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The + 20% agreement level for these shift measure-
ments is reasonable when compared to the maximum

uncertainty of +15 in width measurements {see the
"Error Analysis" section}.
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An adiabatic polarization potential appropriate to low-energy electron-H2 scattering has
been calculated by a variational approach. The total energy of the static electron-H2 system
is minimized with respect to the parameters C~p in a trial function of the form

g (1,2)Q C (x +x ) (z ~& )P,

where gp(1 2) is Joy and Parr's one-center ground-state function. The subscripts 1 and 2 re-
fer to the molecular electrons. The polarization potential is found to be weQ represented by

vp (r) + vp (r)P2(cose), where & specifies the position vector of the static electron with respect
to the internuclear axis. The radial functions vp (r) and vp2(r) have been determined over a
wide range in r. The polarization potentials are used in a calculation of rotational-excitation
cross sections. Comparisons are made with results of other investigations.

I. INTRODUCTION

In electron-atom scattering, distortion of the
target atom by the incident electron is very impor-
tant. For sufficiently large electron energies,
this distortion process is highly nonadiabatic and
results in excitation of the target atom. In the
case of electron energies below the threshold for
excitation, the atom may be thought of as being

polarized by the electron, which then moves in
a potential field modified by the effects of this po-
larization. When the velocity of the incident
electron is small, compared to that of the bound
atomic electrons; the adiabatic approximation
may be invoked. It is then appropriate to define
an adiabatic polarization potential V (r) which
has the asymptotic behavior

V (r) - -u/2r', (1)
where o. is the electric polarizability of the atom.
The simplest method for approximating the effects
of polarization is to construct some analytic form
for the potential'-'which has asymptotic behavior
(1). Often, the potential is adjusted so as to yield
cross sections consistent with experiment. How-
ever, such an approach is not very satisfactory.
A better technique for the treatment of polariza-
tion effects in electron-atom collisions, is Tem-
kin's method of polarized orbitals. ' This method,
which employs first-order perturbation theory to
obtain the atomic orbitals in the field of the scat-
tered electron, has been successfully used for
various atomic systems. 4

In electron collisions with diatomic molecules,
much of what we have said still holds true. Be-
cause of the non-spherical character of diatomic

l'~(r), - —~./2~'- (~,/2r ) S,(~ h),

where o., =(u +2o. )/2,

and o.,=2(o. —o. )/2.8 x

(2)

Here &z and a are the respective polarizabilities
(in units of ao', parallel and perpendicular to the
internuclear axis R Polarization effects in elec-
tron-molecule collisions are particularly inter-
esting, since rotational and even vibrational ex-
citation of the molecule is possible at relatively
low energies, where the adiabatic approximation
might still be expected to be good. Thus, we can
investigate, within the adiabatic framework, the
effects of polarization on inelastic scattering. As
in the case of atoms, it has previously been the
practice to construct an analytic polarization po-
tential with asymptotic form (2). The parameters
of this potential can be adjusted so that calculated
elastic cross sections agree with either low-ener-
gy momentum-transfer measurements, " or total
cross sections observed at higher energies.
However, since all partial waves are not affected
by the potential in the same way, comparison with
the low-energy measurements can be misleading.
For example, p-wave scattering, which is domi-
nant for rotational excitation, may not be given
correctly, since the momentum-transfer cross
section at low energies is primarily due to s-wave
scattering. When the potential is adjusted to fit

molecules, however, the polarizability is not
spherically symmetric. Thus the asymptotic form
for the adiabatic polarization potential becomes
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total cross section measurements at higher ener-
gies, cross sections for inelastic processes must
also be included.

Recently, the method of polarized orbitals has
been applied, by Temkin and Vasavada. , to elas-14

tic scattering of electrons from H, + molecules. Up
to the present time, however, there have been, to
our knowledge, no such treatments for other mol-
ecules. In the present work, we have employed
the variational principle to obtain an adiabatic
polarization potential for general use in elec-
tron-H, scattering. This method is given in
Sec. II, and the resulting potentials are dis-
cussed in Sec. III. Cross sections for the j = 0-2
rotational excitation of H, by electron impact have
been calculated using these potentials and are
given in Sec. IV for energies less than 20 eV.

