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Experience shows that problems of this type are not
very sensitive to the detailed form of the closed-channel
function, provided that the regularity condition (Eq. B7)
is satisfied. In fact, if all the coefficients (a, 5, . . . ,
a, b. . . .) in Eq. (B10) are omitted, the phase shifts are

unaffected, although the asymptotic oscillations of g
are not correctly represented.
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Solutions of the Faddeev equations for Coulomb potentials are investigated. A method which
is of practical use for solving the Faddeev equations below the three-particle breakup thresh-
old is developed. As an example, the method is applied to the (e, H) system in which the H
bound state and the lowest members of the resonances in both the singlet and the triplet J= 0
series are calculated. The results are in good agreement with the experimental measure-
ments and previous calculations which used conventional methods.

I. INTRODUCTION

The nonrelativistic three-body problem with two-
body interactions has been formulated by Faddeev'~'
in a way that allows straightforward computations.
For short-range forces, the Faddeev equations
have been applied successfully to a number of
problems. ' ~ It is the purpose of this paper to
show that the Faddeev equations are equally appli-
cable to atomic problems as long as the total energy
is below the three-body breakup threshold —for
example, the calculation of three-body bound
states and resonance energies and wave functions
below the ionization energy. The significant
advantage of the Faddeev equation over conven-

tional methods is that the wave functions are calcu-
lated systematically along with the energy levels.
No trial wave function is.needed in the computa-
tion. Although this paper only contains a few
illustrative examples all dealing with the e-H
problem, we believe that the Faddeev equation
has a considerably wider range of applicability.
A brief account of this work was presented recently
at the Leningra. d Conference. '~

In Sec. II, we give a simple derivation of the
Faddeev equation, and review the method of
reduction with respect to angular momentum. The
method of solution is presented in Sec. III and
applied to the H problem in Sec. IV. A discus-
sion of possible extensions is given in Sec. V.

II. THE FADDEEV EQUATIONS

A. Formal Derivation

The scattering matrix T(s) for the three-particle system with two-body interactions is a solution of the
equation

T (s}= V+ VG, (s) T(s),

with V=Z. V. (V. =—V.&),z i i gk' '

(2. 1)

(2. 2)

G,(s) =(s —H, ) (2. 3)
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where the three particles are labeled by i, j, and k, and G,(s) is the free three-particle Green s functio~.
The "off-shell" scattering matrix Tf(s) arising from the two-body potential Vf above is given by the
Lippmann-Schwingex equation

T, (s) = V, + V, G,(s)T,{s).

Since Vf acts only on two particles, the third particle is therefore left as a spectator in Eq. (2.4). Equa-
tion {2.4), in effect, is equivalent to the equation for two-particle scattering matrix; the presence of the
spectator particle gives rise to merely a shift in the energy scale.

Now we decompose the three-particle scattering matrix T(s) into three components

T (s) = T"' (s) + T "' (s) + T"' (s)

where T &f'(s) = V'. + V.G,(s)T(s) .
Z Z

(2. 6)

(2. 6)

(2. 7)

As it stands, Eq. (2. 6) is a set of integral equations with each T& & coupled to all three operators
T(j),j =1, 2, and 3. The main difference between these equations and the Faddeev equations is that,
in the latter, each T(f) is only coupled to two T{j)'s with j x i, and as a result, the kernel of the integral
equation is less singular. %e give here a simple derivation of the Faddeev equations:

Define the expression

0= T (s) —T. (s) —Z T. (s)G,(s)T (s).(&) (j)
2~i '

One can readily show by utilizing Eqs. (2. 4)-(2. 6) that

f1= v. + P V.G, T j —v. —v.G,T. —Z v.G, T —Z v.G,T.G,T = v.G,Q.(j) (j ) (j)
g e m g g g g o o g o e g g

J =.1 JAg $4$

Since V G,(s) is not the identity operator, Eq. (2. 8) implies that 0 =0 for each i. We then obtain for
T(f)(s) he equations

T ' (s)=T.(s)+ Z T.(s)G,(s)T j (s), i=1, ,2,3
2~$ ' (2. 9)

which are the well-known Faddeev equations. ' In the matrix form:

(T &'&(s) i (T,(s)) ( 0
i

T"'(s)
i

=
i T,(s) +I T,(s)

(T"'(s)l (T,(s)l IT,(s)

T,( ) T,( )) t' T"'( ))
0 T,{s) ~G,(s) I

T"&(s) ~.
T,(s) 0 J T"'(s) $ (2. 10}

This is a coupled set of integral equations in five variables. Since no approximation is made on this
formal transformation, the solution of Eq. (2. 10) yields T "&, T"', and T"' whose sum is the exact
solution of the original equation (2. 1).

