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The iterative method of solving the dispersion relations and unitarity relations for the two-body scattering
amplitude of a neutral scalar field is investigated. A consistent and nontrivial approximating scheme is
obtained by incorporating enough inelastic effects that crossing symmetry is maintained at every stage of
calculations. If one has initially a twice-subtracted dispersion relation, it can be shown that because of
crossing symmetry, the subtraction term linear in s, t, and u cannot be present, so that it is sufhcient to start
the iteration process by just one subtraction. The unitarity relations are simplified by taking the scattering
particle to have zero mass. Questions concerning infrared divergencies and convergency properties in iterat-
ing the single and double density functions are fully discussed. At low energies, the amplitude is given by
the first few iterations, which will be carried out explicitly to fourth order. Higher orders of iteration can
be carried out in a straightforward but increasingly tedious manner. We study the behavior of the scattering
amplitude in the high-energy region, where s, t, and u are all large in magnitude, while the scattering angles
are held at fixed values. The leading terms of the scattering amplitude and its spectral functions are obtained
for each order of iteration, and the resulting leading series are subsequently summed into closed forms for
weak coupling. The ratio of the elastic cross section to the total cross section is also obtained in the same
region. The result indicates that the amount of inelastic effects being included is considerable.
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SOLVABLE scattering model satisfying the
basic principles of the local quantum field theory

such as Lorentz invariance, crossing, and unitarity
relations is still nonexistent. The intricate complexity
of the unitarity relations make it necessary to approxi-
mate them in some way. The simplest possibility, of
course, is to replace the full unitarity by the elastic
unitarity. Unfortunately, if elastic unitarity is assumed
to hold for all energies in one channel, one will arrive
at the trivial result that the S matrix is an identity'.
As a consequence, the complication of inelastic processes
is an inevitable feature of any relativistic field theory;
and for a nontrivial result, some inelastic effects must
be included in all three channels. Hence it is a question
of whether one can construct a model which incorpo-
rates the minimal amount of inelastic eBects as required

by analyticity and crossing relations, and whether
such a model can be solved.

We shall. study here the iterative method of obtaining
approximate solutions for dispersion relations and the
unitarity relations for the two-body scattering ampli-
tude satisfying the analyticity and crossing require-
ments of the Mandelstam representation. 2 To avoid
nonessential complications from spin and isotopic spins,
we shall consider a neutral scalar particle with pairing
symmetry for which the physics is the same in all three

* Research supported by the U. S. Air Force Once of Scientific
Research.' S. Aks, J. Math. Phys. 6, 516 (1965);F. K. Cheung and J. S.
Toll, Phys. Rev. 160, 1072 (1967); F. K. Cheung, ibid. 166, 1828
(1968). We will consider the neutral scalar field with pairing
symmetry, so that there are no pole terms in the corresponding
Mandelstam representation in Eq. (1).' S. Mandelstam, Phys. Rev. 112, 1344 (1958). For simplicity,
our discussion refers explicitly to the Mandelstam representation.
However, in the approximations being used in the following, the
Mandelstam representation actually follows from the axioms
of the local field theory. See Cheung and Toll (Ref. 1).

channels. We shall incorporate some but not all in-
elastic processes, so that crossing symmetry is always
maintained at all stages of our calculations. This is the
minimum amount of inelastic contributions to the
unitarity integrals for nontrivial results as demanded
by crossing symmetry alone. In this manner we get
a consistent approximation scheme by replacing all the
single density functions by the elastic single density
functions and the double density functions by the
symmetrized elastic double density functions.