II. METHOD

Consider an isolated hydrogen molecule in its
ground electronic state, described in the Born-
Oppenheimer approximation by a wave function
$,(l, 2) = P,(r„r2,'R), where r, and r, indicate
center-of-mass coordinates of the bound electrons,
and where A denotes the internuclear separation.
In the polarization problem, we shall only be con-
cerned with the electronic state of the molecule.
The orientation of the nuclear axis is given by A.
For an isolated molecule, we have

H,P, = (T, + V, ))l), = E,g, ,

where H, is the full electronic Hamiltonian, T, and
V, the respective kinetic- and potential-energy con-
tributions, and E, the ground-state electronic en-
ergy.

We now wish to investigate the wave function
and energy of a hydrogen molecule in the field of
a third electron situated at r, with respect to the
center of mass of the molecule. In the adiabatic
approximation, we consider this extra electron
to be fixed. Thus, the Hamiltonian for the mol-
ecule becomes

(H-ES) C=o.

Thus, once the matrix elements of H and S are de-
termined, we can find the minimum eigenvalue E~
by a diagonalization of S 'H . This eigenvalue
represents an upper limit to the energy of the

polarized molecule. The coefficients C, which
define the polarized wave function, are tKen easily
determined. We can, if necessary, repeat this
procedure for all positions r, of the perturbing
electron, and in so doing obtain solutions E~ and
C ~ as functions of r, . Since E~(r,) now repre-
sents the total energy of the molecule in the field
of an electron at r3, we may define a polarization
energy by subtracting the unperturbed energy.
Thus, we define

V~(r3) =E (r2) —E0 —( (01 Vl)))0 ), (i2)

where the last term represents the average inter-
action energy between the electron and the unper-
turbed molecule. Because V~ is small in com-
parison with E, we perform most of the above
subtraction algebraically at an early stage in the
calculation, rather than numerically at the end.

Let us consider the evaluation of H, I, we
have

Hnp nv pi = (II)ox z
+ IE,+ Vlp, )

+ ()I),lx z &,x z I g, ),

Z (H, , -ES, , ) C, , =0, (9)n, p np, n'p' np, n' p' n' p'

where H « = ()I),lx z Hx z I g, ), (10)
n p o, ' p'

and S p, p, = (tl), lx z III), ) .n+ n' py p'

We may rewrite the secular equation in matrix form
as

where ~, is defined by

v, x z V, =A --', V, (v. x z )-(v,. x z~). )vV, )

n (n —1) x z +P(P —1)x z
n —2 P nP-2

n-1 ~0 n —1 ~0

i =1
- Z nx' z +px z (14)ex.

2
Bz .

2

(4)e=H, + V=T, +V, + V,
1 1 1 1

with V=—+
13 23 3a 3b

where x3 = I r
&

+R/21, x3b =
I r

3
—R/2 I30

After some manipulation we obtain

nn' (q Ix ' ' -'.p'p Iq, -)

+PP' (g, lx zP P I))), )

The interaction potential V may be divided into
electron-electron and electron-nucleus parts,
Viz. ,

E= (PIHIP)/ (0 IP),
we obtain the secular equation V=V +V8

(atomic units will be used throughout).
We choose to represent the polarized molecule by
a trial wave function of the form

n p
n p4(1 2' 3)= II'0(1 2)Z Z C (3)x z, (7)

n=o P =-o

where x =x, +x, , z = z, +z, , and where the coefficients
Cnp, to be determined variationally, will in general
depend on r, . The indices a and P take on integral val-
ues between 0 and n~, P m, respectively. From the
stationary property of the average energy
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-1 -1 -1 -1
where Ve =r13 +F23 and V„= —x3a —r3&
Since E, and V~ are independent of r, and r, and,
hence, unaffected by the variational procedure, we
may subtract these terms from the Hamiltonian,
i. e. , we may subtract S(E,+ V„) from H. For
large values of r„we may also subtract 2/r3
from H, for reasons which will become clear
below. We write Ve as

V V1+ V2,

where, for i = 1, 2,

r &r Za(k, o.,)f, (k,k;o.';, &;). (19)
Z

In this expression k and 0 .take on respective
valuesyx- p and y~- p for k=y —p, and p and

Pz for k=P. The Parameters wf take on integral
values between 0 and kx, and the &i take on even
integral values from 0 to kz (kz even) or odd in-
tegral values from 1 to kz (kz odd). The coef-
ficients Ap and a(k, n) are defined in the appendix
and the functions f; are given by

(k, + k, )
f, (k, k; a. , ~.) =r, ' ' I 0(r.)

z

—X —1 A. —X —1
V.=) 0

r. r3 e(r3 —r )+r3. r

xe(r, -r3) ' Z F (p, ) F„(e.) (17)

with 8(x) =0, x ( 0
=1 x &0.

