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{c) Integrals of Products of Spherical Harmonics

The integration of products of several spherical
harmonics is easily accomplished by expanding
pairs '9

r (8, y)rl (e, y)
] ffl g 2022

= Z D(l„l„L;m„m,)1'L (9, p),
p f6' + Ala

where L takes on all values such that Il, —l, l ~L
l, +l', and l, +l,+L is even. The coefficients may

be given in terms of Clebsch-Gordon coefficients
as

D(l„ l„L;m„m, ) = (2l, + 1)(2l,+1)/4m(2L+ 1)

xC(l„ l„L;m„m, )C(l„l„I-;0, 0).
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We have previously applied Dalgarno and Lynn's complete first-order adiabatic correlation
function to the problem of low-energy elastic positron scattering by hydrogen and helium
atoms. This approach is now extended to yield rigorous lower bounds on the scattering phase
shifts in the case of hydrogen and "quasibounds" for helium. In addition, the positron anni-
hilation rate in helium is re-evaluated, and lower values are now found, with the enhancement
factor over the Dirac rate varying between 1.5 and 1.8. Some comparisons are made between
the present method and other recent work.

I. INTRODUCTION

In two recent papers, '~2 the problem of low-
energy elastic scattering of positrons from simple
atoms (hydrogen and helium) has been treated in a,

modified adiabatic approximation. The method
consisted in assuming that the optical potential' is
well represented by the position-dependent second-
order energy shift in the ground state of the tar-
get atom due to the electric field of the positron. '



173 POSITRON- ATOM SCATTERING

Two novel features were introduced in these cal-
culations. Firstly, the exact second-order po-
tentials was used in place of an approximate form. ~

Secondly, suppression of the short-range parts of
the potential was accomplished by the use of a semi-
empirical energy-independent parameter, which
served to reduce the spherical (monopole) distor-
tion of the atom which would otherwise dominate
as the positron approached the nucleus.

In the case of positron-hydrogen scattering, '
90%%uo

suppression of the monopole was found to give es-
sentially exact agreement with the definitive S-
wave results of Schwartz' from zero energy up to
the positronium formation threshold. Higher par-
tial waves gave smaller phase shifts than the best
present estimates, ' presumably due to the inclu-
sion of insufficient amounts of virtual positronium
in the wave function.

The positron-helium calculation2 was repeated
for various values of monopole suppression, and
suffered from the use of the shielded hydrogenic
approximation for the atomic ground state. But
since no exact results exist, its correctness can-
not yet be evaluated. ' The only existing experi-
ment' measures the momentum-transfer cross
section near the positronium formation threshoM,
and seems to disagree strongly.

The results for hydrogen' seem to imply that the
adiabatic wave function contains, to a considerable
extent, the significant physics of low-energy posi-
tron scattering. Nevertheless. it is disturbing
that a semiempirical parameter is required, and
also that no extremum principle or bound is con-
tained in the results. The purpose of the present
work' is to use the adiabatic wave function in such
a way as to obtain rigorous lower bounds to the
phase shifts for e+-H scattering and "quasirigorous"
lower bounds in the e+-He case.

In Sec. II, the lower-bound principle of Gailitis"
is adapted to the adiabatic type of trial function for
e+-H scattering. In Sec. III, a simple scale
change gives the corresponding equations for e-
He scattering, and the e+ annihilation rate in heli-
um is also calculated. Results for these two cases
are given and discussed in Sec, IV. In Sec. V we
clarify the relations between the present method
and other recent work. Two appendices contain
details of the calculation.

II. FORMULATION AND POSITRON-
HYGROGEN SCATTERING

scattering function for the positron of momentum
k, which must approach the correct asymptotic
form as x-. The distortion or polarization of
the target by the incoming positron-the closed-
channel part of the wave function —is approximately
represented by 4, which satisfies the conditions'2

f d'~Q(r)@(r, x) =0, for all x,

and f Jd'xd'~[@(r, x)]'&~.

(2a)

(2b)

Then the two functions y and @ are to be deter-
mined. The resultin form of y yields partial-
wave phase shifts 5 k) which satisfy the inequal-
ity tan5L, (k) - tan5L, k) (exact), for all energies be-
low any resonances that might occur.

The Hamiltonian for e+-H scattering is

where H =-(V '+2/x), H = —V ',

and V(r, x) = 2(1/x-1/I x- r i ),

where we have set fi'/2m =1, e'= 2, with energies
in rydbergs and lengths in units of a„ the Bohr
radius. The correlation function is

@(r,x) = E(x)G(r, x)Q(r) (4)

where J" is to contain short-range nonadiabatic
modifications to the adiabatic correlation function
0 which satisfies the first-order equation'

[G, H ]y(~) =(V (V))y-(r) (5)

Throughout this paper the angular-bracket notation
will represent expectation value in the ground state,
i.e. ,

(v) = fury(~) -v(r, x)y(r).

From Eq. (5), the function G is determined to
within an arbitrary additive function of x, which
may be chosen to make (G) vanish. With this
choice, Eq. (4) is consistent with Eq. (2a).

If we use standard variational methods" and
allow X and J" to undergo free, independent vari-
ation, we obtain the following two coupled equa-
tions:

%e are interested here in obtaining approximate
solutions to the positron-atom elastic scattering
problem. The energy will be restricted so as to
forbid any rearrangement or inelastic processes,
the lowest of which is real positronium formation,
occurring above 6. 8 eV in hydrogen and 17.8 eV
in helium. To apply the lower-bound principle af
Gailitis, "it is sufficient in this energy range to
use a trial scattering function of the form

+k(r, x) = Xk+x)y(r) + C (r, x) .

Here x is the position vector of the positron, r
represents the atomic electrons, Q is the ground-
state wave function of the target atom, and y is the

((H-z)(q+ FG)) = o,

(G(H-z)(q+ FG)) = o,

(va)

[V'+k'-V, h = V,E,

[Ã(V2+ k') + V2- VS- 8"-VQ/dx jE= V2y .

