1).
Written out more explicitIy-it appears as

= (E —E&) '[E'(r, )4 (r,) —E(r,) (r, ll(2)) (l(l) I r, ')V»(r, ', r,)C (r, ') —E(r,)(r, l 1(2})(1(1)lr,")

x (r,"I 1(1))( 1(2) I r, ') V»(r ",r, ' )4 (r, ') + E(r ) ( r, I 1(2) ) (1(1)I r, ")E(r,")4 (r,")+(r, I 1(2)) (1(1) I r, ", )

x V»(r, ",r, ) (x~" I 1(1))(1(2) I r, ') V»(r, ",r, ')4 (r, ') -(r, ll(2)) (1(1)lr, ")V»(r, ",r,)E(r,")4(r,")

—(1(1)I V„'(r, , r) 11(1))C (r) + (r, I 1(2))(1(1)I r„')V»'(r, ', r, )C (r, ')], (4. 2)

where we have dropped a, factor of U,o(r, ) Though we h. ave not indicated it by integral signs, repeated
variables are meant to be integrated over. We have defined

(1(l) I V„l l(1))=E(r,) .
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Completing the angular integrations in (4. 2) and adding this term to the left-hand side of equation (4. 1),
we have the equation for the upper bound:

,+ 0,'+ ' —+ + f dr' (r'e —re ) lnl, 1]C (r)+f'

16 I
=-8» "]»(»)+Z(»)]+~ '~ " ])(»)+Z(»)] 4IJ-»'» "[Z(»') ~ Z(»')]rr»'+» j"» "I»(»')+Z(»')]rr»'

I
t I

—q(r) f r'e [1(r')+&(r')]dr' +f q(r')e 4 (r')dr'+r f @, e (r')dr'

—q(r) f e r q(r')e (r')dr'+ ' f d—r'[+ (r')e e(r-)e r]inner,
0 0 + 7'- (4. 3)

where E,(r) = (1+r)e, Q(r) = 1 —E,(r). Note the subtraction and addition of the term

B(Z Z)--'e re (r) f dr'in''

to remove the logarithmic singularity.
The lower bound E ~ was chosen from Ref. 3„which gives EI = —0.36111Ry. The manipulation needed

to integrate Eqs. (4.'I) and (4. 3) numerically by direct iterations is to integrate forinally the equations
twice, resulting in

I
C (r)= f dr'(1- f dsl[u. '+m(S)]C (s)+X(s)]), (4.4)

where the boundary conditions on 4, 4 (0) =0, and 4 '(0) =1, are evident. The function N contains the
terms having 4 under the integral sign and M contains the terms multiplying 4-. For the simpler
Eq. {4.1),

M(s) = (2/s)e +2e, N(e) = Be [f(e) +Z(s)] .

Equations (4. 1) and (4.4) were solved by direct iteration, and it was found that convergence was greatly
enhanced if input at any stage of the iteration was formed by properly weighting input and output functions
at the previous stage. The most suitable weights were determined by trial. Though only one weight proved
appropriate for all values of k, for the lower-bound Eq. (4. 1), it varied for different values of 0, for the
upper-bound equation. For values of k, = 0. 7 and 0. 73 close to the nonintegrable singularity in Eq. (4. 3).
the convergence becomes difficult, and the input function at any stage equaled 0. 1 times the output func-
tion plus 0. 9 times the input function at the last stage of iteration. The number of iterations required for
convergence was about 50.

A double-difference integral formula with an accuracy of better than 1 part in 10~ was employed. The
accuracy demanded of 4)-(r) was such that, at any stage of iteration, values of the input and output func-
tions were required to agree to four places at the five end points. To determine the phase shift, a sub-
routine was called to give us the argument of the complex function (4 (r), C (r)/k, ). The phase shift was
thus determined as a function of distance x by subtracting ky" from the real argument. It was observed
that the phase-shift function practically became constant at ~ = 2, doing away with the necessity of inte-
grating the equations to infinity. Thus the equations were integrated out to ~ = 12.3 as the point at infinity,
and the phase shift was picked up at r = 11 where the solution 4 (r) showed even better than fourth place
convergence. The inaccuracy of this approximation was more pronounced at small values of ko. This is
borne out by the investigations of Temkin and Sullivan. '7

In the iteration of the upper-bound equation, the term
I

C(C (r)) = g dr'[e 4 (r') —e 4 (r)]lnI, I (4. 5)

was treated in a special way. To begin with, the lower-bound wave function 4), (r) was used to evaluate C,
giving the value C„and a solution C, (r) of Eq. (4. 3) was obtained. Then an improved C called C, was
evaluated by using C, (r) in (4. 5), and again Eq. (4.3) was iterated for 4, (r), and so on. The phase shift
was obtained by observing a converging sequence. A typical case of this sequence for k, =0.3 is given in
Table I.
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TABLE I. Upper-bound phase shifts in radians for
successive approximations of the term (4.5) for ko= 0.3.