We notice that for r, )rz (i = 1, 2), the & = 0 term
dominates, so that Ve-2r, 'as r ~. Similarly
V~--2x, ~ as x-~. These Coulomb terms, if
not cancelled properly, could lead to inaccuracies
in the calculation of the small polarization effects.
Therefore, we choose to subtract them at this
stage by simply ignoring, for large x„ the first
term in Ve for ~=0 and, simultaneously, the
corresponding term in Vz.

We have carried out two sets of calculations of
the polarization potential Vp(r, ) which differ in the
form of the potential Ve. In one case, which we
label P, Ve is exactly as given in Eq. (17). In the
other, labelled NP, Vq is obtained by ignoring the
term in Eq. (17) which corresponds to r, (r, or

Thus in case NP, we assume that the pre-
dominant polarization effects occur exterior to the
space occupied by the bound electrons, and we
speak of penetrating' P and non-penetrating.

"
N'P polarization potentials. This is an attempt to
take partial account of the nonadiabatic aspects of
the problem, » and the omission of this term is
suggested by the polarized-orbital method. 4 We
shall be interested in comparing potentials, and
the resulting electron-molecule cross sections,
corresponding to these two cases.

The evaluation of the matrix elements Hzp o &p&

is straightforward. All elements involve expecta-
tion values of terms like xyx ay~ V and, hence,
x, x, z, z, V. Using standard expressions for
powers of x, and z, in terms of spherical harmon-
ics (see the Appendix), we may write

(P, lx z Vlf, ) =Up C(y„, p )&p C(y, p )

x ( q, lg, (y -p)g, (p) v l g, ),
where C(y, p) =y l /pl (y —p)!, px and p take on
integral values between 0 and y and y, respec-
tively, and

x

x I"k k
(r" )F . (r".), (20)

f4, *(I)x.i'z, V,y (1)dr,. .
1 g

(21)

The elements of S are of similar form, with Vj

replaced by unity.
In the calculation of the polarization potential,

our procedure is to: (1) choose values of r3 and
83 for the coordinates of the external electron
(we take Q3 = 0), (2) decide on the number of
terms to be included in the trial wave function
of Eq. (7), i. e. , the values of o.m and P ~,
(3) evaluate all matrix elements and construct
H and S, and (4) diagonalize S' H. The lowest
eigenvalue Ee(r~) is representative of the energy
of the electron-H, system relative to that of the
unperturbed molecule. We recall that E, and V„
were removed from Em at an early stage of the
calculation. Thus, from Eq. (12), we have for
the polarization potential,

V~(r, ) =E (r,) g, l V l tl, ,),

where Ee is related to Em of Eq. (12) by

E (r,) =E (r,) —Eo- V (r, )

(22)

(23)

III. POLARIZATION
POTENTIAL FOR Hq

We have chosen to represent the unperturbed
ground state of H, by the one-center 7-term wave
function of Joy and Parr. This wave function
gives dissociation energy D= 4. 32 eV and quad-
rupole moment Q = 0. 60eao, as compared to the2

more accurate values of Kolos and Wolniewicz, "
D = 4. 7443 eV and Q = 0.490ea, . The Joy-Parr
function may be written

where we recall that i =1 or 2. Thus the problem
of determining matrix elements H~~ ~i ~i re-
duces to that of calculating average v'alues of one-
electron operators using the ground state molec-
ular function go. If P, is written as the sum of
products of one-electron Slater orbitals, then the
matrix elements of H involve only one-electron
integrals of the form

g.(k) = ( —1) (2w/3) Z r ( —1) C(k, r .).7
$, =ZI c.C.(1,2), (24)
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where .I6

e. (1, 2) =[2(I+a.')]
x [P. (1)y . (2)+y . (1)y. (2)], (25)

with B. = (@.I C'. )
and where each Qf and y f is a one-electron Slater
orbital of the form

O
CI

I

.l4

.I2—

.IO—

.os—

Q=Ar exp(- r.r) Y&
(r" ), (25)

with A = (2g)
' [(2n)! ]

The coefficients cz and the n, ), m, and ( appropri-
ate for each orbital in the 7-term function may be
found in the article by Joy and Parr." The inte-
grals (21), for the elements of H and S, may be
evaluated in terms of incomplete I' functions (be-
cause n is nonintegral in the orbitals), and inte-
grals over several spherical harmonics (see the
Appendix). Since many basic integrals are in-
volved, all calculations are performed by computer.