The Faddeev equations can also be interpreted diagrammatically. Let us represent T, by the sum of
the diagrams as shown in Fig. I and similarly for T2 and Ts. For the T 's with a superscript, we use the
symbols shown in Fig. 2. The Faddeev equations are then given by Fig. 3. One can easily see that the
iterative solution of the three equations in Fig. 3 using the equation in Fig. 1 reproduces all the diagrams
in perturbation theory. Our formal derivation given earlier simply shows that the Eqs. in Fig. 3 are
valid even if the perturbation series fails to converge. In the diagrammatic representation, it is physi-
cally evident that T'" is that part of the full three-body T matrix where particles 2 and 3 undergo a
final-state interaction. Since Tz already represent a complete sequence of two-body interactions, each
T{f)can only couple to T(j), jwi. As mentioned earlier, this decoupling of T{'f) from itself results in a
less singular kernel as compared to the original equation (2. 6). This is due to the fact that each T~ is
associated with a 5 function corresponding to the momentum conservation of the ith particle, and the
decoupling removes the repeated 5 functions.

8. Three-Body Kinematics

To reduce the Faddeev equations, a suitable set of basis variables must first be chosen. For this
purpose, the momentum representation is ado~ted. Let the masses and asymptotic momenta of the three
particles be denoted by m„m„and m„and k„k„and k, respectively. An appropriate set of basis
variables may be constructed by taking certain combinations of the momenta in the center-of-mass sys-
tem of the three particles. For T&'&, the suitable basis variables are the pair of independent momentum
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FIG. 1 Diagrams for the two-body scattering matrix

Tg . The wavy lines represent the bvo-particle poten-
tial V~.
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gy+
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0 ~ 0 + G

FIG. 2 Symbols representing the three-body scatter-
ing matrix T with a pair of particles undergoes a
final-state interaction.

FIG. 3 Diagrammatical representation of the Faddeev
equations. The gap between tv' diagram, s represents a
a noninteracting three-body Green's function.

variables. '

p, = [m k —m k,] /[2m m (m, +m )]»2, (I, = [m,(k +TiS) —(m2+ mS)k,] /[2m, (m2+ mS)(m, +m, +mS)]»2, (2. 11)

and their conjugated pairs pSq2 and p,q, which are obtained by a cyclic interchange of subscripts in E(ls.
(2. 11) are the appropriate sets for T ('& and T &8& respectively.

The nonrelativistic kinetic energy in the center-of-mass frame may be written in any pair of basis
variables;

&0 =P j. + Cy =P2 + 6'2 =Ps + 0'3 (2. 12)

Consequently, the corresponding state vector Jk,k,jt,& may be represented in several e(luivalent forms

~k&kP~& = ~P1~&1= ~PSa.}2= ~PSa&„ (2. 12)

where the extra subscript keeps track of the proper pair of basis variables.
These sets of basis momentum variables are linearly dependent on each other. The relations are

summarized below.

P1 = - &12PS )S12~2 = (218~8+ &18(IS ~ (T1 = &12PS o'12(IS = &18PS (218(IS ) (2. 14a)

P2 +Slpl + t 21 ll +SSPS P28q8 & ~2 f Slpl +2111 f 2858 +28 IS s

PS +SSPS + PSSq2 +81pl P314 t %3 i 882 +82 IS I 31P1 +3111&

where a..=-[m.m./(m. +m~)(m. +m~)] "', p. . -=(1 —n 2)'".
jj i j i A j k ij

(2. 14b}

(2. 14c)

(2. 15)

%e will frequently interchange these basis momentum variables among different sets for convenience.

C. Separation of Angular Momentum

A separation of the angular momentum states in the Faddeev equations can be carried out using the
relative angular momentum of two particles, which is combined with the angular momentum of the third
particle in the over-all center-of-mass systen1. 8~18 In this decoupling scheme, the state vector [Pf, (lf&8
may be expanded in terms of a set of orthonormal partial-wave states lp8 Imf, qSI.mf &8 . Since the total
angular momentum J is conserved, we may in general consider the states to be diagonal in Z. These
states are given by

((qual& ()' ' M(me+))* z .(
=-' ' ' )(p), q)m~&, , ,

mlml I L
(2. 16}

Ipfmf, qZm ), =I
&

(p)r (g)III, @,, (2. 17)

.yfmf, qrm Ip'I'm, „q'I.'m, &. =(pq)-2+ -p') V(q-q') aII, C (2. 1S)

where the %signer 3j symbol is adopted for the Clebsch-Gordan coefficients.
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The Faddeev equations [Eqs. (2. 9)] may be written in this representation as

' (Px.,s) = c '(p, q, s)+-'~ ~ f dP 'f dq. '&. '(PqnIP q n)IP.ql(p' q'-s)]jjj jj j j

xe "~(p., q .), (2. 19)

with 4 (p, q, s) =- .(pqn I T (s) Ik,k,ks}, (2. 20)

4 (p, q, s) -=.(pqal T.(s) Ik,k,k ), (2.21)

