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The iterative method of solving the dispersion relations and unitarity relations for the two-body scattering
amplitude of a neutral scalar field is investigated. A consistent and nontrivial approximating scheme is
obtained by incorporating enough inelastic effects that crossing symmetry is maintained at every stage of
calculations. If one has initially a twice-subtracted dispersion relation, it can be shown that because of
crossing symmetry, the subtraction term linear in s, #, and » cannot be present, so that it is sufficient to start
the iteration process by just one subtraction. The unitarity relations are simplified by taking the scattering
particle to have zero mass. Questions concerning infrared divergencies and convergency properties in iterat-
ing the single and double density functions are fully discussed. At low energies, the amplitude is given by
the first few iterations, which will be carried out explicitly to fourth order. Higher orders of iteration can
be carried out in a straightforward but increasingly tedious manner. We study the behavior of the scattering
amplitude in the high-energy region, where s, #, and # are all large in magnitude, while the scattering angles
are held at fixed values. The leading terms of the scattering amplitude and its spectral functions are obtained
for each order of iteration, and the resulting leading series are subsequently summed into closed forms for
weak coupling. The ratio of the elastic cross section to the total cross section is also obtained in the same
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region. The result indicates that the amount of inelastic effects being included is considerable.

I. INTRODUCTION

SOLVABLE scattering model satisfying the

basic principles of the local quantum field theory
such as Lorentz invariance, crossing, and unitarity
relations is still nonexistent. The intricate complexity
of the unitarity relations make it necessary to approxi-
mate them in some way. The simplest possibility, of
course, is to replace the full unitarity by the elastic
unitarity. Unfortunately, if elastic unitarity is assumed
to hold for all energies in one channel, one will arrive
at the trivial result that the S matrix is an identity®.
As a consequence, the complication of inelastic processes
is an inevitable feature of any relativistic field theory;
and for a nontrivial result, some inelastic effects must
be included in all three channels. Hence it is a question
of whether one can construct a model which incorpo-
rates the minimal amount of inelastic effects as required
by analyticity and crossing relations, and whether
such a model can be solved.

We shall study here the iterative method of obtaining
approximate solutions for dispersion relations and the
unitarity relations for the two-body scattering ampli-
tude satisfying the analyticity and crossing require-
ments of the Mandelstam representation.? To avoid
nonessential complications from spin and isotopic spins,
we shall consider a neutral scalar particle with pairing
symmetry for which the physics is the same in all three

* Research supported by the U. S. Air Force Office of Scientific
Research.

1S, Aks, J. Math. Phys. 6, 516 (1965); F. K. Cheung and J. S.
Toll, Phys. Rev. 160, 1072 (1967); F. K. Cheung, bid. 166, 1828
(1968). We will consider the neutral scalar field with pairing
symmetry, so that there are no pole terms in the corresponding
Mandelstam representation in Eq. (1).

2§, Mandelstam, Phys. Rev. 112, 1344 (1958). For simplicity,
our discussion refers explicitly to the Mandelstam representation.
However, in the approximations being used in the following, the
Mandelstam representation actually follows from the axioms
of the local field theory. See Cheung and Toll (Ref. 1).
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channels. We shall incorporate some but not all in-
elastic processes, so that crossing symmetry is always
maintained at all stages of our calculations. This is the
minimum amount of inelastic contributions to the
unitarity integrals for nontrivial results as demanded
by crossing symmetry alone. In this manner we get
a consistent approximation scheme by replacing all the
single density functions by the elastic single density
functions and the double density functions by the
symmetrized elastic double density functions.

For computational purposes, we shall also construct
a new kind of single dispersion relation that is explicitly
symmetric in all three channels and which involves
only elastic absorptive parts. We shall then set out to
iterate this approximate dynamical system. Although
two subtractions may be needed,® we shall show that
because of crossing symmetry, the linearly divergent
subtraction terms can always be reduced to a constant.
Thus it is sufficient to start our iteration with a once-
subtracted dispersion relation. The first-order iteration
amplitude is the subtraction constant itself, which also
plays the role of the coupling constant. The calculation
is further simplified by taking the mass of the particle
to be zero,* which enables one to eliminate certain
complicating kinematic factors in the unitarity integrals.
This simplification comes about only at the expense of
introducing logarithmic infrared divergencies in some
of the integrals. However, such infrared divergencies
can be naturally absorbed into the subtraction terms
in such a way that we get an nth-order amplitude
which is regular in the finite s-¢# planes but which has
logarithmic singularities at thresholds and at infinity.
The dual characteristics of these essential singularities
at the origin and at infinity will be made clear. Further

3 A. Martin and Y. S. Jin, Phys. Rev. 135, B1375 (1964).
4 With a fair amount of algebraic complications everything
done in this paper can be carried out for the finite mass case.
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complications in iterating the double density functions
are fully discussed. At low energies, the solution is
described by the first few orders of iterations, which
will be carried out explicitly to fourth order. Higher
orders of iteration can be carried out, but they are not
expected to bring new features into the model. There-
fore, we shall go on to study the behavior of the scatter-
ing amplitude when s, ¢, and » are all large in magnitude
while the scattering angles are held at fixed values.
In this region, the leading terms of the scattering
amplitude and its spectral density functions are ob-
tained in each order of iteration. This is made possible
because in this limit Inso~Inf~Inu. The series so ob-
tained will be convergent when the coupling is weak
and can be summed to close analytic forms. The ratio
of the elastic cross section to the total cross section will
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also be obtained in the same region, and the result
indicates that the amount of inelastic processes we
have incorporated is considerable. In the zero-mass
limit, the initial subtraction term is not necessarily
a real number. The cases of A’=i and more generally
of A’=e¢% will be considered. However, the solutions
so generated are all alike and have similar properties.
A brief summary and a few remarks then follow in the
conclusion.

II. APPROXIMATE DYNAMICAL SYSTEM

Let us consider the scattering amplitude for two
neutral scalar particles of mass m, satisfying the ana-
Iyticity requirement of a once-subtracted Mandelstam

representation?

au(u)du'

(s—a)(1—a)

A(stu)=\+—— 1
(s,t,) =N+ S VR

a/; -

u—a/‘”
]
T Jam? (W' —u)('—a) w?