In Figs. 1 and 2 results for Vp (r) and V~ (r),
respectively, are presented. The superscripts z
and x refer to the respective values 8 =0 and
8 = w /2 for the orientation of the stationary electron
with respect to the internuclear axis. For the

penetrating P and non-penetrating NP cases
designated in Figs. 1 and 2, the polarization po-
tentials Vp (Vpx) are obtained over a range of
x values by including terms in the trial function
(7) consistent with o!rn = 0 and P~ = 1 to 4 (P = 0,
n~ = 1 to 4). Since the convergence of Vp+(Vpx)
is found to be within 5% in the case P for r) 1.Sa„
and in case NP for all x, it is unnecessary to in-
clude more terms in the trial function (7).

In order to consider the effects of allowing for
distortion of the wave function perpendicular to
the direction of the stationary electron, the cal-
culations of Vp (Vpx) are repeated for the NP
case with x (z ) terms also included in the trial
function (7) for 8 =0 (m/2). The resulting polar-
ization potentials are labelled NP' in Figs. 1 and
2. The effect of the perpendicular distortion is to
further lower the polarization potential. We do
not expect the addition of higher-order terms such
as x 8 = 0) or z' (8 = v/2) to have an appreciable
effect. We find, for example, that the NP polar-
ization potentials for 8 = 0 differ by less than 6%
for the two choices of the trial wave function (7)
given by nm-. 0, pm-=2 and o.~ =0, p~=4; a sim-
ilar result is found for 8 = w/2.

The polarization potentials may be represented
to within 5'%%uo for r& 2. 5ao, by the expressions

.02-

ular to the internuclear axis of the molecule. Us-
ing Joy and Parr's one-center wave function, we
obtain

(y
' = 2[(g I

g2
I trio)]

2 = 5. 667ao,

and a ' =2[(g, lx'Ip, )]'=4.486a,',
(28)

These may be compared to the accurate values"
&g 6 38049cp ami &x 4 57769Qp Our calcula
tions show that the pure asymptotic forms of Eqs.

.l4

.l2

.IO
CI

CV

.08

.04—

~02-

FIG. l. The polarization potential for 0=0. Minus

«p
V z{r) is plotted versus r for: cases P "penetrating" and NP
"nonpenetrating" using a trial function containing only
powers of z, and NP~ "nonpenetrating" using a trial func-
tion containing powers of x2 and z. The points designated
by x are those of Adamov, Objedkov, and Evarestov {Ref.
&9).

VP
-——[(gol zVI |)io) ] —n'- o." /2r

V& —- —[ (golxV'lgo) ] - o&- '/or2
(27)

where &z' and &x' are approximations to the re-
spective polarizabilities, parallel and perpendic-

r(a )

FIG. 2. The polarization potential for 0 =n/2, Minus
Vp~(r) is plotted versus r for the cases: P "penetrating"
and NP "nonpenetrating" using a trial function containing
only powers of x, and NP~ "non-penetrating" using a trial
function containing powers of z2 and x. The points desig-
nated by x are those of Adamov, Objedkov, and Evares-
tov {H,ef. 19).
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(27) differ from the calculated polarization poten-
tials by less than 3% for x) 5ao. We note that the
choice of trial wave function in Eq. (7) does not
lead to appreciable improvement in the polariza-
bilities. Rather, this particular type of varia-
tional function determines polarization potentials
which are asymptotically consistent with the ap-
proximate polarizabilities of Eqs. (28) . Thus,
we may scale the potentials in order to obtain the
correct asymptotic behavior. Victor et al,."have
shown, in a study of the optical properties of H„
that terms in the trial function of the form xg&z

(wax) for e = 0 (n/2) are very important to the
polarizabilities, yielding values which are in fact
somewhat too large and require downward scaling.
We do not include these terms in ~g&z and ~z&x,
but rather include nonlinear terms in z and x,
which are found to be very important for smaller
values of x.

