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The general solution is found for Weinberg's equation for the Lagrangian of chiral-symmetry breaking.
The result is an elementary function, and in the particular case of a tensor of rank 2 the effect of the non-
linearity is to multiply the ordinary Lagrangian by a simple factor.

s= X'm'/(1+X'm') . (2)

After algebraic simplification there results

s(1—s)d'g~/ds'+ (-' —3z)dZN/ds+X(1V+2) 2~=0. (3)

Equation (3) is in the standard form of the hyper-
geornetric differential equation. One of its solutions
behaves like a constant at s=0, the other like s—'".
Choosing the 6rst solution yields

g~(s) = c2Fg( X, X +2, —,', s) . —(4)

In terms of the variable s, this solution is a poly-
nomial of degree X, which may be identi6ed as a

' S. Weinberg, Phys. Rev. 166, 1568 {1968).

' "N a recent paper, steinberg' has investigated the
~ - nonlinear approach to chiral invariance, and has
derived a differential equation [Ref. 1, Eq. (6.3)g
for a chiral-symmetry-breaking term in the Lagrangian
which transforms as a traceless symmetric tensor of
rank X. He then solves this equation in a power series
in the pion 6eld. This note demonstrates that%einberg's
diGerential equation has a simple closed-form solution
for all E.

Following the notation of Ref. 1, let ~ represent the
pion Geld, Z&(m') be the symmetry-breaking term in
the Lagrangian, and X be a constant. Then %einberg's
differential equation is

(1+$2~2)2~2'~&&(~2)+ 1(1+$2~2)(3+72~2) g~~(~2)

+E(X+2)X'Z~(m') =0, (1)

where the primes denote derivatives with respect to
m'. Dehne a variable s by the relation

Chebyshev polynomial of the second kind. If a new
variable x be defined as

s= sin sq

the solution takes the closed form

Z~(x) =c[sin(21V+2)x)/(X+1) sin2x. (6)

Returning to the original variable ~, the Lagrangian
takes the form

c(1+X'm') sin[2(1V+1) tan 9m]
Z~(m') =

2(E+ 1)Xm

The coefficient c is determined by requiring that the
coeKcient of m' be ——,'m ', whence

c= 3m~'/4E(X+ 2)X'.

The Lagrangian Eq. (7) equals c at m=0, equals
(—1)~c at m= ~, and has E zeros. The special case
E= 2 leads to a particularly simple form. Dropping the
constant term and combining with the pion kinematic
term yields

L2(~2) — lp ~(jp~+~ 2~2]/(1+$2~2)2 (9)

Thus, for E= 2 the effect of the nonlinearity is entirely
contained in a simple factor multiplying the Lagran-
gian in the absence of nonlinearity. In contrast, the
case %=i modifies the kinematic and mass termsdif-
ferently. As indicated in Ref. I, only experiment can
decide which particular choice of E, if any, is correct.
However, the solution (7) permits calculation of all
scattering lengths, and indicates the closed form for the
Lagrangian if some definite value of E be established.