A (u)

o A (s t)ds'dt
a8
4m

where, as in all the following dispersion integrals, each
factor s'—s, —t, and #'—u in the denominators is

taken to have a small negative imaginary part. A is the
subtraction constant A=A (so,lo,2%00), With so={o=1
=qa=4%m?. Crossing symmetry now requires that

A (S’l’u) =A (ti‘Y’u) = A (u7l7s> ) (2)

which implies the following crossing relations for the
single density function:

os(@)=0:(x)=0u(x)=0(x). )
If we define
p(Em=Aa(ém), (4)
then Eq. (2) also requires that?
p (& dmP—E—n)=A.u(tm), ®)

E'—"]; 77)=AM($777): (6)

and furthermore p(£,) is symmetric with respect to
its two arguments,

p(4m?—

p(Em)=p(n,8). @)

In terms of ¢ and p, Eq. (1) may be made manifestly

(t—a) (u—a)
- dat’
2 (s'—s5)(s"—a)('— ) (' —a) 2 / /4,,,2 “ =)t — ) (' —u)(u'—a)

(u—a)(s—a) *
+———2———// du'ds"

Aus(t',s")

, (1
(' —u) (' —a)(s'—5)(s'—a) @
crossing-symmetric by rewriting it as
A=t~ [ dio(®)] ———tep.
) / ()[(z-s)(sw) o]
+— // d dn p(£n)
[ (s—a)(i—a) e :’ ®
(=)= a—Dl—a)

where c.p. means similar terms obtained by cyclic
permutation of s, £, and ». We see that the scattering
amplitude is entirely determined by a subtraction
constant A, a single density function o(£), and a

symmetric density function p(£)=p(n,£).
If we let »(s,f) be the s-channel absorptive part, then

1 00
W) =0(s)+— / (s
I—a U—a
X + ,
I:(n~l)(n—a) ("I“%)(n——a):, ©)

and by crossing symmetry the #- and #-channel absorp-
tive parts are given by »(f,s) and »(dmi—t—s, 1),
respectively.
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We shall represent the unitarity condition in the s
channel (similarly for the ¢ and # channels) by the
following?:

s—4m>\ 1/
v(s,)=30(s— 4mZ)< 7>

s
9(_Ks)
X /dzlfdzr——————A*(s; Zl)A (S; Zz)
\/(_Ics)
pin ) (s,1)
= o) (5 1) - pin(o) (1) (10)
and
S_4m2 1/2
pls1)= 3005t (——)
S
0(Ks)
X/d21/d22 20* (81,5) v (I2,5)
VK
o (s,)
=919 (5,000 (51) (11)

where K,=gz2+ 2.2+ 22— 1—222122, with z,=142t/
(s—4m?) being the s-channel elastic unitarity kernal;
vin@ (sf) and p@(s,f) are the s-channel inelastic
contribution to »(s,f) and p(s,t), respectively. On the
other hand, p(s,t) is also given by

f— dm\ 12
p<s,z)=lo<t—4m2>< )

dz [ d G(K‘)z* v (sa; 1)
X/ zl/ Z2\/K, V(S1, "(52:

+070(51)
=p°1® (5,0)+p" D (s,), (12)

where K, is K, with 2, replaced by z,=1+2s/(i—4m?).

Now A (s,t,u) is taken to be analytic in the joint
domain of s-¢ planes, with cuts only on the real axis.
The double discontinuities across the s and ¢ cuts
should not depend on the order of crossing these cuts;
hence

p(s,)= %10 (5.4 (1)
=pl®) (5,5)4p D (s, )=p(s,f). (13)

For a finite-mass particle, setting either p»)(s,f) or
0@ (s.£) equal to zero will lead to the trivial solution
that the amplitude itself is zero.! For a zero-mass
particle, this is not necessarily the case. However,
in any event it is evident from Egs. (11) and (12)
that neither p°¢9)(s,f) nor pe!®(s,t) is crossing-sym-
metric in s and ¢, which we insist on for all approxi-
mations used in the following. Thus to satisfy crossing,
the minimum amount of inelastic contributions to
2@ (s5,f) is pel®(s5,f) and vice versa. In other words,
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there must contain in p»(®)(s,f) a part which is elastic
in ¢, This is most easily seen if one writes all the unitarity
diagrams contributing to p¢¥(s,f). From the lack of a
three-neutral-scalar-particle vertex,! these diagrams are
always inelastic in s. This part of inelastic effects is
included to satisfy crossing while the rest of p»() is
neglected, and similarly for p'*®. We define

p(s,0)=p@ (5,0)+p°1 (s,1) (14)

where an overbar means a symmetrized elastic quantity.
Therefore an approximation scheme consistent with
crossing is to replace all the double density functions
in Eq. (8) by the symmetrized elastic double density
functions and the single density functions by the
elastic single density functions,

A (s,tu)~A (s,t,u)
1 S—a
=\ - [des ()] —————+
W/ st [(E—S)(E*a)
1
+— //dé dn p(&n)

(5—a) ()
X Fep. |, (15
[(E—S)(E—a)(n~oa)(n—t) Cp] (15)

where & is now determined by the approximate s-
channel absorptive part

c». |

1
5(s,) =5 (5)+— / dn 5(s,1)

X[ t—a ' U—a :! (16)
(—D)(—a) (1—u)(n—a)

and from now on, the 4’s and #’s in Eqs. (10), (11),
and (12) must be replaced by the A’s and #’s, respec-
tively. For computational purposes, let us also define
the s-channel elastic absorptive parts by

PO (n,5)
’(n—t)(n—a)
w—a [ pt (s;n)du
| / (—u)(n—a)

Equation (15) can then be rewritten in the following
symmetric form:

ﬁ(s,t)=&(s)+t~a/d

™

(a7

™

- S—a ﬁ(f;t)df I—a 9(£,S)d£
A(s )=\t z
i . / (=) (—a) = / (=) (—a)

+u-—a/ p(gt)dE .
7w J (§—u)(f—a)

We should note the difference between this crossing-

(18)
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Fic. 1. The lowest-order dis-
persion which is simultaneously
inelastic in all three channels.
P P,

symmetric approximate single dispersion relation and
the usual fixed-energy or fixed-momentum-transfer
dispersion relation. The convenience in using # instead
of 7 comes from the fact that # is entirely given by the
elastic unitarity integral in the s channel.

Equations (17) and (18) together with Egs. (10)
and (11) now form an approximate dynamical system
for the scattering amplitude of two neutral scalar
particles which we are considering.

We note that the inelastic effects being neglected
correspond to those processes that are simultaneously
inelastic in all three channels. In terms of dispersion
diagrams, the lowest-order contribution to such
processes comes from the one shown in Fig. 1. On the
other hand, the s-channel inelastic effects that we have
included are those that are elastic in either ¢ or u
channels.