The crosses in Figs. 1 End 2 denote the results
of Adamov et a/. ,"who represented the polarized
molecule by a trial wave function of the form

V&(r ) = v&'(x) + v&'(x) P2 (cos e),

where v 0(~) = [V (~)+ 2V x(&)]/3 (30)

portant aspect of this method is the exclusion of
the scattered electron from the vicinity of the nu-
cleus, where the adiabatic approximation is in-
valid because there the electron velocity is not
small. " Thus, we may expect the potential cor-
responding to case NX to be superior to that of
case P. In addition, we should expect that, for
low-energy electrons, where the asymptotic part
of the potential is most important, the NPS' case
(i e.., the case where the NP' potential is scaled,
so as to have the correct asymptotic behavior)
would be the best choice. For larger energies,
where short-range features become increasingly
important, the simple scaling is prot)ably incorrect.

We find that the angular dependence of VP(r)
can be well represented by

y(1, 2; 3)= y, (1,2)+g(1, 2; 3), and v&'(r) = 2[V& (r) —V& (r)]/3.

where Weinbaum's function'0 was used for g,(1,2),
and first-order perturbation theory was employed
to obtain the perturbed part g of the orbital wave
function. To first order, the polarization poten-
tial may be given by

Adamov et al. further assumed that the predomi-
nant polarization effects occur exterior to the

space occupied by the bound electrons, so their
approximation is similar to our NP case. For
the polarizabilities they obtained e~ = 6. 5a, and
ax = 4. 9ao'.

m low-energy electron-molecule collisions, the
long-range part of the polarization potential is
particularly important and must be represented
as accurately as possible. A comparison of ac-
curate polarizabilities with those appropriate to
the Joy and Parr function, '6 suggests that for
large values of r, the magnitudes of our potentials
Vpz and Vpx are too small by factors of 0. 82 and
0. 93, respectively. Therefore, we would like to
adjust our potentials so that they yield accurate.
polarizabilities. In order to obtain an indication
of how the potentials vary with improvement in
P„we repeat calculations of Vpz and Vpx for
several functions go. These functions are ob-
tained by ignoring certain orbitals in the Joy and
Parr wave function; in the most severe case we
ignore the d„ f„and g, orbitals. As the wave
function is improved, we find that V~ and Vpx,
for a wide range of x values, change by approxi-
mately the same factors as the respective polar-
izabilities in the approximation of Eq. (28). Thus,
an approximate adjustment of our entire polariza-
tion potential may be obtained by scaling Vpz and
Vp by factors 1.22 and 1.08, respectively.

In attempting to decide which of the polarization
potentials considered might be most reps'esentative,
we rely to some extent on the polarized-orbital
method4 for electron-atom collisions. An im-

We checked the above relation by comparing pre-
dicted values of VP(r) at 9 = v/4 with a direct
calculation at this angle. The agreement is with-
in 5'%%u~ for r (1.5a„and within 1% for r & 1.Sa,.

We present curves for vp' and v~' in Figs. 3
and 4, respectively. The scaled (unscaled) po-
tentials in cases P and NP are denoted by PS (P)
and NPS (NP). The curves labelled NP' refer to
the polarization potentials for the non-penetrating
case, where distortion of the trial function is per-
mitted in a, direction perpendicular to that of the
fixed electron. This extra flexibility in the trial

.12—

Oa
&P

.10--

.08—

O IL.

I

~06-

.04—

.02—

FIG. 3. The spherical part of the polarization potential.
Minus Vpo(r) is plotted versus r for the cases: P "pene-
trating" and NP "nonpenetrating" calculated from V and

. p„
Vp illustrated in Figs. 1 and 2, NP~ "nonpenetrating"
calculated from the corresponding NP~ results for Vp~

and Vp . The PS and NPS curves result from scaling
Vp~ and Vp using accurate polarizabilities. The open
circles correspond to the semiempirical potential of Lane
and Qeltman (H,ef. 21).
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.08 and v, (~) = v '(~),

D
CJ

Ol

.07—

.06—

.05—

.04—

.03—

where the short- range terms v~ were determined
by Lane and Geltman using the Wang ground-state
function. " These short-range potential terms
are found to be insensitive to the choice of wave
function. The quadrupole interaction is repre-
sented by

(34)

.02—

.Ol—

FIG. 4. The anisotropic part of the polarization poten-
tial. Minus Vp2(r ) is plotted versus r for the cases: P
"penetrating" and NP "nonpenetrating" calculated from
V and V + illnstrated in Figs. 1 and 2, NP "nonpene-p. „ptrating" calculated from the corresponding NP~ results
for Vp and Up~. The PS and NPS curves result from
scaling Vp~ and Up~ using accurate polarizabilities. The
open circles correspond to the semiempirical potential
of Lane and Geltman (Ref. 21).