For computational purposes, we shall also construct
a new kind of single dispersion relation that is explicitly
symmetric in all three channels and which involves
only elastic absorptive parts. We shall then set out to
iterate this approximate dynamical system. Although
two subtractions may be needed, ' we shall show that
because of crossing symmetry, the linearly divergent
subtraction terms can always be reduced to a constant.
Thus it is sufhcient to start our iteration with a once-
subtracted dispersion relation. The erst-order iteration
amplitude is the subtraction constant itself, which also
plays the role of the coupling constant. The calculation
is further simpli6ed by taking the mass of the particle
to be zero, 4 which enables one to eliminate certain
complicating kinematic factors in the unitarity integrals.
This simplification comes about only at the expense of
introducing logarithmic infrared divergencies in some
of the integrals. However, such infrared divergencies
can be naturally absorbed into the subtraction terms
in such a way that we get an eth-order amplitude
which is regular in the finite s-3 planes but which has
logarithmic singularities at thresholds and at infinity.
The dual characteristics of these essential singularities
at the origin and at in6nity will be made clear. Further

3 A. Martin and Y. S. Jin, Phys. Rev. 135, 31375 (1964).
With a fair amount of algebraic complications everything

done in this paper can be carried out for the finite mass case.
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Then by the optical theorem' we have

s—4m2 'I'

&tot
(A)'dQ r (s,0) . (21)

FIG. 1. The lowest-order dis-
persion which is simultaneously This ratio will serve Bs an indication of the amount

of inelastic CGects that have been incorporated.

HI. ITERATIVE SOLUTION

Tm(il Tli)=
n (2~)3n—4

X ' ' dg~" dgn g ~(gi +uP)

Xek;)b(Q —Ze~) I {ul Tl&) I' (19)

where the summation over e corresponds to summing
over all possible intermediate states; e= 2 is the elastic
scattering contribution. Our approximation includes
partial contributions from each possible inelastic
intermediate states. Since all factors in the integrand
are positive, it is certainly true that the inelastic
processes included give a positive contribution to
P(s,0) and likewise for the neglected inelastic effects.
If we denote the inelastic cross section of the included
and neglected parts by 0-; "' and 0.; '

) respectively,
then 0; &'), 0 &'&&0. Let us also denote the elastic
scattering cross section given in this model by g,1

and define

0'tot =&el+ 0 in+ . (1) (20)

symmetric approximate single dispersion relation and
the usual Axed-energy or 6xed-momentum-transfer
dispersion relation. The convenience in using 0 instead.
of K comes from the fact that p is entirely given by the
elastic unitarity integral in the s channel.

Equations (17) and (18) together with Eqs. (10)
and (11) now form an approximate dynamical system
for the scattering amplitude of two neutral scalar
particles which we are considering.

%C note that the inelastic effects being neglected
correspond to those processes that are simultaneously
inelastic in all three channels. In terms of dispersion
diagrams, the lowest-order contribution to such
processes comes from the one shown in Fig. j.. On the
other hand, the s-channel inelastic CGects that we have
included are those that are clastic in either f or e
channels.

Presumably in a complete theory one has to add
these two kinds of inelastic amplitudes coherently.
Nevertheless, it is easy to see that the inelastic effects
included, as well as those neglected, always give a
positive contribution to the s-channel absorptive part
in the forward direction. I et us consider

Ke shall study in the following the iterative method
of solving the approximate dynamical system given
in Sec. II. To do this, let us expand the amplitude and
its spectral functions into powers of A, .

A(s, t,u)= P ) "A"(s,t,u), (22a)

(s~,t, )u= Q ) "r"(s,t,u),

P (~,f,u)= Q Vp" (s,t,u).
nM

(22c)

Here X plays the same role as the couphng constant
in a usual perturbative series; whether the series in
Eq. (22) will converge or not depends on the magnitude
of X. It is a tacit premise of the iterative method that X

is not too large; more precise conditions on P will be
given as we go along.

From here on, we will also take m= 0.4 This simplifies
the kinematics of Eqs. (10) and (11) at the price of

introducing infrared divergencies in some of the integrals
later. %hatever ambiguities occur, it will be understood
that m is small and is allowed to go to zero after all
mathematical calculations are performed. The results
of Sec. IV concerning large-energy behavior of the
scattering amplitude are the same whether m=0 or is
of some 6nite value. The infrared divergencies from
the zero-mass limit can be conveniently absorbed into
the subtraction term. For this purpose, let us rewrite
Eq. (18) as

gn) w p gm(& &)) e
n=l n=1

j. " I 1
Q i"")," — — ds'+c. p. , (23)

0 's 2 s —s s —0.

from which we obtain the dispersion relation for the
eth-order scattering amplitude

A "(s,t,u)
1 " j. j.