Presumably in a complete theory one has to add
these two kinds of inelastic amplitudes coherently.
Nevertheless, it is easy to see that the inelastic effects
included, as well as those neglected, always give a
positive contribution to the s-channel absorptive part
in the forward direction. Let us consider*

Im{|T|i)=%2. - o )Mﬂ

X/"‘/in"'dQnH 5((Zi2+#i2)

X 0(g:)8(Q—22ig0) | (n| T4) |2,

where the summation over # corresponds to summing
over all possible intermediate states; #=2 is the elastic
scattering contribution. Our approximation includes
- partial contributions from each possible inelastic
intermediate states. Since all factors in the integrand
are positive, it is certainly true that the inelastic
processes included give a positive contribution to
#(s,0) and likewise for the neglected inelastic effects.
If we denote the inelastic cross section of the included
and neglected parts by ¢in® and oi®, respectively,
then ¢ @, oin®>0. Let us also denote the elastic
scattering cross section given in this model by e
and define

(19)

(20)

Ftot= FelT Tin ®
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Then by the optical theorem® we have
el 1<S__4m2>1/2
Got, B 8

This ratio will serve as an indication of the amount
of inelastic effects that have been incorporated.

2y

/ (A2 / 7(s,0) .

III. ITERATIVE SOLUTION

We shall study in the following the iterative method
of solving the approximate dynamical system given
in Sec. IL. To do this, let us expand the amplitude and
its spectral functions into powers of A.

A CRENEDY )\"A"(s,t,u) . (22a)
n=l

P(s,b0) = 30 N (s, ) (22b)
n=2

A5 ) = 3 N (s,6). (22¢)
n=4

Here A plays the same role as the coupling constant
in a usual perturbative series; whether the series in
Eq. (22) will converge or not depends on the magnitude
of \. It is a tacit premise of the iterative method that A
is not too large; more precise conditions on A\ will be
given as we go along.

From here on, we will also take m=0.# This simplifies
the kinematics of Egs. (10) and (11) at the price of
introducing infrared divergencies in some of the integrals
later. Whatever ambiguities occur, it will be understood
that m is small and is allowed to go to zero after all
mathematical calculations are performed. The results
of Sec. IV concerning large-energy behavior of the
scattering amplitude are the same whether m=0 or is
of some finite value. The infrared divergencies from
the zero-mass limit can be conveniently absorbed into
the subtraction term. For this purpose, let us rewrite
Eq. (18) as

> Am\n— > [I”(a,a))\"
n=1 n=1
1 00
=— > ﬁ")\"( >ds’+c.p., (23)
wJo n=2 s'—s §'—a

from which we obtain the dispersion relation for the
nth-order scattering amplitude

An(s,tm)

= A () +- / ﬁ"(

5G. Killén, Elementary Particle Physics (Addison-Wesley
Publishing Co., Inc., Reading, Mass., 1964), p. 18. Our normali-
zation of the umtanty condition in Egs. (10) and (11) corresponds
to 8724 (s,5) = (f| T'|3).

>ds’+c.p. , (24)

s'—s §s'—a



173

where, unlike in Eq. (18), 4"(a,e) is no longer set
equal to zero for n>2. Its value will depend on the
nature of the threshold singularity and will be deter-
mined by the requirement that the nth-order iterative
amplitude is regular in the finite s-¢ planes.

When the scattering particles are of finite mass,
A ($m?im? 4m?) is real, and the iteration is usually
initiated by letting Al(s f)=A'(a,@)=1. In the zero-
mass limit, this leads to a particular solution. More
general solutions will be considered in a later section by
taking A! to be imaginary or complex.

With Al=1, #2(s,f) is given by the elastic unitarity
integral

0(—K,)
de
vV (—K,)

X A1(s,20) A1 (5,25) =170 (s).

1
le

-1 -1

7(s,0)=%6(s)

(25)

By crossing symmetry, the corresponding quantities
in the ¢ and # channels must be 376(f) and 1m6(n),
respectively. Equation (24) now gives

1

>ds’+c.p.

s'—s s'—a

A2(s,tu)=A%(a, oz)-l— (

=A2(a,0)+1 1n< >+cp ,

which we rewrite as
fi%s,t,u)-l—%[ln(——s)+c.p.]=z‘i2(a,a)+% In(—a). (26)

In the limit # — 0, & is zero. The appearance of In(—a)
shows the logarithmic infrared divergency charac-
teristic of a theory for a zero-mass particle. If Az(a Q)
is set equal to zero, as in Eq. (18), A%(s,t,u) is loga-
rithmically divergent everywhere in the finite s-¢
planes except at the subtraction point. However, we
recognize that physically the divergencies come from
the fact that the threshold at the origin is an essential
singularity when the scattering particles have zero
mass. For this reason, the subtraction should be
normalized in such a way that we get finite nth-order
amplitude in the finite s-¢ planes but which is loga-
rithmically divergent at the threshold. This is done by
noticing that since the right-hand side of Eq. (26) does
not depend on s or ¢, it must be equal to a constant, and
we may consistently take the constant to be zero,
so that

A2(s,f)=—1[In(=9)+In(=)+n(-w)], (27)

where that branch of In(—s) is taken such that for
fixed ¢, A? has a cut along the real axis s>0 with

discontinuity #2=%n0(s) and that
In[— (s+i€)]=Ins—ir for s>0,real. (28)

Infrared divergencies in higher-order iterations will
be treated in the same way. Thus suppose that the
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dispersion integrals in Eq. (24) have been evaluated;
the nth-order amplitude will then take the form

Ar(su)— [ (s, ) =A(@,0)— fr(n(—a))=F", (29)

where k" is some constant independent of s and /, and
may be taken to be zero. In this manner® we have
removed the logarithmic divergencies from the finite s-
planes at the expense of a threshold singularity.

In the third-order iteration,

! 0(—K.)
z?3(s,t)=l0(s) dz de
1 Ja V(=K
X [A%(s,20)+A%(5,20)].  (30)
From Eq. (27), evaluation of the integrals gives
2(s,))= —$r Ins+4r, (31)

and from the dispersion integrals Eq. (24), we have
A3(s,t) = A3 (a,0)+2 In(—a)— % In?(—a)
+Z[In?(—s)+1n2(— &) +1n2(—u)]

—ilIn(=s)+In(—u)+In(-2], (32)
which is normalized to
A3(s,0) =3 [In2(—s5)+1n2(— )+ In2(—u)]
—in(=9)+In(=)+In(—=)]. (33)

We note that, up to the third order, the absorptive
parts depend only on one variable and the scattering
amplitude has no cross terms in s, ¢, or #. Consequently,
there are no double density functions. In these orders,
a single bar or caret over an absorptive part makes no
difference. Before we go into the complication of the
double density functions we wish to clear up one point
about the asymptotic behavior of the scattering ampli-
tude in iterating the single density functions. From
Jin and Martin,® it is more appropriate to start in
Eq. (18) a twice-subtracted dispersion relation for the
amplitude. Now if we initially start with the sub-
traction term

Al=X+sh,,

the elastic unitarity integral will give

=30(s) / / dzldzg ))AIAI*st, (34)

so that the dispersion relation for A2(s,t,u) will require
three subtractions. It is easy to see that because of the
nonlinear nature of the unitarity integrals, more and
more subtractions may be needed as we go to higher-
order iterations. However, here crossing symmetry