3.2—
7r—

Co C2
3.0

I

2. 55742 2.556 06 2.556 31 2.8

V. DISCUSSION

2.6

The pertinent theoretical calculations to compare
our results with are available in the work of Tem-
kin and Sullivan. '~ Their results are quoted in
Table II and plotted in Fig. 1 along with ours. They
are seen to lie nicely between our upper and lower
bounds. Since our aim is to explicitly bring out
the maximum theoretical error involved in varia-
tional calculations of this nature, we proceed by
adopting a definition of the maximum error in our
theory.

For the purpose of this. discussion we define

W = PHQE —
H QHP,

1

I

2A—
I-

2.0—

l,6
0.0

I

O. I 0.2
I

0.3 G4

TABLE II. Triplet s-wave e -H scattering phase shifts
in radians; 50", upper bound; 60, lower bound. The
numbers in parentheses give the maximum uncertainties
in the last digit quoted.

0
L Temkin and

Sullivan (5)

0. 1
0.3
os 4
0.5
0. 6
0.7
0. 73

2. 907 (1)
2.459(1)
2. 255 {1)
2. 066(1)

r j,.896(1)
1.742(1)
l. 700(1)

2. 953 t1)
2. 556(1)
2. 370(1)
2. 216(2)
2. 115(3)
2. 141(4)
2. 281(8)

2. 9390
2.4996
2. 2936
2. 1052
1.9335
1.7801

where Wg is the lower bound on the negative-
definite part of the optical potential. The lower
bound on the potential leads in turn to the upper
bound 5& on the phase shift. By our choice of the
lower bound on energy El, the nonintegrable singu-
larity in Sg occurs at k,2 =0.63999. We notice
that as the value of ko approaches this singularity,
the difference between the bound curves increases
gradually. We define the maximum theoretical
error as the difference between upper- and lower-
bound phase shifts at a value of ko' that is 0. 15 Ry
away from the singularity. At k, '= 0.49, the maxi-
mum error is about 20%%uq, and it increases for high-
er ko'.

This result can be improved considerably by the
methods detailed in Sec. III. Thus we assert that
ours is a practical method for studying the energy
dependence of the phase shift in the first inelastic
region. We shall describe briefly how this can

ELECTRON. ENERGY k (Rydbergs)

FIG. 1. s-wave e -H scattering in the triplet state.
Upper-bound (6 ) and lower-bound (50) phase shifts.
For comparison, Temkin and Sullivan' s calculated
results are indicated by & ' s.

materialize in the framework of our theory.
The lowest inelastic threshold occurs at k,'

=0. 703." As the incident particle approaches the
hydrogen atom, it is polarized by (induced) virtual
transitions to excited states. The static approxi-
mation for the lower bound on the phase shift can
be improved by taking into account the first few
excited states of the hydrogen atom. For exten-
sions of the study to energies in the first inelastic
threshold, we have to include 1s, 2s, and 2p states
of the hydrogen atom in the projection operator P.
If the optical potential term in Eg. (2.4) is neglect-. ~

ed, then this procedure is known as the close-
coupling approximation and yields an improved
lower bound on the phase shift. For the upper
bound on the phase shift 5+, our method involves
replacing the operator QHQ in the optical potential
by its lower-bound energy. The choice of P in the
present case indicates that QHQ is a Hamiltonian
for which the two electrons are never in the 1s, 2s,
and 2p states of the hydrogen atom at the same
time. The crudest lower bound on the energy of
QHQ, neglecting the repulsive interaction Q(l/x»)Q
between the two electrons, is

E =-0.222 Ry.

With this bound, the nonintegrable singularity in the
operator S~ occurs at Ao'=0. 778, which is only
0. 075.Ry further off from the point of inelastic
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resonance. Our hope is that one would improve the
lower-energy bound on QHQ by including the repul-
sive potential Q(1/r»)Q so that the difference be-
tween the singularity of Wl. and the resonance
would be more than 0. 1 Ry, and the behavior of the
phase shift in the region of the resonance could be
determined.

The improvement of the reported upper bound,
by an improved evaluation of El and with the 1s-
2s-2P projection (close-coupling approximation),
will be the subject of a subsequent payer.

Inspection of Fig. 1 leads us to draw some inter-
esting conclusions about the mechanism of exchange
of electrons in e -H scattering and the effect of
virtual excitations to higher states of the hydrogen
atom. It appears that virtual excitations to higher
states are not as important as the exchange mecha-
nism in the low-energy scattering region. Sugar"
found that, in the case of no-exchange scattering,

the inclusion of virtual excitations by including the
bound 8~ of the optical potential drastically altered
the zero-energy behavior of the phase shift. We
find that once we include exchange, virtual excita-
tions to higher states are not a dominant mechanism
in s-wave triplet e -H scattering. The shift in
phase at zero energies in the lower bound (due to
exchange of elections) is explicitly brought out by
Eq. (3. 15).
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