(Sa)

(sb)

The "potentials" appearing in Eq. (S) are defined
as follows:

where E=E0+k' and (Hz Zo)Q(r) =0. S-imple op-
erations, including commutation of H& and 0 and
use of Eq. (5), yield the following coupled differ-
ential equations for y and E:
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V (x) =(G V), (p=1, 2, 3);

W(x) =-(GV 'G);

N(x) = (G2);

VN(x) = dN/-dx. (9)

The solution of the coupled Eqs. (8) is outlined
in Appendix B, and the results are discussed in
Sec. IV. In Fig. 1 we have plotted the S-wave
zero-energy solutions for the two functions y and

y, a-s well as the "suppression factor, " T(x)
=E/y, . One can see the natural occurrence of the
expected short-range suppression of G. An un-
expected small enhancement also occurs for x)4.

Using the exact analytical form of G, given in el-
liptical coordinates by Dalgarno and Lynn, ' we
have numerically evaluated'4 all the functions de-
fined in Eq. (9). The evaluation is outlined in
Appendix A, and in Table I the potentials are tab-
ulated.

The limiting forms of these potentials can be
found analytically for small and large x, and are
useful for starting the solutions of Eq. (8) and also
to check their numerical evaluation. (See Appen-
dix A) We obtain, for x- 0,

V, = 2(1/x- 1),

V, = -1+O(x'),

V~ = —,
' V„

N= —~x2,

1.5

1.0

0.5

V~ =~ox,

W= 6(1-2x); (10) —0.5

and for x- ~ I

10 15

Vy and 8' —0 exponential ly,

V, --[ 9/2x +15/x'+. ..],
V, - —[213/2x'+ 1773/x'+. . .],
N-+[43/8x +107/8x )+ . . ~ ],
VN-+ [43/2x'. + 321/4x'+. ..].

FIG. 1. Zero-energy scattering solutions for e+ -H.
The functions g and F are open-channel and closed-
channel functions, and T=F/y is the suppression fac-
tor. The asymptotic normalization is p = 1-a/x, F= y,
and T= 1.

TABLE I. Numerical values for the potentials defined in Eq. (9), evaluated using the complete form of G in

elliptical coordinates. (Negative exponents appear in parentheses in the usual way. )

0.5
1.0
1.5
2. 0
2. 5
3.0
3.5
4. 0
4.5
5.0
6.0
7.0
8.0
9.0

10.0

Vg

2(1/x —1)

2. 207
5.41(—1)
l. 66
5.49( —2)
1.89
6.61(-3)
2, 34
8.39(-4)
3.02
1.09
1.43(-5)
1.90(-6)
2. 53(-7)
3.38(-8)
4.54( —9)

6. 96(—1)
3.99
2. 34
l.41
8.48( —2)
5. 14
3.14
l. 95
l. 25
8. 19(—3)
3.86
2. 03
1.17
7. 18(-4)
4. 67

V3

—, {1/x-1)
1.229
l.57(—1)

—l.40( —2)
—3.99
—3.32
-2. 18
-1.29
—7.20(-3)
—3.91
-2.11
—6.23(-4)
—2. 00
—7. 18(-5)
—2. 91

1 ~ 31

4

5.38(- 1)
3, 13
1.89
1.20
7 73(-2)
4. 96
3.19
2. 06
1.36
9.12(—3)
4.43
2. 36
l.37
8.47(-4)
5.52

Vv
10

5.54(- 1)
3.34
l. 79
1.07
6.84(- 2)
4.41
2. 80
l.77
1.11
7.04( —3)
2. 98
l.38
7.00(-4)
3.83
2. 24

6 (1 —2x)

l. 913
6.42(- 1)
2. 62
1.17
5. 25( —2)
2. 28
9.61(-3)
3.96
l. 61
6.43( —4)
1.00
1.53(-5)
2. 31(—6)
3.43( —7)
5. 06{—8)



III. POSITRON-HELIUM SCATTERING

To extend the results of the preceding section to
the case of positron scattering from the ground
state of helium, we interpret the correlation func-
tion of Eq. (4) as depending on two electronic co-
ordinates, i. e. ,

c (r„r„x)=E(x) c(r„r„x)4(r„r,), (12)

where Q is the properly antisyminetric ground-
state atomic wave function, and G is symmetric in
the electronic coordinates.

The Hamiltonian for e+ -He scattering is

bounds. "
Using this form of Q, it is consistent with

Eq. (14) to assume independent distortion of the
two electrons.

C(r„r„x)= G(r„x) + G(r„x) =-C, + C,

Equation (14) then simplifies to the form

[C,, V, ]y(1,) =(&V')-V')q(r, ), (i=1, 2) (18)

where angular-bracketed quantities now refer to
single integrals, i. e. ,

&
V'&= Jd ~,q(r, )V. 'y. (~,.).

H12---(Vl'+ V2'+4/1" 1+4/r2) + 2/i rl-r2i,
Again, one must set &Gf& = 0 to satisfy Eq. (2a).
Kith this condition satisfied, one can immediately
rewrite Eq. (15) in terms of single integral quan-
tities:

II =-V 2
x x '

(v +u'-2V, )~ =2v,z, (20a)

where V = 2(1/x-I/i r.-xi ) .

The assumption that G is the first-order adiabatic
correlation function requires'

[G, H»]g (r, r, ) = (V-(V&)P (r„r,), (14)

(vm+ a2-&v&)y = &cv&z,

[(G2&(v 2+f 2)+&cv&-&G2V&+ &cv 'c&

(15a)

where the angular-bracket notation of Eq. (6) is
extended to include integration over r, and r, .