6 We note that now X is no longer given by A (a,¢). From the fact
that f*(In(—a))=0 for In(—a)=0, we have A=A (—1, —1, —1),
which means that A can be obtained from the amplitude itself
only by extrapolating it off the mass shell.
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comes into play, and to satisfy it A must take the form
[P: >\1+ (S+f+%)A2. (35)

Since s+#4u=0, therefore A'=X;, ie., the linearly
divergent term cannot be present because of crossing
symmetry. Even for the finite-mass case, s++u=4m?,
so that the linearly divergent input can always be
included in the constant term A;, provided that there
is complete symmetry in s, ¢, and ». Furthermore, we
have seen that at least up to the third order the sub-
traction constant A can generate through iterations an
amplitude and its absorptive parts which behave only
like a power of logarithms in s, ¢, and %, which is
consistent with the initial assumption that only one
subtraction is needed. If a superfluous subtraction is
made on the single density function integrals,

é(s")ds’ ’
c.p.
s'—5)(s'—a)? rep

-+contributions from the double density functions,
(36)

then by crossing symmetry the contribution of second
subtraction is

A (s tiu)=A (a,0)+ (s—a)zf °° (

eo_( )dé( s—a ' iI—a : u——a)
/o TN = F—ap (f—ay

s+i+u—3a ”_(E) dg
T a / (t—a)?

Hence the extra subtraction gives no contributions,
even for a finite-mass particle. We see that in any case a
linearly divergent subtraction term cannot be present
due to crossing symmetry and there is no need to
assume initially a twice-subtracted dispersion relation
for A (s,tu). However, we shall see in the following that
quite different situations may come up in iterating the
double density functions.

Coming back to our iteration procedure, we remarked
that starting from the fourth order, the s-channel
absorptive part is no longer just a function of s because
there are now contributions from the double density
functions. From Eq. (16), the single density function
#(s) is that part of #(s,#) which depends on s alone.
Since #(s,t) as well as p(s,f) can be generated by the
unitarity relations, ¢(s) can be obtained once these
quantities are known. However, it will be more con-
venient if we can calculate the nth-order single density
function #» from the unitarity relation directly. This
is easily done using the fact that " is that part of
#7(s,) which is only a function of s; it is given by

o(—Ks)

7(s)=%0(s) d2-'1f dzzm

XA D (s,81) A (5,20) + (4 (n—2) [ 2 — f /(D) [ 12%)
4o AACDE] O (38)

=0.

(37
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where a prime means only those terms that have 2;,
1=1, 2, or equivalently either ¢; or #; dependence are
included. This definition for &"(s) actually follows
uniquely from Egs. (16), (10), and (11) because if
another function g*(s) is added to "(s), then con-
sistency with these equations requires that

> \gr()=0. (39)

n=1

Because this is true for all values of \, we must have
g"(s)=0 for each ».

To show that the integrals on the right-hand side
of Eq. (38) give a function of s alone, we note that
within each superscript parentheses in the integrand,
the quantity depends only on either z; or z, but not
both. If we make use of the expansion’

0(—K,)
VK,

then one of the integrals can be easily carried out and
because of the orthogonality of the Legendre poly-
nomials, only the /=0 term is left, so that the z depend-
ence drops out of the remaining integrals. It follows
that ¢7(s) depends only on s. This also means that
&"(s) has no ¢ or % cut and is trivially symmetric in ¢
and #. We also note that in our approximation the
inelastic processes being incorporated do not contribute
to &7(s) since these contributions have explicitly a
t or u cut.

Let us now apply Eq. (38) to the fourth-order
iteration

=37 EO(ZH‘I)Pz(zs)Pl(zl)Pl(Zz); (40)

1

W (s)=3%0(s) | dz-

-1
1
X/ dzz[fi"fil*—f- (A2A2*~—A_’2A—’2)+AIA3*]
-1

=4[ 23 In%s— 52 Ins+ 40— 7x%], (41)

which gives after symmetrization the following contri-

bution to A®:

AD(®; 5.0)=d{— (23/3) In¥(—5)-26 In?(—s)
—[40— (44/3)7*] In(—s)}+cp. (42)

There are now also contributions coming from the
double density functions which greatly complicate the
calculation. From Eq. (11), p*1): @ (s.f) is given by

0(K.) 252 S0k
2-\/[{8[ 92(t1,5)9 (tZyS)]

z 29— 1
=T1§7r2/ d21/ dzy s
1 1 '\/Ka

7 R. Omnes, Nuovo Cimento 25, 806 (1962).

(43)
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F16. 2. The curves shown correspond to K (zs,%1,22) =0 on the
z1-72 plane. The shaded area is the region where the s-channel
elastic unitarity integrals for the double density function pe!¢® (s,f)
should be evaluated.

where the integration region is restricted by 6(K,)
and is given by the shaded region of Fig. 2, and where
g5 =21~ (22— 1)V2(3.2—1)112, (44)

The integrals in Eq. (43) can be carried out explicitly
to give
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or, since z=142¢/s,
pe i @ (s 1) =7 In(s+#)—Ins]. (46)

After symmetrization, this gives the following contri-
bution to A @

] " 9(8a)d
A(4)(p(4);s,t)=A4(a,a)+f (‘EV(SC‘) ; (S"‘Ot)
0

—s)(§—a)
FcptEis—a)(i—a)
2 In(s’+¢')—Ins'—In¢’

ds'dt'+c.p.

X//(s’——s)(s’—a)(t’—t)(t’—a) “rep

The integrals involving Ins’+1n¢’ are easy to perform:
20— /‘” /°° (Ins’+In#")ds’dt’
0 Jo (=8)(s'"—a)(t'—1)(t'—a)
=45 In?(—a)[2In(—a)—In(—t)—In(—s)]
37 In(—a)[2In?(—a)—In?(—s5)—In2(—1)]
+3% In?(—s) In(—§)43% In?(—¢) In(—s).