&. ' (Pqn IP q n. ). =-. .(Pqn I T. (s) IP.q.n.). , (2. 22)

where for convenience the discrete quantum numbers (JMlL) are collectively denoted by n. The physical
interpretation of the equations is straightforward. The quantity 4n. ( )(Piqis) represents the contribution
to the three-particle scattering amplitude in which particles j and k$ v k»-' i) undergo final-state interac-
tion with relative angular momentum li. The quantity C a.( )(pi qi s) represents the scattering amplitude
in which particle i acts as a spectator. The initial state which is denoted by Ik,k,k, ) is arbitrary. The
quantity P is proportional to the magnitude of the relative momentum between particles j and k, and the
quantity q is proportional to the magnitude of the momentum of particle i in the three-particle center-of-
mass frame.

Utilizing Eqs. (2. 16)-(2.18), we obtain for the kernel & .(~) [defined in Eq. (2. 22)] the expression

3(i)(
I ) (

)L+L' —l —l' P J l L J' l' L'
-M m&m -I Eo m,

mlmL
m~pmL p

x fdpdq. dp. dq. .(p@T.(s) Ip. g.).(2J'+l)Y* (p. )Y» (q.)Y, (p.)

xY, (q).
mL I

(2. 23)

(2. 24)

Since Tz involves only two-body potential Vi [see Eq. (2. 4)], the matrix element i(pq I Ti(s) lp q. )j in
Eq. (2.23) may be reduced to a two-particle matrix element. According to Eqs. (2. 3), (2. 12[, and (2, 13),
we have

.(II/ IT.(s) Ip q&). =.(II/ IT.(s) Ip.q. ). =5(q —g. )(p IT.(s —q') Ip.),

(2. 25)

(2. 26)

with 8(q —q. ) =2q '5(q' —q.') 5(cos8q-cosg. ) 5(y —y» ),
Z i q

Z

where Tg is the two-particle scattering matrix in the Hilbert space of the two-particle states. We may
make use of the decomposition

(/IT. (s —q') If.) =-2, Z (2l+1) Pl(cos8 )t I'p, p. ;s —q'),
z 7T

$ 0

(2. 27)

where the scattering amplitude between particles j and 0 with angular momentum l is normalized accord-
ing to the equation

(.) t III

tl (p,p;p') =e (sinai)/p.

Here P' is the two-body center-of-mass energy.
When Eqs. (2.24)-(2. 26) are utilized, the kernel in the Faddeev equations may be written as'

X . (pqa Ip.q.n. ) = f dcos8 A (8,8,8 ) 5(q' —q.')t (p,p. ; s —q')(i) 2 2 (i)jj j -1 . Qej 'Qp' i l 'i (2. aS)
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(
)L+L' —l —l'+'

with A, (8»» ) =
ma' q.p. q

1 j.

16&'(2f'+ I)' ~ ~ ZJJ' MM' ——
l L L' k l L L'/ ~ L™L')

x YI*—(8 «, 0)YL—(8 «, 0)YL,— (8«, 0), (2. 29)

where Hq'p for example, is the angle between momentum variables q and pj. It should be noted that
these angIds are related through the relations between different sets of pair momentum variables [see
Eqs. (2. 14)].

The above result was derived for any angular momentum state J of the three-particle system. For
convenience, we will consider explicitly only states corresponding to zero total angular momentum. For
this J =0 case, a=(00ll) -=l, and Eq. (2. 29) becomes

2( )I+I'
A&&, (8~~)=j j

(2l+ I)'(2l'+I)'p&(cos8 )p&, (cos8~~), (2. 30)

with P.2 =p.2+q.2 —q2 andj j
[~ 2(q 2 q2)+p 2(q2 p 2)]

V ij jcos8»
p

= (lf I
ZZ ij ij'z

(2. 31)

[p 'p'+o 'q' q']-
zj j zjcos8»

q
= (i/1 iji

where (ij) denotes that (12) =(23) =(31)=1 and (21) =(32) =(13)= —1.
Substituting Eq. (2. 28) with AII i given by Eq. (2. 30) back into Eq. (2. 19), and integrating over the

angles, we obtain for the Faddeev equations

(2. 32)

(P q s)=@ (
(p q s)+ g P 1 dq 2f ~i dP. .2

jei I'=0
v

( )I+I [(2l+1)(2l'+I)]'PI(cos8p q)PI~(cos8 )
gg p.q.

X
4vn p qV '+. .q .'. s). . -

ij ij j j
xf Q,p. ;s —q')+I, (p. , q. , s), i =1,2, 3(i) . , (f')

with U. .=(a..q. +q)'/P. .', L..=(o...q. —q)'/P. .'.ij ij j ij ' ij ij j ij '

(2.33)

(2. 34)

It is cleap that if if~~'(p, pi, s —q') is expanded in a sum of terms separable in p and pi, then the p depend-
ence of 4I &~)Q, q, s) becomes explicit Q does not appear in the kinematic functions or the limits of inte-
grations), and the coupled integral equations in two variables [Eq. (2.33)] can be reduced to equations of
one variable. "~" We will consider the application of these equations to three-particle atomic systems
in which the interaction proceeds through two-body Coulomb potentials between each pair of particles.