function results in a significant lowering of the
average polarization potential vp . The aniso-
tropic potential shows a much smaller effect. The
circles represent the semiempirical polarization
potentials used by Lane and Geltman. " They ad-
justed parameters in their polarization potential
so that the calculated total cross sections were
in agreement with the measurements of Golden
et al. "at energies above a few electron volts.

where Q and ro are taken to be 0.49ea,' and l. 8a„
respectively. " This choice for z, is consistent
with the general behavior of the unperturbed elec-
tron-molecule potential, corresponding to the Joy
and Parr wave function. " For the terms v~, we
use the scaled and unscaled polarization potentials,
for cases P and NP' discussed'above. The p, = 2
term in Eq. (32) is the dominant anisotropic part
of the interaction, and is almost entirely respon-
sible for rotational transitions between levels j
and j+2. The p= 0 term provides most of the
average potential field seen by the scattered elec-
trons during the collision. It is important to re-
alize that the unperturbed electron-molecule inter-
action is much larger than the polarization potentiaI
for x& 1.6ao for v, (r) or x &1.8a, for v, (x). Thus,
the polarization potential is more important for
large values of x, where we are most confident
of its determination. As an example, the effect
of scaling V~~ and Vp~ in order to ensure their
proper asymptotic behavior is never greater than
15% for v, (x) or 12% for v, (x) .

The rotational-excitation cross sections for the
j = 0 -j '= 2 transition in electron collisions with
H, are given in Fig. 5 for the four choices of the
polarization potential discussed above. We also

IV. ROTATIONAL EXCITATION
OF H~

I.O— ~PS

V(r,a)=Z v (r)f (~ ft) (32)

We choose the radial potentials given by

v, (~) = v '(~)+ v~'(~),

v, (~) = v '(~) + v@'(r)+ v&'(~),
(33)

A meaningful comparison of the various polar-
ization potentials discussed in the previous section
can best be made through an illustration of scatter-
ing cross sections associated with these potentials.
Thus, we have calculated cross sections for the
0 2 rotational excitation of H2 by electron impact.
The method of calculation is based on the formalism
of Arthurs and Dalgarno" and is described in detail
by Lane and Geltman. " We solve the set of coupled
differential equations (ignoring exchange) and ob-
tain the S-matrix and rotational-excitation cross
sections.

The interactio~ potential for the e -H, system
may be represented by

OJ

E
LD

IO

cv 0~—
O
II

b

0.01
I I I I

I.O

E(ev)
l0.0

FIG. 5. Rotational-excitation cross sections for the j
=0- 2 transition in H2 by electron impact. Curve (A) rep-
resents the result of including only the pure quadrupole
interaction and employing the Born approximation {Ref.
25). The other curves correspond to including all short-
range and quadrupole interactions in the same way; they
differ only in the polarization potential. Curves are giv-
en for (8) Vp(r) = 0, (C) the semiempirical potential of
Lane and Geltman (Ref. 21), and potentials of cases P,
PS, NP~, and NPS~.
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give, for comparison, cross sections calculated
with the following potentials: (A) the quadrupole
interaction only (in the Born approximation), "
(8) the quadrupole and full short-range interac-
tions as described above, but with no polarization
included, and (C) the quadrupole, short-range,
and semiempirical polarization interactions, used
by Lane and Geltman. " From Fig. 5, we see that
at very low energies the quadrupole interaction is
dominant. However, polarization effects become
quite important even for energies less than 0. 1 eV,
and continue to be important throughout the energy
range considered here.

In comparing the results obtained with different
interaction potentials, we note that, except for
energies just above threshold, i. e. , E ~ 0. 05 eV,
the dominant contribution to the cross sections
results from incident and outgoing P-waves. Thus,
at low energies, only the asymptotic behavior of
the interaction potential is important. Also, rota-
tional excitation arises from the anisotropic part
of the potential, i. e. , v, (x) . For this radial term,
we recall that the potentials considered in the pres-
ent investigation, differ only in the polarization
contribution vP(x) . From Fig. 4, we see that
the same asymptotic behavior is shared by cases
P and NP' (or PS and NPS'), and the low-energy
cross sections in Fig. 5 reflect this property. At
smaller values of r, however, case P (NP) more
closely resembles PS (NPS'), than it does NP'
(P). These changes in relative behavior of the
polarization potentials from large to small values
of r are also reflected in the behavior of the cross
sections for increasing energies.