As remarked after Eq. (26), the first two terms may
be absorbed into the subtraction terms of #(s,e) and
#(a,t). The integration with In(s’+#) is more tedious
to carry out. After leaving out infrared divergencies

(47)

(48)

001 @ (s = erIn(3+1)—1In2], (45) it gives
e )/w/ In(s’+#)ds’dy’ 1[1 o (i s)—} Inb(—t—s) ! (= )2 In(—0) 1 2t+s
L(s—a)(t— =— =2 In(t+5)—3 In¥(— t— s)— —~1 —1
ST ) =) =) =0 (r—a) 3203 v Y s AN

n=1 n2

s

£ L) Jrame i e £ A ]

n=1 p2

s+t

SRR T w

Collecting all the results, we obtain the fourth-order amplitude as

A%(s,1) = {d{— (23/3) In®(— 5)+26 In?(—5) — [40— (44/3)x*] In(—s)} +c.p.}

11
+35{In?(—s) In(—#)+1n2(—¢) ln(—-s)—l—c.p.}—i-Ig{[grz In(t+4s5)—% In2(—t—s)—

In2(—¢
2t+sn( )

+2In(—9) ln?—t—tf—i— f: l(—-—t—>n:|-i—|:% In?(—s—#)+In(s+2) lniji+ln(s+t):|[ln(——t)-Hn(—-s)]

t+s  n=1w\ s

—2;:1 7_1;[111(-0(%_“)”—}— (s_—t?-—:)n In(— S)]+ﬂl; %

)22 ]

EHDHEHELY B
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We note that the fourth-order double density
function 5® behaves like a logarithm of z. This is a
coincidence. More generally, there are also terms be-
having like a power of z, because suppose A"(s,t) with
n<N have only terms behaving like a power of loga-
rithm in s, ¢, and %, then

z £ 1
pel(s); (N42) — /. dzl/ dZ2 (leI'ﬂ*_l_ e + 1‘,2,;1\7*)
1 1 '\/Ks

~ gln(z2—1)+---. (51)

Our above comment is already made evident in the
fifth-order iteration,

pel(s): 5) (s’t)

z 2z 1
=%7r2/ dzlf de (2 11’1!1— 2)
1 1 '\/Ks

= —n?(3 Inks—2) In(#/s4+1)
—fsn (= 1) In*(a—1)— 3 (5— 1) In(s—1)
+2(z—1) In(z4+1)+ (z4+1) In(s+1)
zIn(z,—1)

+2(z—1)42 In2:|——%7r2/ —dz.
1 s+l

(52)

This would mean that in writing a dispersion relation
for p®, two subtractions are needed. It is not difficult
to see that as we go to higher and higher order iterations
with the double density functions, more and more
subtractions may be needed. This is to be compared
with iterations with the single density functions, where
we found that the number of subtractions required in
each iteration is unchanged. This difference comes from
the fact that the elastic unitarity integral in the s
channel, say, is expressed as a function of z for a given s.
The domain of integration for the double density
functions is linearly dependent on z, making the double
density function pe!¢: ™ (s,f) dependent in general on a
power of z, while the z dependence drops out® when the
nth-order single density functions is obtained from the
unitarity integral. This means, for instance, that in
integrating p°l(: (™ (s#) over f, enough subtractions
must be made to insure convergency. We should note,
however, that these subtraction terms are not a power
of s, ¢, or u but a power of z;, 2;, and z,. If the infinity
in the s-¢ planes is reached along lines of fixed z, these
subtraction terms will remain finite; indeed, when
they are weighted by A* their contributions should
become vanishingly small as # gets large insofar as A
is assumed to be small. Thus instead of carrying out
further algebraic details of iterations, which can be
done in an increasingly tedious manner, we shall study
in Sec. 1V the high-energy behavior of the scattering

8 See the discussion after Eq. (39).
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amplitude at fixed angles, namely, in the region where
s, t, and # are all large in magnitude while the c.m.
scattering angles in all three channels are held at fixed
values. We shall obtain the leading terms for the scatter-
ing amplitude and its spectral functions in each order
of iteration and subsequently sum the resulting series.

IV. HIGH-ENERGY BEHAVIOR

To study the high-energy behavior of the scattering
amplitude at fixed angles, let us first note that in the
region where s, ¢, and » are large in magnitude, In(—¢)
and In(—u) are of the same order of magnitude as
In(—s), since for s>0 real,

In(—#)=Ins4+In[}(1—2)]~Ins,
In(—u)=1Ins+In[3(1+42) J~Ins,
In(—s)4Ins—ir=~Ins.

(33)

We see that in the region of large energies, the leading
term of the amplitude can always be reduced to a power
of Ins. To make crossing symmetry explicit, we may
take as the leading term In™(—s)+In"(—#)~+In"(—u),
which also has the correct analyticity properties. Now
we already have the complete expressions of the ampli-
tude for the first few orders of iteration;

1,
—i[In(=s)+In(=H+In(—u)],
A= &[In*(—s5)+1n*(— )+ 12 (—u) H-O(lns).

Furthermore, from the fact that the leading contri-
bution of the integral

A=
A=

S 1 1
/ 1n’"s’< — )ds’
0 s'—s §s'—a

is of order In™*(—s), we see that the leading term of

A™ may be taken to be

An(s )= Calln (=)= (=)= (—a0)]
+0(n"%),

(54)

where C, is some real constant to be determined by
the unitarity condition. The leading contribution to the
double density functions must be obtained separately
from the unitarity integrals because in Eq. (54) we
have already reduced the crossed terms by use of Eq.
(53), so that although Eq. (54) gives the correct
high-energy behavior for the amplitude and its absorp-
tive parts, it has in fact no double density functions,
the leading contributions of which will be obtained
later in this section. From Eq. (54), the leading term
for the nth-order s-channel absorptive part is

p(s,))= —Cpr(n—1) In*24+-0(In"%).  (53)
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On the other hand, »"(s,f) is also given by the
unitarity integral

1 1 0(_Ks)
(5,0)=%0(s) | dz1| dzgo——
-1 -1 ’\/(_Ks)
n—1 _ -
X[ A=i(s,2) A7 (s,22)
=1
n—2 _
+ X Ami(s,2) A (5,22)]. (56)
=2
Now Eq. (54) gives
Am=i(s,21) A *(5,25) = 9Cn_;C; In" 2540 (In"35)  (57)
and
Am=i(5,2)A"7*(5,89) = 4Cn_iC; In"254+-0(In"35) ,  (58)
so that in the limit of large s,
97r n—1 n—2
i'"(s,t)——-(—— > CiCojtm X Can_j) In»2s
4 =1 =2
+0(1n"3s). (59)

Consistency between Eqgs. (56) and (59) requires that

13 n—1
—(n—l)Cn=—;L—ZCjC,._j—%Cn_1 for >3 (60a)

=1

and
13 n—1

—(m—=1)Cr=—3 CiCpj—%Cn for n=2. (60b)
4 =1

Together with the initial condition that Ci=%, these
recurrence relations give C, for all higher %. The reason
for n=2 to be different from other cases comes from the
fact that in the above equations the summations are
carried out from j=1 up to and including j=#—1,
except for =2, in which case the terms j=1 and
j=n—1 are just one and the same term. Our purpose
now is to be able to sum