III. THE METHOD OF SOLUTION

A. Eigenfunction Expansion for "Off-Shell" Amplitude

(3. 1)

As mentioned before, the partial-wave Faddeev equations of two variables may be reduced to equations
of one variable if the "off-shell" two-body scattering amplitudes tE are represented in sums of separable
terms. In general, if the two-body potentials V~&i) for a system are given, the two-body amplitude ff(i)
can be obtained from the solution of the Lippmann-Schwinger equation

f "'V,j';@=Y"'(P,j')+v ' $ dP'"P"Y" V,p")f, '(P",j';E)/O'"-E).

Since the argument E is replaced by (s —q') in the Faddeev equations, it is negative-definite provided the
three-particle energy s is below the three-particle threshold (s =0). For negative value of E, the
Q'" —E) ' term in Eq. (3. 1) is nonsingular, and it is well known that the solution for if&~) can be expressed
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in terms of eigenfunctions of the homogeneous portion of Eg. (3.1).
The solution pnl(t) of the homogeneous Lippmann-Schwinger equation and the corresponding eigenvalues

X„i(f) are defined by

'(E)e '(P E)=.-'f dp'"[P"~')(PP")/(P'" E)-]e '(P" E) (3.2)

with the orthonormality property

& f dpppm pppptp (t)(ppp E)y (t)(p pp E)/(p pp2 E)
nl ' ml nm '

Since Pni(~) constitutes a complete set, the two-body amplitude ti(~) can be expanded in the form

t '(P P'E)= ~ t- '(P'E)e (P E)
n=0

Substitution of (3.4) into Eq. (3.1) yields, with the help of Eqs. (3.2) and (3.3),

(3.4)

tl(*)(P,P', E) = Z (X„l(*)(E)/[1-X„l(')(E)]]e„l(*)(P,E) e„l(')(P,E).
n=0

i ~ 'E

This is the desired representation for tl~ & in the sums of separable terms.
In momentum representation, the Coulomb potential is

(s. 5)

1

&,
'

(P,P') = —(Z, u, '/~&pp')0, (P'+P")/2PP', (s. 5)

where the Qi' s are the Legendre functions of the second kind, pt is the reduced mass, and Zt is the
product of the chalges (i. e. , Z Z~) of the two particles. For this potential the eigenfunction pni ~ and
the eigenvalue Anil' & are both nown analytically. " We have

4„1' (P, z)=[&„i(z)p/(P'-E) ' jt-"„1 1
' [(O'+E)/(O'-E)j,

1

and X l
'

(E) = —Z,. p,, '/n4- 2E,

where n &l and the normalization constant is

~„,(z) = [2
' n(n-l- 1) t/1.(n+l+ 1)]' ii (-Z)

(&)'s in Eg. (3.7) are the Gegenhauer polynomials''P

(1- )~= (
l+1 1'(m+21+1) ~, , & ~ (l+1)

y 0

with g (Pn) = [2(tn+ 2l+@)(m y)/~(21 +2&+ 1)]~
+ (I)

(s. 9)

(s. 10)

(s. ii)

%There the recursion x elation fox the o'8 starts with

a, (m) -=(m+2l) t/(21+ i) t (m —i) t .(l+ i)

B. Coupled Single-Uariable Integral Equations

(3. 12)

Utilizing the separable representation [Eg. (3.5)] for the off-sliell two-particle amplitude, the P depen-
dence of 4z (t) (p, q, s ) can now be made explicit. Let us return to the Faddeev e|luations for total J= 0.
From Eq. (2.33), it is clear with the help of Eg. (3.5) that 4'l(t (p, q, s) can be expressed as

@1' (p, q, s)=Cl' (P, q, s)+Z {X l (s —q')/[1-X l' (s —q')])p 'l (P, s —q')y I (q, s). (s. is)
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Subytituting Eq (3 13) into Eg (2. 33), we obtain a set of coupled single-variable illtegl'al equations for

(q s)=l) (q s)+ ~ f dq. X ', (q, q. ;s)X, ~(q. , s), l =1 2 3
8 p

'

pj
E

(, )= Z dq. '( dP. ' .. . , & ( o e--)&f (

(3. iS)

(q q s)- dP.'. (f i fry
(-) [(2l+1)(21'+1)]'&&(c»e - )&& («se- - )p.q. $' p.q.