The formal equations to be solved are identical
to Eq. (7) where E = F.,+k' and (H» E,)$(r, r, )-= 0.
Using Eq. (14), one obtains the following coupled
equations:

[~(v'+ a'- v, ) + v,—v,—w- vp/dx]F = v,x.
(20b)

All the "potentials" used in Eq. (20) have the for-
mal definitions of Eq. (9), but with $(1') replaced
by $(1"). The factors of 2 appearing in Eq. (20a)
are due to the superimposed effects of the two
electrons. In Eq. (20b), there is an additional
term -NV„which did not appear for hydrogen,
Eq. {8b). This comes from the third-order term
in Eq (15b),.

&C'V) = ((G + G )2(V"1+ Vl'1)&

—(C 2+(1)}+ &C Bv(21 )

+ &Cl') &V"'&+ &C2'&&V"'&

+ 2&c»(C2V"'&+ 2«.&«l V"' &.

The last two terms vanish, and the net result is

+0 &C2&.f ]Z=&GV&x. (15b) &cmv& = 2(v, +xv, ). (22)

If it were possible to solve Eq. (14) exactly, and
to evaluate all the angular-bracketed expressions
111 Eq. (15), tile 1'esultlllg p11ase slllfts would sa'tls-
fy the rigorous lower-bound theorem. Since no
exact solution for the helium-atom ground state is
known, one must use an approximate form for
p(r, r,). We have used the simple, shielded hy-
drogenic form Q(r, r, ) = $(r, )p(1',)S, where S is a
singlet, antisymmetric spin function, and

g(1 J=P 11 e8/2 -1/2 -Pr

where P is an effective charge. Since this function
is not an exact eigenfunction of II», the procedure
leading to Eq. (15) is itself not really consistent.
To the extent that these inconsistencies may be
ignored, however, the solutions of Eq. (15) will
yield lower bounds to tan5L, we call these "quasi-

It has been noted' that a simple change of scale
converts Eq. (18) into its hydrogen equivalent,
Eq. (5). Specifically, let y=Pr and v=Px. Then
Eq. (18) becomes

where V, (v) =—fd ye y[ ——
i &i

].
m e l y-vI

One sees immediately from Eqs. (23} and (5) that

PGH (r, x)=GH(y, v). (24)

Also. since VHe(r, x) = pVH (y, v) and /He'(1')d'1'
= PH2(y)d'y, one can relate all the helium poten-
tials of Eq. (20) to the hydrogen potentials of
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Eq. (8) as follows:

V (x)-P V (v), P=1, 2, 3

N(x)- P~ N(v),

W(x) -W(v). (25)

The simplest way to make use of these scaling
laws is to change variables throughout Eq. (20):

[V'+k"-(2/P)V, ]~=(2/P )V,F',

[N (V + k '2- (1/P) V ) + V2- (1/P) V3

(25a)

W V-Q/-dv]F = V2X. (28b)

x[ I y+FG(x, x) i'+ lF i'(G')] (27)

Here k'=k/P, V' -=Vv', and all the potentials are
the hydrogen functions in terms of v. These
equations can be treated just like those appearing
in the hydrogen problem, as discussed in Appen-
dix 8, and the results are discussed in Sec. IV.
As indicated previously, ' the value P =I which
minimizes the energy expectation value gives an
unsatisfactory value (1.11) for the polarizability
of helium. This quantity appears in the present
theory as limx [2x~V2(x)] = 9p~. With only a
slight change in the energy, one can adjust the
polarizability to the experimental value' of 1.376,
by setting P = 1.5992. This value has been used
throughout the present work.

We have previously" used the nonvariational e+-
He wave functions to calculate Zy, the number of
atomic electrons which are effective in annihilating
a positron of momentum k. (For plane-wave
positrons and omitting atomic distortion, Zk = 2).
In terms of our type of wave function,

—,'z = fd'r fd-'x
i e-(r, x„x) i' = fd'xq'(x)

Eq. (Bl)]. The correlation functions used here
[G(v, v ) and N(v)]are scaled appropriately for
helium. At k = 0, the second integral in Eq. (28)
vanishes since no higher I values contribute.
For k 40, the assumptions made here should be
quite good; in Ref. 15 we have estimated that an
error of less than 2%%ug is incurred in the values of
Zy. In Table II the results are given for values of
the energy up to the positroniun threshold, in com-
parison with the larger values of Zy previously
obtained. "

The difference between the present results and
those obtained previously is traceable partly to
the fact that the present calculation gives less at-
traction than did the nonvariational method, "and
hence the positron is pulled inward to a smaller
degree. A larger effect is the difference between
the "correlation function" M defined in Eq. (28)
and the monopole-suppressed function Y used in
Ref. (15). These two functions are compared in
Table IIj:, and one can see that, except at very
small distances from the nucleus, M (Y. To
examine these two effects quantitatively, we have
recomputed 2' at zero energy using both M and

Y, as well as both variational and nonvariational
scattering functions. By far the largest effect is
produced by replacing M by Y, outweighing the
effect of interchanging the two forms of U by a
factor of 3. Since neither M nor Y is exact, this
result constitutes a warning against taking the
annihilation results too seriously. It is interesting,
however, that the present calculation agrees fairly
well at zero energy with the experimental result of
Falk et al. ' for thermal positrons of Zy =3.78
+0. 17.

N««d«d» P&oof- The zero-energy scattering
function derived here can also be used to calculate
the angular correlation between the annihilation y
rays. Preliminary results are in reasonable
agreement with experiment.