A(s,y=\ Y Co{[AIn(—s)]*+c.p.}. (61)
n=1

When the coupling is weak, or more precisely, for

[N Ins| <1, the series obviously converges. To sum it

into closed analytic form, let us consider the function

E(x)=3 Cpat

n=1

(62)

within the unit circle |#| <1, and with the boundary
condition

E0)=%. (63)
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From Eq. (62), it follows that
dE (x) ©
=3 Cp(n—1)x"2 (64)
dx n=2
and
) n—1
E(x)y=2% a2 3 CuiCj. (65)
n=2 =1

On the other hand, the recurrence relations imply that

13 n—1
Z (n—l)Cnx"= _ Z xn E CniCj
n=2 4 n=2 =1
+% Z Cn__lx”—-%Clx2. (66)
n=2

We see that E(x) satisfies the following differential
equation:

dE(x) 13
-—SBEHE@-F, 60
dx 4
which has as its solution
2 /2 Xo— &
E(x) =——(~+tan ) , (68)
13\3 2

where %, is the constant of integration"and is deter-
mined by the boundary condition Eq. (63),

xo=2tan1(3), (69)
so that
272 $—tanix
B~ ). (70)
13\3 143 tanix

As a result, the leading series for the scattering ampli-
tude can be summed to the following close form, which
we write as

At 2)\[2i g—tan(GA In(—s)) [ )
K 13 TH—% tan(3A In(—ys)) I c.p.]. (

Similarly, in the region Ins3>1 but |AlIns|<1 the
leading series for the s-channel absorptive part is

5(s5,) = — 32 A (n—1)[Ca In"%s4-0(n"35)].  (72)
n=2
From Eq. (64) we see at once that

dE
p(s,H)~— N2 (=)

dx

2=\ Ins

_ 21r)\2|"1+ ( $—tan(3A Ins) )2] 03
13 L 14-% tan (3 Ins)

This is to be compared with that obtained directly
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from Eq. (71),
AN
p(s,0)= Im[g tan (Sxo— i\ lns):'

2r\r 14+-tan?(3x0— 5\ Ins)

~ .
13 141722 tan?(3x0— 3\ Ins)

Neglecting the term ZwA?tan?(3x0—3\1Ins) in the
denominator, it becomes just Eq. (73), which shows
that in the high-energy limit, taking the sum and the
imaginary parts are interchangeable.

Having obtained an asymptotic form for the scatter-
ing amplitude and its absorptive parts, we can go back
to Eq. (11) to get the nth-order double density function

0(K.)
pel(s); (")(S,t>=/d21/d22 [17"—2172*+ P88k
VK,
__|_ e +17217n-—2*] .

The leading contribution is obtained by substituting
the leading term of 77 as obtained from Eq. (73) into
Eq. (75) and subsequently reducing them to powers
of Ins with Eq. (53);

(75)

n—2
P40 (5 =2 (10™45) T (j—1) (4= = 1)C,Corcs
=2

X/dZI/dzzox(/Iji[l—l—O(ln‘ls)]. (76)

Again for weak coupling, |X Ins| <1, the leading series
for p°l(® is then

PP (5,)= 35, Nt s,

145\ = n—2
=\t ln<-—>z A ns)—=* 3 CiCuj, (77)
=2

N

n=4
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which can likewise be summed to a closed form. In fact,
the series is nothing more than [dE(x)/dx]?| s=xine
and hence

pel(S)(S,t)
_ (ﬁmy s 1+< 4~ tan (@A In) >2]2. (78)
13 s L \1+% tan(3a Ins)

Comparing this with Eq. (73), we see that the leading
series of #(s,t) and p°!(®) (s,f) satisfy the following simple
relation:

p°1® (5,0 5(s,0) Tt In[ (s+12)/s]. (79)

Finally, from crossing symmetry we have in the large-
energy region,

+1
pls)~o(s,) T 1nff—t+ RICGON; lns—t— . (80)
N

Another important check in the model is the ratio of
the elastic cross section to the total cross section, both
approximated as given by Eq. (21). For weak coupling,
the high-energy form of e can be obtained by inte-
gration of Eq. (71):
[ A (5,2) | 222 (mA2/13)%(1+ tan?(3x0— 3\ Ins))?
+ (472/13%) {243 tan (30— 3A Ins)
+M(1+tan (3eo—3A Ins)) In[3(1—22) T} (81)

and

Fea(s)= / | 4 | 2047 (402/132%)[2+ 3 tan (3x0— 3\ Ins)

— 2 (1+tan Gro— A Ins)) . (82)
Hence the ratio in Eq. (21) becomes
Ga 1 [2+3 tan(Gao— A Ins)— 20 (1+tan (3xo— 3\ Ins)) 2 83)

v 13

where x¢~~2.08, as given by Eq. (69). For A Ins>~1, the
above ratio is approximately equal to 11/13; for
tan (xo—21X Ins)=0, it is 4/13; for tan(3xo— 3\ Ins) =0,
it is 4/13; for tan(3xo— %A Ins)= o, it tends to 9/13.
Equation (83) shows that in the high-energy limit,
the inelastic effects which we have incorporated are
considerable.

The above process of generating leading series for
the scattering amplitude in the region of large s, ¢, and »
can be carried out further. The point here is that
because of Eq. (53), we can expand A" as simple
powers of logarithm of s, ¢, and #,

Ar=3" Coflnmi(—s)+FInmi(— )+Ini(—w)], (84)

J=1

K

1+ tan?(3x0—3\ Ins)

where the coefficients C,; will be uniquely determined
by requiring that the absorptive parts obtained from
this equation must be the same as the ones given by
the unitarity condition. Let us illustrate this by con-
sidering the next leading series for 4 (s,?),

An(s,t)=C,[In"2(—s)+c.p.]

+D,[In*2(—s)+c.p.]+0(n"3s). (85)
Then
(s,t)=—mw(n—1)C, In"3s
—7(n—2)D, In"3s+0(n"%), (86)
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while the unitarity condition gives
pn(s,0)= [ Z CniCytn Z Cn_,C,} In"2s
=1

(C,HD i— (n—2)Cn—iC;)

j=1

‘H:z”f

n—2
+7 2 (ComiDi— (n—2)CriCj) ] In"3s
=2
+0(In™%).  (87)

Consistency between these two expressions gives,
besides Eq. (60), the following recurrence relations
for D,,:

—1

=1
—ID, 1—(46/39)(n—2)Cry, >3 (88)
with Dy=D,=0. If we define

—(n—2)D,=

G(x)=2 Dw*,

n=2

(89)

then G(x) satisfies the following differential equation:

G@E) I~ SAE: 2 dE(x)
T @G

(90)

Making use of the boundary condition G(0)=0 and
the integrating factor

W (x)= {sec[% (xo—x) ]} 10132118
we get for G(x),

( ) 3 ]
G(x)—— I FEE (x)+

(91)

1 325 IE"’( 7 (w7
- 2! 2Ndx'
(x) 26/0

/ E(x" )W (x')dx" —l—

4W (x) 36W (x)

X /o E(x’)W(x’)dx'+8W1(x)(~1%>13/5. (©2)

If we wish, the integrals appearing on the right-hand
side can be easily performed numerically. However,
the point to be made here is that the sum of the second
leading series,

Arr(s)=3 DA [In"2(—s)4-c.p.]