4vn p q.(.p .'. +q .'- s.)[1-& i(s - q.')](j)
gj gj j j n'E' j

(3.16}

Equations (3.14) are the basic working equations. We will now examine their physical implications.
Let us first examine the singularities of the kernel X given by Eg. (2. 16). For negative values of s,

two-particle bound states of the system (if they exist) play an important role in the analytic structure of
the kernel X. Denote the two-particle bound-state energy by —e. For each such two-particle state,
there is a corresponding eigenvalue A, which equals to unity at —e. The denominator 1 —A. ifi(j)(s —q } in
the kernel then vanishes at q =a+ e for s) —e, therefore creating a branch point for ysf P~)(q s) at s = —e.
Three-particle bound states can only occur below the branch points. The region betw'een the lowest and
the next branch points is the energy region for purely elastic scattering of a particle by a two-particle
system in its ground state. A single inelastic process occurs above the second threshold, and so forth.
By solving the Faddeev equations, we can obtain bound-state and resonance energies and wave functions
below the three-particle breakup threshold.

Now if there is no two-particle bound state between any pair of particles in the three-particle system,
the behavior of the kernel X becomes less complicated, since in this case the kernel is pure real below
s = 0. Again, Egs. (3. 14) can be solved in a straightforward manner for both the energies and wave
functions of any possible three-particle bound states.

lt should be noted, however, that if the total energy s is positive (i.e. , above the three-particle breakup
threshold), then there is a region 0&q'& s where the two-particle energy s —ql is positive and the expansion
for the off-shell two-particle amplitude [Eq. (3. 5)] in general fails to converge. The method discussed
above becomes unsuitable. This includes the problems of three-particle breakup such as, for exam&pie,
the ionization of hydrogen atoms by electron impact.

We remark here that, for the Coulomb interaction, the two-body T matrix ff(p, p', E) is singular at
p'=E, p"=E or p =p for all E. The first two regions are inaccessible below the three-particle threshold
(ionization energy), because E is negative-definite while p and p' are positive. The region p =p' is
accessible but the kernel Xsf sinai (q, qj, s) is already the result of an integration over p'. Since the
singularity at p =p is only logarithmatlc, the kernel no longer contains such a logarithmatic singularity.
This, we believe, is the reason why the three particle atomic problem can be handled by the Faddeev
equations without further modification, as long as the total energy is below the three-particle breakup
threshold.

so far the initial states of the three-particle system are left unspecified. This is possible because the
kernel of the integral equation is independent of the initial state, and the energy spectrum of the three-
body system is determined entirely by the kernel. The specification of the initial state and the corre-
sponding inhomogeneous terms are, however, of importance for the wave function of the scattering
problem. %'e now show how this term may be calculated.

For a physical scattering process, one usually has an initial state consisting of two interacting sub-
systems; in the present case, a particle plus a two-particle subsystem in certain bound state. For
definiteness, we consider an initial state consisting of particle 1 and a bound state of (2, 3) with energy
8, and angular momentum f,. The corresponding inhomogeneous termtakes the form [see Eqs. (2.21),
(20. 24), and (2.26)]

q "'(p q s) = — f '"(P P s-q')6(q'-q')
q '-( —,)
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where po and q, are the p and qof the initial state. Since ff "' has apole at 8 —qo'=80, 4& t"(p, q, g)
can be rewritten as 0

@I &'&(P, q, 8) = —[6(q' —8+80)/X &'&'{so){s—qo' —so)] P '" (P, 80)P "& (Po, so),
nolo nolo nolo

where A.
' is the derivative of A. with respect to s.

Now multiply both sides of Eg. (2. 33) by (8 —q,'-8, )/Q I (p„8,) and then take the limit q,'-8 —8,.
It is easily seen that all the inhomogeneous terms vanish except for CI "' and that the wave function
of the initial (2, 3) bound state @„I "&(p„s,) is factored out of the equation. Substitution of CI '" from
Eq. (3.18) into Eq. (3. 15) gives kf explicit inhomogeneous term q„f+'. Equation (3. 14) can now be
solved by standard numerical methods. For s above the lowest branch point the kernel must be taken
as the limit of s approaching the real axis from above. One can either use numerical methods for
complex arithematics or the Fredholm reduction given by Noyes" and by Kowalski. "

C. Spin and Identical Particles

So far, we have not considered spin in this formulation of the Faddeev equations. For nonrelativi. stic
atomic problem, there is no spin-orbit coupling and the effect of the spin simply appears as a multi-
plicative factox in the kernel'.

(~,j ) (f,j) ~k ~0 S. S~ 8
,f, (q, q. ;8)- & I8„,&, 8( q, q. ; s, 8)=(-1) ' ~ [(28+1)(28'+1)]'

(f,j)
~fi(q~q is) ~n j n

(3. 19)

where 8, is the total spin of the three-particle system; 8 the spin of the pair (j,k); 8' the spin of the
pair (k, i); 8f, 8ji and 8y the spins of the individual particles; and ( ) denotes the Gj symbol. Of course,
the T-matrix elements y„f (f) should now carry an additional spin index 8 denoting the spin of the pair
(j,a).