IV. SCATTERING RESULTS AND DISCUSSION

The e+-H S -wave scattering phase shifts 50 were
computed numerically as discussed in Appendix B,
where the method of treating the asymptotic be-
havior of the closed channel is discussed. This

Following Ref. 15, we assume that only the I.= 0
scattering function differs significantly from its
plane-wave form, and that for I & 0 the ratio of
closed-channel to open-channel functions is well
approximated by the zero- energy suppression
function T. With these approximatj. ons, one can
write

-'&k = (2P/k)

x dve U0+g0G v, v +g0 & v

+ 4f dve v M(v) [1-j (kv/P)], (28)

where M (v) = [1+TG(v, v)] + T2N(v). Here v = Px,
U0 and g, are the 8-wave parts of y and E [see

g
(eV)
0
0.54
1.22
2. 17
3.40
4. 90
6.66
8.70

11.0
13.6
17.8

l.83
1.65
1.57
1.51
1.49
1.49
I.51
l.56
1.60
1.65
1.74

3.16
2. 79
2. 58
2. 43
2, 35
2. 31
2, 30
2, 33
2. 38
2. 44
2. 54

TABLE II. Positron- helium annihilation rate & ZA, .
Column A gives the present results, and Column 8 is
the nonvariational result of Ref. 15. The Dirac rate
is gZp=1.
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TABLE IH. Correlation functions for e+-He anni-
hilation. M is used in the present work and is defined
in Eq. (28). F= Il+G(x, x)] +& 62& is used analogously
in the nonvariational work (Ref. 15), and employs full
monopole suppression in G.

TABLE V. S -wave e+ - H scattering results. The
entries without subscripts refer to the present work, and
are averages over x. The other phase shifts are:
6 —Schwartz (Ref. 6); 4II —Hartree; and QHS —Hahn
and Spruch (Ref. 16). The figure of merit Q is defined
in the text. For k = 0, scattering lengths are given.

0
0.5
1.0
1.5
2. 0
2, 5
3.0
3.5
4. 0
4.5
5.0

1.67
1.68
1.83
2. 13
2.55
3.07
3.66
4, 29
4. 90
5.47
5. 97

1
1.91
2.78
3.50
4. 07
4.53
4. 92
5.25
5.55
5.82
6.06

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

tan6

—1.85
0. 128
0.158
0, 135
0. 089
0. 034

-0.022
-0, 074

tan6 tan6

—2. 10
0. 152
0. 190
0.170
0. 121
0. 062
0. Q07

-0, 054

0.582 0. 91
—0. 058 0.89
—0. 116 0. 90
-0.170 0, 90
-0.222 Q, 91
-0.270 0. 92
-0.314 0. 91
-0.354 0. 93

~HS

0, 87

0.89

0.89

involves inward integration from a plaint, x, in the
asymptotic region to an intermediate point x. In
Table IV the sensitivity of tan5, to the choice of
xp and x is shown for low and high- energy posi-
trons, confirming the stability of the numerical
solutions.

In Table V the e+-H S -wave phase shifts (and,
at k = 0, the scattering length) are shown, along
with the results of Schwartz. ' To assess the
quality of the present work, we compute the quan-
tity 4, the difference between tan5, and the value
of tan5, obtained with an undistorted atomic wave
function. This "Hartree" result is also given in
Table V. The figure of merit Q(k) = 0 (variational)/
b(Schwartz) measures how much of the distortion
or polarization has been accounted for by our
method. It is most interesting that Q= 90%, al-
most independent gf energy. The lower-bound
results of Hahn and Spruck" have somewhat lower

of more terms. The results can also be convinc-
ingly extrapolated, and give good agreement with
those of Schwartz. '

In Table VI the S-wave scattering results for
e+-He are presented. Along with the "quasirigor-
oup" lower bounds obtained here, we show the
"Hartree" results, obtained from a two-term an-
alytic form' approximating the helium ground-
state potential, and the nonvariational results. '
Since no definitive calculation exists in this ease,
we have computed the figure of merit Q assuming
that 5~@ is exact. These Q values are smaller
than those obtained for hydrogen, but are also
pearly constant, It is not possible to make any
further statements about the "correct" values
for the S-wave e+- He phase shifts from the com-
parison of the quasivariational and nonvariational
results .

Thepossibilitythata, bound e+-e -p exists has
been eliminated by an extensive variational calculation"
which showed that for a "positron" of mass m &2. 625

tan5 (k= 0. 1)
xp= 20 gp= 25 xp= 30

0.127 53
0.12747
0. 126 75

0. 128 04
0. 127 98
0. 127 26

0. 128 08
0. 128 03
0. 127 31

TABLE IV. S-wave e+ -H results. ~e sensitivity
of tan4 to matching radius Qx and asymptotic radius
(xp) is shown for two values of positron momentum k.

tan6 tan6 tan6

TABLE VI. S-wave e+ -He scattering results. The
entries without subscripts refer to the present work and
are averages over x. The other phase shifts are:
6H —Hartree; &NV —nonvariational (Ref, 2). For
k ——0, scattering lengths are given. Q is computed
assuming &NV to be exact.

xp= 20

tan6 {k=0.7)

xp= 25 xp= 30

—0. 073 93
—0. 073 96
—0. 07440

0, 073 86
—0.073 89
-0.07433

—0. 073 83
—0. 073 86
—0. 07430

g values, as shown in Table V. We consider it a
success of the present method that the results
compare well with the many-parameter, many-l
variational results of Ref. 17. Their method has
the considerable advantage, however, of being
capable of systematic improvem, eat, by the addition

0
0.1
0. 2

0. 3
0.4
0.5
0. 6
0.7
0.8
0. 9
1.0
1.1
1.145

—0.511
0. 036
0. 047
0. 039
0. 020

—0, 007
—0. 039
—0. 073
—0. 107
—0. 142
—0. 176
—0. 208
—0. 223

0.420
—0. 042
—0. 083
—0. 124
—Q. 163
—0. 203
—0. 240
—0, 278
—0.313
—0. 346
—0. 379
—0.409
-0.423

—0.
0.
0.
0.
0.
0.
0.