=N[G(\ In(=s))+c.p.],

is seen to be suppressed by a power of A as compared
with the sum of the first leading series obtained
previously,

A (s,)=M\EQ In(—s))+c.p.].

(93)

SCATTERING MODEL

1801

This is a general feature of the iteration solution,
namely, that for large s, ¢, and #, the summation of
successive series formed from the elements appearing
in Eq. (84) is consecutively suppressed by a factor of A.
Now although the series in Eq. (62) converges only
for |\ Ins| <1, the analytic form in Eq. (71) is regular
to at least (Alns[ <S5. From our discussion and Eq.
(92), one can expect that for small \, A;(s,¢) will
still be dominant even beyond the radius of convergence
of the original series.

This suggests that, in the asymptotic region, we
may take Eq. (71) as the first-order approx1mat10n
to A (s,t), starting from which we can again iterate the
dispersion relation with the unitarity relation. Thus
to second-order iteration, we can approximate # by
FmA7%57A2 Ins for s<e/ AN say, and

(2mN2/13) {1+tan?[ % (xo—A Ins) ]}

for s>¢!/U0N | then for s>>e'/* we obtain from the dis-
persion relation,

Ar® (5,8)~(27/13){2+tani[xo— \ In(—s) ]} +c.p.
3 111
+ (_____ ______ ) (,".}\el/ (10)\))

e s bt ou

X [(2/13)0 (2o-- A — 1) — (43/160—3\/16)], (94)

which _is normalized in such a way that it coincides
with A;(s,f) for s=t=—iu==Le/*

As mentioned before, another general feature of the
iterative solution is that in the zero-mass limit it has
essential singularities of logarithmic nature at both the
origin and infinity. The dual character of these two
singular points is made transparent if we change
variables to

x=1/s, y=1/t a=1/8,

so that points at infinity are mapped to the origin and
vice versa. Since A (x,y,5) diverges logarithmically at
infinities, it satisfies a similar once-subtracted dispersion
relation as that for A (s,t,u). In fact, from Eq. (18)
we have

and z=1/u,

A(x,y,z)=7+i /O dw ?(w,1/ y)<x_1w_;?_1‘;>
- / dw s(1/x, w)(y—_—w“;_l-)

L R
- ?(w
wJo © ke z—w B—w ’

where we let v to be in general different from A.
The elastic unitarity for fixed s is also that for fixed «
because it is assumed that once symmetrized, it is
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valid for all s and 0(s)=0(x), so that

e

()

><A*<;€,zz) . (96)

Expanding 4 (x,y) and #(x,y) in powers of v,

A@wy)=3T v Ar(xy),
n=l Ch)
P(xy)= 2 v (),
n=2
then the mth-order amplitude satisfies the following
dispersion relation:

_ _ 1
An(ay)= A (B8) 4+~ / o 97 (x,10)
m™Jo

1 1
' X( ——~——>—f—c.p. 98)
x—w [—w

Iteration of this dispersion relation with the unitarity
1ntegral Eq. (96) agaln give rise to infrared divergen-
cies. Usmg our previous normalization procedure, the
origin is again found to be an essential singularity of
logarithmic nature, and the first few orders of inter-
actions give

A=1
A2=1In(—x)+cp.],
A3=E[n?(—«)+c.p. ]+ [In(—x)+cp.], etc., (99)

where that branch of In(—x) must be taken such that
ln[- (x+1€) ]=Inx+ir for x real>0. Now for s=¢=1,

=1. At this point, we should require A (s, t)
—A (x,y) Then it can be shown immediately that
y=X\ and the solution in Eq. (99) can be obtained
directly from that for A (s,t,u) if we simply replace s
and ¢ by 1/x and 1/y, respectively. To conclude, we see
that for s and ¢ not far from unity or |Alns| <8 for
some small §, the scattering amplitude is well approxi-
mated by the first few iteration terms given by Eq.
(99) ; while in the region of very large energies or very
small energies,

[Ins[, [Inz],

the amplitude is represented by Eq. (71). In the
immediate neighborhood of the origin and infinity,
the scattering amplitude is singular, and naturally the
iterative method is no longer suitable to use for finding
a solution.

[Inz|>1 but |\lns|<5,

V. OTHER ITERATIVE SOLUTIONS

We remarked in Sec. III that when the scattering
particles have zero mass, it is not necessary to start
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the iteration with A'=1. In the following, we discuss
briefly other solutions that can be generated by as-
suming different values for A'. Let us first consider
A'=14, and denote the amplitude so generated by
B(s,t); then B'=1. Using the same method and sub-
traction normalization as in Sec. ITI, it is easy to show

that
—4[In(~s)+cp.] (100)

B3(s,t)= —ir[In(—s)+c.p.]. (101)

Note that B2=A2 while for B3, the terms In2(—s)
~c.p. present in A3 are lacking. This comes from the fact
that in the elastic unitarity relation for the nth-order
single density function

o= [ [ dzm

+ (B"‘2BZ*—B’""2B’2*)+ .. ,_|_B1Bn—1*:]_

The contribution from B"‘llz’l"‘_—l—Blfgn—l* is in general
one power of Ins lower than if B! were 1, except for the

case n=2.
In the fourth-order iteration, we have

B (sp)=

and

[B"_I(S tl)Bl* (S Ifz)

(102)

nzs—i—-zr2
@ (s)="5m e lns (103)
and
s (s)=40) [ / dzldz2 (2r)
= 1s7r2{1n[(5+t)/s:|} , (104)
so that )
B(4) (ﬁ(4);s;t,u) =A ® (ﬁ“) ; S,l') ) (105)
while
BO®; 5) =5~ (5/3) In'(—5)+2 In* ()
—572In(—s)]+c.p. (106)

In a region where all 5, ¢, and #, or their reciprocals, are
very large in magnitude, the leadlng term for B(s,t)
may be taken to be

Br(s,t)=e,[In*1(—s)+cp.]+0(n"2%), (107)

where @, is some real number, except for ©;, which
is 4, and

7(s5,0)=—Cur(n—1) In"25+4+0(In"3%), (108)
while from the unitarity condition
137 n—2
o (s,p)=—o0 Z Cn—;C; In" 2540 (In"3s5), (109)
7=2

from which we get the recurrence relation for @,

13 n—2
—C,(n—1)=—1Y @;Cp, n>3
4 =2
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with

Co=—1, €;=0, (110)

and the scattering amplitude is approximated by
B(s,)Mi+HA Y Cof [N In(—s) ] +cp.). (111)
n=2