As for identical particles, the statistics require that the two-body partial wave T matrix t I(f()p,p;E, 8)

be identically zero for certain E. In particular, for two spin--, identical fermions, t is zero for even
I if 8 =1 and for odd l if S =0. As long as all the two-body 7-matrix elements satisfy the requirement
of statistics, the solution of the Faddeev equations also satisfies the statistic. The number of equations
is reduced because some of the kernels become equivalent.

IV. APPLICATION TO THE (e,H) SYSTEM

It is well-known that for the (e, H) system, there exists only one three-particle bound state corresponding
to the ground '8 H state. All the other three-particle states are unstable. They correspond to the resonant
states which may be generated in the laboratory in an electron-hydrogen (atom) scattering experiment. moim'

Theoretically it can be shown" P3 that associated with each excited two-particle threshold (corresponding
to the excited states of H atom) there exist a number of resonances supported by a potential which asymp-
totically goes to zero primarily as x-2. Reasonably accurate determinations of the position and the width

of a few of the lower members of the resonances have been recently carr ied out both theoretically'~ "
and expeximentally 2' For the bound 8 state on the other hand, an accurate value for the 8 detachmeni
potential has been known for some time. A calculation of this singlet H state and the lowest members of
the z esonances in both the singlet and the triplet J = 0 series would therefore provide some insight into
the feasibility of the method outlined in Sec. III.

A. The '8 8 Bound State

Since the '8 H state has a zero total angular momentum (i.e. , J =0), Eq. (3.4) may be used for the
calculation of this state. One can readily show fox singlet spin multiplicity that the electron-proton inter-
action amplitudes for electrons 1 and 2 must satisfy the relation

x„'"(q,8) = (-) "'(q, 8), (4. 1)

and the electron-electron amplitude the relation

X &'&(q, s) =0 for odd I. (4. 2)
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Equation (4. 2) is simply the statement of the Pauli principle which excludes the possibility for two electrons
in the singlet spin state to have odd parity. Equation (4. 1) allows for the reduction of the coupled equations
[Eq. (3. 14)] into a pair of coupled equations. The spin factor for the kernel is unity in this case.

We write Eq. (3, 14) in the matrix notation

g(q, s) =g(q, s) +f dq. 'X(q, q. ;s)y(q. , s), (4.3)

(4. 4)

y(s) =[I-X(s)7 'g(s).

To calculate the bound H state, we need to determine the pole in the inverSe operator [I-X(s)] '. The
pole may be located by locating the energy s at which the determinant of the I-X (s)matrix is zero.

For Coulomb interactions, the matrix elements in 3'. may be obtained analytically since both the eigen-
functions Q„f'f' and eigenvalues X„f'I& of the homogeneous Lippmann-Schwinger equation [Eq. (3.2)] are
known explicitly [see Eqs. (3.7) and (3.8)]. It can be shown that when these explicit expressions are
utilized with the help of Eq. (3. 10), all the integrals needed for the evaluation of the matrix element in X
can be expressed in terms of the basic integrals

(4. 5)

X~(q, s) =[~'"(q&s), 1,"'(q, s), y,"'(q, s) & y, "'(q, s), }(2"'(q,s), ~"'(q, s), . . .],
where each element g'f&(q, s) is a row with a dimension which equals the number of terms included in the
off-shell two-particle amplitude tf+& [see Eq. (3. 5)]. Equation (4.3) may be solved for g(s) by digitizing
the continuous variables q and

q&
and inverting the matrix (I- X)

(v2 q+q. ) dP.

(v2q-q. )' (p.'+q.' —s)"+ (4. 6)

where we have made use of the large disparity between the electron and proton masses (i.e. , m, /m,
=m2/me —=0). These integrals satisfy the recursion relation

1=[~/(~+1)] {;[(0+k)"+ —(4 —0)"+ ]/[(4+t:)" (4 —e-)"])[Ig(h'- V)],

with $ = (2q +2q. —s) ~ g = 2&2 qq.

where the recursion relation for the I's starts with

(4. 7)

(4. 6)

I, = 4&2qq. /[(2q'+ 2q.' —s)' —Bq'q. '] . (4. 9)

As discussed before, the three-particle bound states can only occur below the branch point correspond-
ing to the elastic threshold. In this energy region s (- 1 Ry (- 13.605 eV), the matrix(I- X) is pure real
After Eqs. (4. 1) and (4. 2) are utilized in Eqs. (4.3), the resultant matrix integral equations are then
solved by matrix inversion [Eq. (4. 5)]. By taking only the first term in the ff'&& expansion [Eq. (3.5)],
we found that the H state appears at -l. 0516 Ry below the three-particle breakup threshold. This corre-
sponds to a detachment potential of -0.0516 Ry (i.e. , 0. V02 eV) for H in comparison with the accurate
value of —0.0555 Ry of Peheris. 3' The agreement is most remarkable in view of the fact that only a single
18 term in the t~'~& expansion is used in the calculation. This then implies that all the remaining terms
contribute less than 7%.