—Q.
—0.
—0.
-0.
—0.
-0,

659 0. 86
050 0. 85
072 0. 84
071 0. 84
056 0. 84
032 0. 83
002 0.83
031 0. 83
066 0, 83
100 0. 83
134 0. 83
168 0. 83
182 0.83
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such a bound system does occur. As a further
test of the present method, we have calculated
this critical mass by looking for the appearance
of a node in the S-wave zero-energy scattering
function, corresponding to a scattering length
a=+~. One modifies Eq. (8) by dividing all terms
involving Vz by the positron mass m. This is
equivalent to multiplying the potentials V„V„and
V, by m, and adjusting the asymptotic conditions
in an obvious way. We find the critical mass to
be 2. 79, and since our method gives an upper
bound, this agrees with the result of Ref. 18.

The present method is not expected to be as good
for L & 0 as for L = 0, since even the nonvariational
results' underestimate the P- and D-wave phase
shifts at the higher energies. This defect seems
to be associated with a lack of sufficient virtual
positronium in the wave function. Support for this
is the success of Bransden' s P-wave results" at
high energy. More recent results" indicate that
just above the threshold for positronium formation,
I' waves dominate over S waves in the pick-up
process, implying that below threshold neglect of
positronium is less serious for S waves. In any
case, we show our L = 1, e+-H results in 7able VII,
where they are compared with the lower-bound
and extrapolated results of Kleinman et al. "

V. COMPARISON WITH OTHER METHODS

( (II-E)(1+G))y = 0.

TABLE VII. P-wave e+ -H scattering results. The
present results (corrected for long-range effects as
described in Appendix B) are compared with the lower
bounds (LB) and extrapolated values (ext), obtained in
Ref. 21. The estimated error in the last digit is shown
in parentheses.

tan5& tan6&(LB) tan6&(ext)

0. 1
0, 2

0. 3
0.4
0, 5
0. 6
0.7

0. 0073(1)
0. 0263(2)
0, 0518(5)
0 ~ 0764(9)
0. 0952(14)
0. 106(2)
0. 109(2)

0. 0082
0. 0289
0. 0548
0. 0801
0. 0994
0. 112
0. 119

0.0086(1)
0. 032{1)
0. 066{4)
0. 11(1)
0. 14(1)
0. 17(2)
0, 19(2)

We will now describe briefly some other methods
which resemble the present work, hoping that some
clarification will result. The field of low-energy
positron scatter.'ng suffers from some lack of pre-
cision in terminology and some overlapping of ap-
proximations, which may make it difficult to eval-
uate the work reported here without a description
of the competing methods. The following short
review is not complete, but it may aid the orienta-
tion of the reader.

1. The nonvariational (polarized-orbital) method'
uses the form of scattering function given in
Eqs. (1) and (4) with the additional restriction
F(x) = g(x). ' Since it is nonvariational, however,
the single unknown function X is determined by
simply projecting the Schrodinger equation onto
the open-channel part of 4':

This leads to the differential equation

(V2+k2)y-(V, + V, )y =0, (30)

whose solutions give the phase shifts. In the ab-
sence of an applicable lower-bound principle, it
is difficult to gauge the error in the phase shifts
obtained from Eq. (30).

2. The same polarized-orbital wave function
can be employed variationally. The same proce-
dure which leads to Eq. (7) when y and F are in-
dependently varied, leads now to

((1+G)(H-E)(1+ G)) y = 0

since F =y. This gives the differential equation

(F2+k')X-(1+N) '(V, + V, + V,

+ W+ Vg/dx) y = 0, (32)

whose solutions provide approximate phase shifts
which are lower bounds to the exact ones. Unfor-
tunately, these approximate phase shifts are very
low (a =-1.0), since the large, short-range re-
pulsion represented by W, and the reduction in
V, caused by the factor(1+N) "more than over-
come the attraction added by V, . It is likely that
removing some or all of the monopole part of G,
as was done nonvariationally in Ref. 1, would im-
prove the results considerably. If G were re-
placed by G- (I-n)G„ the potentials appearing in
Eq. (32) would be modified as follows:

N N (1-o.2)NO, -
W- W- (1-o.2) Wo,

N N( )N0'

V,-V,—(1—o.)'V»,

V,-V,—(1-a')VSO-2(l-o. )P, (33)

where, for example, No=—(G,'), and P —=(G,(G-GO)
(V-V, )) . In Eq. (33), the parameter o. represents
the fraction of adiabatic monopole distortion being
retained; n = 0 is what we have called' '"full mono-
pole suppression. " The best value of n, for each
L and k, is to be determined variationally. KG~a-
tion (32) is integrated for several values of n, and
the value which maximizes the phase shifts is re-
tained, The monopole terms (with subscript 0)
are easily evaluated in spherical coordinates,
while the remaining terms are known in elliptical
coordinates, except for the last term in V3. The
quantity I' is difficult to compute in either set of
coordinates, but it might be approximated using
the multipole expansions for G and V. This meth-
od has not been used up to the present time.

3. Callaway et al. 22 have made some modifications
to Eq. (32) and arrive at another optical potential
which they call the extended polarization potential.
Although the results obtained are poor, the new
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potential has considerable physical interest.
To derive the result of Ref. (22), one first ne-

glects all terms which are formally of higher than
second order in the perturbation V. This elim-
inates from Eq. (32) all ref erence toN and V„and
leaves us with Eq. (30) modified by the adsdition of
the two second-order nonadiabatic potentials W

+ V /dx. Further arguments in Ref. (22) are
use to justify a certain normalization of the scat-
tering function, but in essence one next introduces
a new function y„by the definition

x=(1- N)x, (34)

and a differential equation for X is derived by di-
rect substitution. Again neglecting terms higher
than second order, one obtains the equation

[&'+&']x-[v +v +v ]x=o, (35)

F(x) =Xk(x)T(x), (38)

where T(x) is some function which approaches
unity for large x and decreases for small x. It is
to contain adjustable constants, "and is designed
to suppress the short-range correlation. Varia-
tion on X leads to the following equation, analogous
to Eq. (31):

where VD is the "distortion potential" ((VxG)') ap-
pearing in Appendix A. From Eqs. (A4) and (10)
we find that VD = 1 at x = 0. Thus, as Callaway
et al."have emphasized, the distortion potential
cancels the polarization potential V, at the origin,
and hence its inclusion seems to serve the same
purpose as does monopole suppression. ' Unfor-
tunately VD is fairly long range, decreasing like
x~ for large x, while V„exponentially decreases.
The equivalence of these two ways of suppressing
excessive attraction is limited to small x, and
consequently Eq. (35) gives far too much re
pulsion; the scattering length is" a = -0.783, even
worse than the result of Eq. (32).