Lane and Geltman" adjusted their parameterized
polarization potential so as to yield satisfactory
total cross sections for energies above a few eV,
where the p-wave contribution is important. Thus,
some averaged effect of exchange was probably in-
cluded in their potential. The rotational-excita-
tion cross sections corresponding to this semi-
empirical polarization potential appear to be con-
sistent with recent momentum transfer measure-
ments of Golden et al.22 and McIntosh, "for en-
ergies around 0. 1 eV. Exchange has also been
neglected in the present calculation; however,
no semiempirical adjustment of the potentials has
been made. So, while we expect our polarization
potential NPS' to be more representative of the
system, at least for large values of x, the result-
ing cross sections may not be better than those of
Lane and Geltman.

We find that total cross sections, corresponding
to the NPS' potential, are 20 to 30/o smaller than
the experimental values2' for electron energies
above a few eV. This difference is probably due
to our neglect of exchange effects. Preliminary
results of Ardill and Davison" indicate that, at
0. 5 eV, inclusion of exchange increases the 0-2
rotational-excitation cross section by about 70%
over that calculated without exchange. However,
they did not include any polarization effects in
their calculation, and since polarization also in-
creases the cross section, the addition of ex-
change to the present calculations might be ex-
pected to increase our results by somewhat less
than 70%.

In order to improve upon these theoretical cross
sections, it will be necessary to include exchange
effects as well as the polarization effects which
we have discussed.
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APPENDIX

(a) Parameters a(k0)

A convenient representation of (cos8) in terms of
k.

of spherical harmonics is given by"
k

(cos8) = Z a(k, n) Y (8, P)
0

where no = 0 (k even) or 1 (k odd) and where k-n
remains even. The coefficients are given as

a(k, 0) = W4v/(k+ 1), a(k, 1) = 2 M3m/(k+ 2),
and for a ~2

2(2n+1) k(k-1) (k- n+2)
((k+n+1) (k+n-1) ~ (k- n+3) 2n+1

(b) Parameters A

An expression for (sin8 cosP) is readily obtained
in terms of spherical harmonics as

(sin8 cosy) = (-1) (2m/3) [ Yl 1(8, p) —Yl 1(8, y) ]

= (-1) (2~/3) P C(k, r) (-1)'[Y»(8,y)] [Y»(8, y) ] .
T=P

Now, recalling that

[e& 1 (8)] = (+1)p (3/4)p sinp 8,
nd 28

sin 8=
2

'& (-1) P (cos 8),p2p!pp
2p ! p

we may write

[Yl 1(8, $)] =A Y
p

(8, $),
where

1

A = [4r (3/2m) (2P+1)!] 'P!
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{c) Integrals of Products of Spherical Harmonics

The integration of products of several spherical
harmonics is easily accomplished by expanding
pairs '9

r (8, y)rl (e, y)
] ffl g 2022

= Z D(l„l„L;m„m,)1'L (9, p),
p f6' + Ala

where L takes on all values such that Il, —l, l ~L
l, +l', and l, +l,+L is even. The coefficients may

be given in terms of Clebsch-Gordon coefficients
as

D(l„ l„L;m„m, ) = (2l, + 1)(2l,+1)/4m(2L+ 1)

xC(l„ l„L;m„m, )C(l„l„I-;0, 0).
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Variational Bounds in Positron-Atom Scattering
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We have previously applied Dalgarno and Lynn's complete first-order adiabatic correlation
function to the problem of low-energy elastic positron scattering by hydrogen and helium
atoms. This approach is now extended to yield rigorous lower bounds on the scattering phase
shifts in the case of hydrogen and "quasibounds" for helium. In addition, the positron anni-
hilation rate in helium is re-evaluated, and lower values are now found, with the enhancement
factor over the Dirac rate varying between 1.5 and 1.8. Some comparisons are made between
the present method and other recent work.

I. INTRODUCTION

In two recent papers, '~2 the problem of low-
energy elastic scattering of positrons from simple
atoms (hydrogen and helium) has been treated in a,

modified adiabatic approximation. The method
consisted in assuming that the optical potential' is
well represented by the position-dependent second-
order energy shift in the ground state of the tar-
get atom due to the electric field of the positron. '