To demonstrate that all the remaining terms in the f1&f
& expansion contribute less than V% is, however,

a somewhat difficult task. The expansion converges in an.oscillatory manner and involves laige cancel-
lations. For example, the addition of the 2s term pushes the 8 state up very close to the elastic thresh-
old. The 28 term effect is cancelled by the 38 term. The net result due to the inclusion of the 28 and 38
terms ls to move the H state down to —l. 061 Ry. On the other hand, the addition of 2p and 3p terms
would lower further the H- state to —l. 064 Ry, and the addition of a Sd and 48 terms then pushes the 8
state up to —I.063 Ry. It is clear from the numerical result that the oscillations become smaller for
higher terms in the t~'~& expansion. However, our results seem to converge to a value lower than the
accepted value. This is probably due to systematic errors in our numerical calculations. %e will return
to the convergence problem in Sec. V. Perhaps it is worthwhile to note that there is a substantial con-
tinuum component in each term of the tE'~& expansion because this is a Stermian function expansion, so
that the symbols 18, 28, 2p, etc. should be interpreted accordingly.

Recently, a calculation of the H- bound state has been carried out by Vesselova. s' In this calculation the
two-body interaction amplitude between the electrons t~&'& was taken to be zero. As a test of our program
we have considered the tE"&=0 case and obtained, as expected, an energy spectrum which is simply the
superposition of two sets of hydrogenic levels.
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B. The Resonant H States

As the total energy s of the system moves above the elastic threshold, we encounter the electron-hydro-
gen scattering problem. The corresponding matrix (I- X) now becomes complex and contains branch
points arising from bound states of H atom, These branch points must be treated properly in solving
Eq. (4. 3) for resonant states and in calculating the complex poles in (I- X) '. As an example, we will
determine the two lowest J= 0 resonances with singlet and triplet spin states in the elastic region. We
choose this example for simplicity since in the elastic energy region the branch point of concern is re-
duced to just the one associated with the ground hydrogen state.

For the calculation of the singlet J= 0 resonances, one may again solve Eq. (4. 3) numerically. Due to
the presence of the branch points, it is difficult to maintain a desired accuracy by the standard numerical
method of complex integration. However, the accuracy may be significantly improved by the Fredholm
reduction method"~" in which the branch points are removed from the matrix, to be inverted. For the
present problem, the only branch point of concern is that associated with the ground H state in )(,&»(q, s)
[Eq. (4. 4)]. We will now show how such a method may be adopted for the present problem.

Write for )((q, s) the expression

)t(q, s) =u(s) T (q, s)

where u(s) =)((vs~, s) and

T~( )= T. '
~(q, ), T. ')~(q, ), T, '

~(q, ), T, "~(q, ), T. ')~(q, ), T, ')~(q, ), . . . ,

where s, =—s+ 1, u(s, ) is a scalar function, and the TI(~&(q, s)'s are columns with elements Tuf(t&(q, s).
For the purpose of calculating resonance poles, we may replace Eq. (4. 3) by

u(s)T (q, s) = X»"'(q, vs„s) +u(s) $ dq. 'X(q, q. , s)T (q. , s)

(4. 10)

(4. 11)

(4. 12)

(4. 13)

where we have replaced &I(q, s)[see Eq. (4.3)] by X»"&(q, s„s) since poles in y(s) are independent of the
inhomogeneous term &I(q, s)[see Eq. (4. 5)]. The symbol X„"&stands for X10 &I(l 't) where i, n, and I
are the suppressed indices of 'P. This quantity»("(q, s„s) in Eq. (4. 12) is chosen to make the kernel
of the integral equation for T nonsingular at q' =s,. By definition of u, T»&'&(v's„s) is normalized to
unity. Solving Eq. (4. 12) for u(s) at q' = so, we obtain

«(s)= ««
'

(W«„W«„«) (( —Z J dq K(o' )(.'v'«„q. ;«) «'
) («. , «)) .

Substitution of u(s) from Eq. (4. 13) back into Eq. (4. 12) yields

(q) Ws(&i s)
(4. 14)

Now, the kernel does not have a pole at q&' = s„and Eq. (4. 14) contains no branch point for s (—0. 25 Ry.
It may be solved in a straightforward manner for T (q, s). Having obtained T (q, s), u(s) can be calculated
by evaluating the principal part integral in Eq. (4. 13), and the poles of u(s) are then poles of y.