4. We have previously reported ' a method of
obtaining lower bounds to the phase shifts, which
is simpler than that of the present work and not
much different in its results. In essence it is a
hybrid between the present method, which indepen-
dently varies two functions and obtains coupled dif-
ferential equations, and the method of Eq. (31)
which varies only one function.

In this method, one again uses a trial function
of the type represented by Eqs. (1) and (4), with

which is seen to reduce to Eq. (32) if T=1. For
k = 0, L = 0 scattering, the optimum form of T would
be that shown in Fig. 1, where T =F/X; while F
and y were numerically obtained. For k w0, how-
ever, y and I" both are oscillatory but their zeros
do not generally coincide, and one must use a
smoothed approximate form for T, as has been
done for the annihilation problem in Sec. III. It
is also possible to combine the monopole suppres-
sion method with the present method. In that case,
the constant a would measure the amount of mono-
pole correlation retained, while the function T
would be capable of making adjustments in the
remaining parts of the correlation function.

5. Two interesting modifications of the close-
coupling approximation have been introduced
recently. They are quite close in approach to the
present coupled- equation method.

(a.. ) Damburg and Karule, "noticing that the
close-coupling method fails to give the correct
asymptotic dipole polarizability, have proposed a
trial function which is equivalent to our Eqs. (1)
and (4), with a different form for G:

GD~(r, x) = (~+ zr2)P, (cosy),
A A

cos'g ='Y 'x .
The motivation for this choice is clear: comparing
Eq. (39) with Eq. (A8), one sees that GDK correctly
describes the asymptotic form of the adiabatic cor-
relation function, as far as the coordinates of the
electron (r, q) are concerned, and since F(x) can be
freely varied, the solutions of the resulting coupled
equations will be identical, for large x, to those of Eq
(8). Eq. (39) is separable in r, q, and x, however,
and hence does not give the same short-range dipole
correlation as does the Dalgarno-I ynn function G.
In addition, each multipole term in the correlation
function would require another coupled equation
(as is the case for ordinary close coupling). In
return, one gains enormously in the simplicity of
the potentials which must be used; all the potentials
in this method can be evaluated analytically, while
some reduce trivially to constants. The method is
promising, but no numerical results are available
yet.

(b. ) Perkins" has made a modification starting
from a conventional close-coupling expansion
containing 1s - 2p - 3d states. Noting that, since
only one term of each angular symmetry is retained,
the orthogonality of closed and open channels
[Eq. (2a)] is assured, he has modified the forms
of the 2p and 3d functions as follows

((1 + TG)(H-E)(1 + TG)) X = 0 .

The optical potential of Eq. (32) is modified, and
the lower-bound phase shifts are solutions of the
differential equation

[V2+a&]X-[I+T2N] ' V, +(2T —T )V,

+ T2(V + g/)+ (T2V —2T7'N)d/dx

+ (T&2T)N+ TT'V X = 0,
N

Q2 p
=t'e P

2
-'gt'

$3d, =~'e P2.
(40)

The usual coupled differential equations of close
coupling are solved numerically, but now two
additional nonlinear parameters, 5 and q, are
adjusted to maximize the phase shifts. The results
are much better than the corresponding unmodified
close-coupling results, although the exact asymp-
totic polarizability is not achievable. The method
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can be extended to include higher l values with the
usual difficulty that more coupled equations are
then required. Without generalizing the basis
functions considerably, one would not expect the
procedure to converge toward the exact wave
function, but the lower-bound theorem holds and
offers the usual estimate of quality.

6. An interesting general formulation was recently
presented, "which uses numerical solutions of the
two-center problem in the adiabatic approximation,
and which may prove applicable to positron scat-
tering. Similarities with our method include
generalizations of our t/'~ and 8'. The binding
energy of the e+- e - e+ molecule was computed
as an example, but no scattering results were
given.
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APPENDIX A. EVALUATION OF THE POTENTIALS

The analytic solution of Eq. (5) was given by Dalgarno and Lynn' and has the form

G =A(x)(X+ p)+(1+2A/x) ln(1+X)+(1+1/x)Q(x, p)+G(x),

A(x) = 2[(x+ l)e —1], and Ei(-Z) = —f dye /y,

(Al)

where Q(x, p, ) = Ei[x(p, -l)]-ln(I- p. )-e (Ei[x(g+ I)]-ln(1+ p)}.

In terms of these elliptical coordinates, r = —,x(X+ y. ) and cosy = (1+Xp,)/(X+ g), where 7) is the angle be-
tween x and r . The potential V = (2/x) [1+2/(p, -X)]; the angular-bracket notation takes the form

(f(x, X, p. )) =~ J dXJ dp, e (X -p, )f(x, X, p, ), (A2)

and we may determine G(x) by requiring (G) = 0, obtaining

G(x) = (2/x)[ln2-Ei(-2x)]+e [2(1+1/x) Inyx+x-2],

where Iny=0. 5772. . . , Euler s constant. The solubility of Eq. (5) depended on its additive separability
in elliptical coordinates. For the same reason, it is possible to evaluate most of the potentials defined
in Eq. (9) in terms of one-dimensional integrals. Since, however, the important function W cannot be
reduced in this way, we have numerically evaluated all the potentials uniformly by the use of Gaussian
quadrature in two dimensions. We have confirmed the accuracy of this procedure in three ways: We
have evaluated (V), (G), and (GV) in elliptical coordinates, using our numerical method, and compared
the results with the known values, obtaining excellent agreement. In particular, (G) never differs from
zero by more than about 10—', and we feel that this figure measures the accuracy of the two-dimensional
integrals.