To sum this series for weak coupling, |\ Ins| <1, let
us consider

E(x)=2 Cux™ ™, (112)

n=2

with the boundary condition
8(0)=0. (113)

The recurrence relation for @, implies that &(x)
satisfies the following differential equation:

—d8(x)/dx+Cot-Cox=(13/4)8(x)*  (114)
or
-1 13
E(x)=—— tan(\/ ) . (115)
A/13 4
Hence from Eq. (113) we have
_ (V13N In(=s)
B(s,)y~Ni— 1 -+c.p. 116
(s,))~N3 13\ta1 p c.p > (116)
and
p(s,0)=A— i A (n—1)C, In"2s
n=2
" 13)A1
=\ i (H—tan?i\/—)——E). (117)
V13 4

We note that for small \, the imaginary part of B(s,?)

comes mainly from the constant term M. The ratio of

elastic cross section to total cross section is now given by

Gel 9 (xv/13)\ Ins

—-—_%ﬂ(w— tanz———————> :
13 4

Ttot

(118)

For X Ins~1, the ratio is approximately 2x\, which is
a rather small number for small \. For instance, if
A~0.02, the ratio is roughly 0.13, so that the inelastic
contribution to Gt is about seven times that of the
elastic contribution.

More general solutions can be obtained by taking
A to be complex. Denoting by H (s,f) the scattering
amplitude so generated, we let H(V=¢%" and

A(s,)= 3 M (s).

=1

(119)
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Following the same method that we have been using,
it is easy to obtain

H®(s,t)=—%[In(=s)+cp.],
H® (s,f) =15 cos¢[In*(—s)+c.p.]
—1(cosp+ 37 sing)[ In(—s)+c.p.],
H®=—3(cos’¢+5/18)[In3(—s)+c.p.]
+[2 cos’p+ sing cosp—+1 ][ In?(—s)+c.p.]
+ [37 sin?p— cos?¢— 3n? cos’p— 3w ]
X[n(=s)+cp.JH+HA®(®; s,0), etc.
The behavior of H(s,t) at fixed scattering angles but
in the region of very large (or very small) energies can
be studied in the same manner as we did for A (s,?)
and B(s,f). Thus taking
Hr=eC.(p,\)[In"2(—s)+c.p.]+0(n"2s), (121)

C.(¢,\) is then to be determined by the unitarity
condition and satisfies the following recurrence relation:

(120)

13 n—2
- (n— 1)@1,=—Z‘ Z Gjen_,--i—% COS¢(‘31,_.1 5
=2
forn>3. (122)
Together with
(‘31=%e"¢,
Co= _% )
Eq. (126) gives @, for all #. Defining
T(x)=2 Cux1, T(0)=0 (123)
n=2
we have
H(s,)=ei+[AT(\ In(—s))+c.p.] (124)

and T (x) satisfies the differential equation

dT (x) 13
— +2@x+ Co=—T2(x)+2 cosp [T (x)— Cax ]
dx 4
or
—4dT/dx=131T2+46 cosp T+1, (125)
the solution of which is
13a 3
T(x)=a tan(——(xo—x)>—~——- cosp,  (126)
4 13

where

1 9 12
a= (—————— coszqs) )
13 132

4 3
Xo=— tan‘l(—-— cos¢> .
13a 13a
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As a result we obtain

_ R
H (s,t)=\e**—— cosp
13

—l—)xa[tan(%[xo—— An(— s)])—i—c.p.] (127)
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and

5(5,0) = sing+A 32 A€, (n— 1) (— ) In2s
n=2
137wa®\? 13a
=\ sing+ i [1+tan2<——;(xo—x)>] . (128)

It is easy to check that for $=0and 3, H (s,t) reduces
to A (s,f) and B(s,t), respectively.

The ratio of the elastic cross section to the total cross section now takes the form

G tot

from which it is again easy to check that the inelastic
Gtos 1S always comparable to the elastic contribution
for all ¢.

VI. CONCLUSIONS AND REMARKS

We have studied the iterative method of obtaining
a solution for the two-particle scattering amplitude of a
neutral scalar field based on the dispersion relation and
unitarity integrals. A minimal but considerable
amount of inelastic processes has been included in such
a way that crossing symmetry is maintained at all
stages of our calculations. It has been shown that
because of crossing symmetry, the iterative procedure
can be initiated with one subtraction constant even
if one assumed at the beginning that the scattering
amplitude satisfied a twice-subtracted dispersion
relation. To simplify the kinematic factors in the
unitarity integrals, the actual calculation was done in
the limit that the scattering particles have zero mass.’
In this limit, the solution has essential singularities
of logarithmic nature both at infinity and at the origin.
For s and ¢ not far away from unity (assuming that s
and ¢ are normalized to some convenient unit, like the
mass of the pion), the solution is described by the first
few orders of iteration, which was carried out explicitly
up to the fourth order. In the very high, or very low,
energy region where s, £, and #, or their reciprocals, are
all large in magnitude while the c.m. scattering angles
are held at fixed values, the leading terms of the scatter-

9 The iteration solution for scattering particles with finite mass
will not have an essential singularity at the threshold; otherwise
it has the same main feature as that for the zero mass. In particu-
lar, the behavior of the scattering amplitude in the large-energy
region will be the same for both cases.

Fel 4 13a 2 137a\ 13a
= {)x sin¢+>\[g cose-+3Na tan<—4—(x0——)\ Ins))jl }/ {sind:-!— —[1+tan2<—;—(xo—x)>:” , (129)

4

ing amplitude and its spectral functions have been
obtained, and the resulting leading series were subse-
quently summed to close analytic forms in the weak-
coupling limit. It was also shown that the sum of
secondary series is suppressed by at least a factor of A,
which was assumed small. The ratio of the elastic cross
section to the total cross section has also been obtained,
and the result indicates that the inelastic effects which
were incorporated into the scheme are considerable.
In the zero-mass limit, A! is not necessarily a real
number; consequently we have also considered in some
detail the cases with A'=1¢ or more generally e®. The
solutions so generated have the same general features
as that for A'= 1. In particular, the #th-order amplitude
behaves like a power of logarithm in s, ¢, and #; the
solutions have essential singularities at the origin and
at infinity, and the inelastic contribution to Gt is
comparable to the elastic contribution for all cases.

If pole terms appear in the model,’ questions con-
cerning subtractions and convergency properties will
be of a rather different nature. The residue of the pole
terms now plays the role of the coupling constant and
the inputs to the iteration are now inversely propor-
tional to s, ¢, or #. The iteration procedure discussed
here will be applicable, although the solution so ob-
tained will have rather different properties than the
ones obtained in this paper.
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10 The iterative method for pion-nucleon scattering with pole
terms was first discussed by Mandelstam (Ref. 2).