Unlike the case for the bound state, retaining only the 1s term in the tf (t& expansion [Eq. (3. 5)] fails to
give any resonance. A resonance pole is found when either the 2s or the 2p term is included in the t~&~&

expansion. This is expected since the H resonances are closed-channel resonances" lying very close
to the excitation threshold. The positions of the pole obtained in the 1s-2s and 1s-2p expansions are at
—0. 286 and —0.291 Ry below the three-particle breakup threshold, respectively. The position of the
lowest H resonance in the J= 0 singlet series has been found to be at —0.2973 Ry both experimentally"
and theoretically. " " This seems to indicate that neither the 2s nor the 2p term alone is sufficiently
attractive to lower the pole to —0. 2973 Ry. From these results one may also conclude that the 2P term
is more attractive than the 2s term.

The combined effect of the 2s and 2P terms, on the other hand, is much too attractive. The pole is
lowered in the is-2s-2p approximation to —0. 326 Ry. It requires the 3s term to push the pole up to
—0.3004 Ry. The addition of the 3P and 3d terms move the pole further up to —0. 298 Ry, which is closer
to the value of —0.2973,Ry calculated in the closed-coupling approximation with correlated wave functions.
Though there is a definite indication of convergence towards the value of —0.2973 Ry, the convergence is
again oscillatory and not rapid. It is perhaps worthwhile to emphasize that the present calculation is
term-by-term exact. No variational or stationary parameters were used in the calculation.

The calculated width for the lowest J=0 singlet resonance in the 1s-2s-2p-3s approximation is 0. 0025
Ry (0.034 eV) which is in reasonable agreement with previous calculations. 24«25«2'~" The measured width
for this resonance is 0.043 eV." In Fig. 4 the profile of the elastic scatteririg cross section in the neigh-
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FIG. 4 Energy dependence of the singlet J'= 0 elastic
scattering cross section in the neighborhood of the
resonance in the 1s-2s-2p-Bs approximation.
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borhood of the J=O singlet resonance is given. It is seen that the interference between direct and reso-
nance scattering is important. Due to the absence of other channels, the cross section actually dips
through zero at s = —0.2997 Ry.

For the triplet case, the electron-proton interaction amplitudes for electrons 1 and 2 must satisfy,
instead of Eq. (4. 1), the relation

y„"'(q,s) = (-) )( "'(q, s), (4. 15)

and the electron-electron interaction must satisfy, instead of Eq. (4. 2), the relation

)( "'(q, s) =0, for even l. (4. 16)

Equation (4. 16) is again the statement of the Pauli principle which excludes the possibility for two elec-
trons in the triplet spin state to have even parity. Equation (4. 15) allows for the reduction of Eq. (3.14)
into a different pair of coupled equations for the triplet case. The spin factor for the kernel is again
unity.

The behavior of the solution for the triplet case is similar in nature to the singlet case. We obtain in
the 1s-2s-2P-3s-3p approximation a resonance pole at —0.257 Ry below the three-particle breakup thresh-
old with a width of -2 x10 ' Ry (2. 72 x10 4 eV) which are in reasonable agreement with the previously
calculated values. ~'~~9

V. CONCLUDING REMARKS

The method presented in Sec. III provides a practical way of solving the Faddeev equation for Coulomb
potentials below three-particle breakup threshold. It is seen, from the example in Sec. IV, that by re-
taining only a few leading terms in the series a reasonably accurate value is obtained. The interesting
problem is then to investigate the convergence of the remaining terms in the series. This is, however,
a somewhat difficult task, since, as was pointed out in Sec. IV, the expansion converges in an oscillatory
muser and involves large cancellations. The net sum of all the terms, considered as a whole, consti-
tutes, nevertheless, a small correction. It is then feasible that a perturbation scheme in which the sum
of the contribution of the remaining terms is treated as a perturbation may be developed. In this con-
cluding section, we outline such a perturbative scheme.

Let us consider the problem of determining the poles in the inverse operator in Eq. (4. 5) by examining
the energy dependence of the determinant Det (I- X(s)). We can partition the matrix as

I-&(s)=B+S=B(I+B 'SjI (5. 1)

where 8 is a square matrix consisting of elements obtained in a truncated expansion including the leading
terms in the series and g is the remainder. Utilizing the relation between the determinant and the trace
of the logarithm of the corresponding matrix,

DetA = exp(Tr(lnA)), (5.2)

we have

Det(I- X(s))= DtBee x(prT[l (n+1B 'h)]) =DetB(1+TrB '8 ——,
' Tr(B 'SB '8)+ ~ ~ ~ j. (5.3)
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Defining C=B ', we have

8 rn sl n n n

Detail -3'(s))=Deta 1+ Z ~ — Z Z Z c e ~ --,' Z Z s
a=m+1 a=i P=1 y=m+1 ' ~ ~ a=m+1 X=m+1 Xa eX

1+~ Q + 0 t
2 cc

Q =18+1

where ez& and cz& are the elements of matrices Sand C respectively, v is the order of the matrix while
m is the order of the submatrix corresponding to the truncated expansion. This then provides a systematic
way of investigating the convergence problem.
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