The two nonadiabatic terms, V~ and 8', present additional problems. To evaluate V directly would
involve the operation V~ G, which would give a very intricate analytic expression. Instead, we have re-
written the expression for W' in the form

W = VD- 2 V N = VD + (1/x + 2d/dx) V~,

where VI1 —= ((vxG)') is the "distortion potential" employed in Ref. 22, and discussed here in Sec. V. The
function V~ involves both x and q components of the gradient (with r held fixed), while V~ only requires
the x component. Both components were found analytically and inserted into the numerical double inte-
gration, while the first derivative of V~ needed in Eq. (A4) was gotten by numerical differentiation of
V~. All three terms in Eq. (A4) have asymptotic inverse-power behavior, with x~ as the leading term;
these all cancel leaving short-range (exponential) terms dominant.

In Sec. III we require the value of G(x, x), i. e. , G(r, x) evaluated at r=x. In elliptical coordinates this
relation becomes X = p, = 1, since then r =x and cosy =1. Care is required in evaluating Q(x, 1), since its
first two terms are singular. Letting p, = 1-e and expanding the exponential integral about e = 0, we have

Q(x, 1-e ) = In(ye x)-ex-In@-e [Ei(2x)-ln2],-2x
(A5)
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and the limit e- 0 can be taken. The final result is

G(x, x) =(I+I/x)fin(2yx)+e [21n(2yx)-Ei(2x)]}-1-(2/x)Ei(-2x)+e (-,'+2x). (A6)

This is the function which, properly scaled, is used in the e+- He annihilation and forms the basis for
Table III.

To obtain the long-range asymptotic forms shown in Eq. (11), we expand V in Legendre polynomials (for
x&r):

oo g

V(r, x)- ——Z —P (coerce).x $ —$ x

Then a particular solution of Eq. (5) is (for x )r)

G= —8 (—„) (& +i |)pt(t:osq),

which is the correct asymptotic form of G. By inserting these expressions into the definitions, Eq. (9),
one can carry out the integrations in spherical coordinates and obtain the leading terms, (in x ') for each
potential. Singe V has no long-range l =0 term, V, is short-ranged. To show that W is also, one notes
that V~'x ( + jPI(cos7i) =0, for I)0. To illustrate, let us compute the asymptotic form of ¹

N-=(G2) -(2/x') f drr e r (1+r/2) f d(cosy)[P, (cosy)]

or N-43/Bx'.

(A9)

(A10)

The expansion can be carried to any desired order in /, and represents an asymptotic expansion, since we
have set the upper limit of the integral equal to ~ rather than x. Care is required in evaluating the asymp-
totic form of V3, since more than one value of / contributes to the same order in x ', because three
Legendre polynomials appear.

The short-range behavior of the potentials (Eq. 10) is due to the small -l parts of the distortion function
G. In Ref. 1 the I =0 solution of Eq. (5) is exhibited. Near x=0 it becomes

G, = ,' r+f —-(x1- )[xln(2yr)+r-1/2r--', , ],
and V 2G, =4(1-2 )[In(2yr)+r-I/2r--, '].
Since, for small x, all the integrals have limits of 0 and ~, one finds

&o =-(Go') =4-2x', IV0 =-(Gp' 'G0) =6(1-2x), VN0
=-(d/dx)N0=4x. -

(All)

(A12)

(A13)

The constant terms in Eq. (A13) are unaffected by the neglect of higher I values, but the second term
in N and, hence, the leading term in V~, is modified by the l = 1 part of the expansion. One finds

G, =P, (cos7i) [x+O(x') ], (A14)

and X, =(G,Q = —,x'. No higher terms contribute to order x', and we obtain the results given in Eq. (10).
The I = 0 and I = 1 parts of Vfi can now be found from Eq. (A4). The result is Vfl0=0 and Vgi =1 near
x=0, and no higher terms contribute.

APPENDIX B. SOI.UTION OF THE SCATTERING EQUATIONS

The numerical integration of Eq. (8), in partial-wave decomposition, would be straightforward were it
not for difficulties connected with the asymptotic form of the closed-channel part of the trial function,
Eq. (1). The problem is very similar to those arising in the close-coupling method with closed channels,
and our treatment follows the review by Burke and Smith" fairly closely.

Since we are dealing here with a set of two coupled second-order differential equations, four linearly
independent solutions can be found, with each solution consisting of a, pair of functions (y, E). We will
see later that only two of these solutions are sufficiently regular at x = 0 to be admissible. The general
solution of Eq. (8) is thus a linear combination of these two solutions, and our problem is to determine
such a combination which is sufficiently regular as x- ~. Making partial wave expansions as follows

y(x) = Z x-'Ui(x)Pi(cos8), E(x) = Z x-'gi(x)Pi(cos8),i=0 (Bl)



200 RIC HARD J. DRAG HMAN

one can write the partial wave equivalent of Eq. (8):

UL" + [k'-L(L+ l)x '-V, ]UL = V~gL,

gL" +[k' L(-L+1)x~+N '(V2-V8-W+V~ ')]gL-N 'V~-L'=N 'V2UL.

(B2a)

(B2b)

(Bs)

From Eq. (10) we obtain the dominant terms of the potentials near x = 0. Representing each linearly
independent solution as a vector g = (U, g), we find two linearly independent regular solutions near zero:

(x)=(t, o), g (x)=(0, f ),

where tL-xL +1[1+x/(L 41)], plus higher powers of x. Eq. (B2) is numerically integrated, using these
starting forms, up to a point x =x, and the general solution there is

qL(x) =AqL (x) + BqL (x),(a) (b) (B4)

where A. and 8 are constants to be determined. For large distance, we can rewrite Eq. (B2) using the
asymptotic expressions in Eq. (11). Retaining terms which fall off less rapidly than x we find

U "+[k2 L(L+I)x-']UL=O, (B5a)

gL
"

(4/x)J;L-'+ (k'-~s'+ [4 L(L ~ 1-)]x-2)g (B5b)

[We will discuss the L = 0, k = 0 case below. ] Taking x & 20 as a typical "asymptotic" distance, we see
that the x ' term is not negligible for small k(=0. 1) in Eq. (B5a), but is negligible in Eq. (B5b). Of the
four solutions to Eq. (B5), three are well-behavedforx-~. If we set UL=Oin Eq. (B5b) and neglect
x-' terms, we find that the closed-channel function gI. has two solutions,

S —=e [1&(yx)+ &(yx)'] y= (@-k ')'~' (B6)

The asymptotic regularity condition, Eq. (2b), requires

J dxgL'(x)N(x) (~, (B7)

and since N-x~, gI must increase slower than x' ' for large x. Thus we are forced to drop the rising
exponential form S of Eq. (B6). The nonzero linearly independent solutions of Eq. (B5a) are composed
of the spherical Bessel functions:

UL = xj L(kx) or xnL(kx) . (B8)

Corresponding to these open-channel solutions one finds a slowly converging ' series of inverse powers
for gI. . The three solutions for large x are thus:

(x)=(O, S ), q (x)=(xj,P .), q (x)=(xn, P ),(c) (d) . (e)

where P . =xj |+—,+ —4+ ~ ~ ~ +xn —+ —,+ ~ ~ ~, P =xn 1+—,+—4+ ~ ~ ~ +xj — 3+ ~ ~ ~

(Blo)

The coefficients in Eq. (B10) can be obtained directly by use of Eq. (B5b) and equating like powers of x.
The result for 1-=0 is, for example,

43k 43k
p . =sinkx 1-—,

&
+. . . -coskx +. . .)9x 9x

43k x2 43k
P = coskx 1-g / + ~ ~ ~ + slnkx — + ~ ~ .)9x i 9x (Bl1)
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Eq. (82) is numerically integrated inward from some "asymptotic" point x =xa, using these starting
forms, down to the matching point x =x, where the general solution is

g~(7)) = Ct)~ (7) + &~ (7)-tan6~ g~ (x) .(&) — (d) — (8)— (BI2)

Setting gf (7)& = $L (7) & and (d/dx)pl (7)» = (d/dx)gf {7)~ gives four linear equations in the unknowns A, 8,
t., and tan61, . We have tested the stabiBty and consistency of the numerical procedure by comparing the
results obtained for x, =20, 25, and 30, and7=2, 3, and 4; and we find essentially no variation in the
phase shifts for I, =0 (see Table IV). (An empirical correction for I, = I, obtained from our previous non-
variational work was applied to account for the increase produced by the long-range x 4 potential beyond
x = 20. For very low energies, exact analytic expressions exist" and are superior to our numerical re-
sults. )

For I.= 0 and 0 = 0 the long-range potential V, is not negligible in Eq. (82a), even for x - 20, so it is not
correct to use the asymptotic form Eq. (86a). Instead, one has

v, '= -(9/sx')g„ (BISa)

{BISb)Z."-(4/x)Z. '-5g. =-w&, .

Solution $0 is unchanged from the form given in Eqs. (89) and (86}, but the other two asymptotic solu-(s) .
tions are noir

=(x-9/4 , x-26S/S6x), g,
' =(I-S/4 , I-S/4 ), {BI4}

and the linear combination shown in Eq. (812) is unchanged except that tan6, is replaced by the scattering
length a.
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Solutions of the Faddeev equations for Coulomb potentials are investigated. A method which
is of practical use for solving the Faddeev equations below the three-particle breakup thresh-
old is developed. As an example, the method is applied to the (e, H) system in which the H
bound state and the lowest members of the resonances in both the singlet and the triplet J= 0
series are calculated. The results are in good agreement with the experimental measure-
ments and previous calculations which used conventional methods.

I. INTRODUCTION

The nonrelativistic three-body problem with two-
body interactions has been formulated by Faddeev'~'
in a way that allows straightforward computations.
For short-range forces, the Faddeev equations
have been applied successfully to a number of
problems. ' ~ It is the purpose of this paper to
show that the Faddeev equations are equally appli-
cable to atomic problems as long as the total energy
is below the three-body breakup threshold —for
example, the calculation of three-body bound
states and resonance energies and wave functions
below the ionization energy. The significant
advantage of the Faddeev equation over conven-

tional methods is that the wave functions are calcu-
lated systematically along with the energy levels.
No trial wave function is.needed in the computa-
tion. Although this paper only contains a few
illustrative examples all dealing with the e-H
problem, we believe that the Faddeev equation
has a considerably wider range of applicability.
A brief account of this work was presented recently
at the Leningra. d Conference. '~

In Sec. II, we give a simple derivation of the
Faddeev equation, and review the method of
reduction with respect to angular momentum. The
method of solution is presented in Sec. III and
applied to the H problem in Sec. IV. A discus-
sion of possible extensions is given in Sec. V.

II. THE FADDEEV EQUATIONS

A. Formal Derivation

The scattering matrix T(s) for the three-particle system with two-body interactions is a solution of the
equation

T (s}= V+ VG, (s) T(s),

with V=Z. V. (V. =—V.&),z i i gk' '

(2. 1)

(2. 2)

G,(s) =(s —H, ) (2. 3)