=3 "(n,u)+ — e" —— ds'+c.p. , (24)
0 s —s s —0!

' G. Eall', E/emeltary I'article I'IIys~cs (Addison-Wesley
Publishing Co., Inc. , Reading, Mass. , 1964), p. 18. Our normali-
zation of the unitarity condition in Kqs. (10) and I'11) corresponds
to Sn 2 (s,t) = (f ~

T
~
i).
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where, unlike in Eq. (18), A"(n,n) is no longer set
equal to zero for e&2. Its value will depend on the
nature of the threshold singularity and will be deter-
mined by the requirement that the eth-order iterative
amplitude is regular in the 6nite s-t planes.

When the scattering particles are of finite mass,
A(43m', 43m', 43nP) is real, and the iteration is usually
initiated by letting A'(s, t)=A'(n, n)=1. In the zero-
mass limit, this leads to a particular solution. More
general solutions will be considered in a later section by
taking A' to be imaginary or complex.

With A'= 1, P'(s, t) is given by the elastic unitarity
integral

P'(s, t) = -', 8(s)
8(—K )

JSy JSp
g(—&.)

XA'(s, sg)A'(s z2)*=-,'~8(s). (25)

By crossing symmetry, the corresponding quantities
in the t and I channels must be ~~8(t) and 4n8(N),
respectively. Equation (24) now gives

1 " 1 1
8'(s, t,u) =A'(n n)+ — — ds'+ c.p.

4 p $ —S S —0!

=A'(u, n)+~~ ln +c.p. ,—s

which we rewrite as

A'(s, t,u)+-', [1n(—s)+c.p.]=3'(cz,n)+ 43 ln( —n) . (26)

In the limit m ~ 0, n is zero. The appearance of ln( —n)
shows the logarithmic infrared divergency charac-
teristic of a theory for a zero-mass particle. If 3'(n, a)
is set equal to zero, as in Eq. (18), A'(s, t,e) is loga-
rithmically divergent everywhere in the finite s-t

planes except at the subtraction point. However, we

recognize that physically the divergencies come from
the fact that the threshold at the origin is an essential
singularity when the scattering particles have zero
mass. For this reason, the subtraction should be
normalized in such a way that we get finite mth-order

amplitude in the 6nite s-t planes but which is loga-
rithmically divergent at the threshold. This is done by
noticing that since the right-hand side of Eq. (26) does
not depend on s or t, it must be equal to a constant, and
we may consistently take the constant to be zero,
so that

A2(s, t) = —~[ln( —s)+in( —t)+in( —I)], (27)

where that branch of ln( —s) is taken such that for
fixed t, 3' has a cut along the real axis s&0 with
discontinuity v'= &~8(s) and that

In[—(s+ ie)]= lns —is for s)0, real. (28)

Infrared divergencies in higher-order iterations will

be treated in the same way. Thus suppose that the

From Eq. (27), evaluation of the integrals gives

v'(s, t) = ——,'n ins+-,'n-, (31)

and from the dispersion integrals Eq. (24), we have

A'(~, ~) =A'(~)~)+4»( —~)——'6»'( —~)

+—,'6 [ln'( —s)+ln'( —t)+ ln'( —u)]
—~[In(—s)+in( —I)+ln( —t)], (32)

which is normalized to

A'(s, t) =—,', [In'(—s)+ln'( —t)+In'( —e)]
—4[in(—s)+1n(—t)+in( —u)]. (33)

We note that, up to the third order, the absorptive
parts depend only on one variable and the scattering
amplitude has no cross terms in s, t, or u. Consequently,
there are no double density functions. In these orders,
a single bar or caret over an absorptive part makes no
difference. Before we go into the complication of the
double density functions we wish to clear up one point
about the asymptotic behavior of the scattering ampli-
tude in iterating the single density functions. From
Jin and Martin, ' it is more appropriate to start in
Eq. (18) a twice-subtracted dispersion relation for the
amplitude. Now if we initially start with the sub-
traction term

A'= X~+SZ, ,

the elastic unitarity integral will give

v~ = -', 8 (s)
8(—Z.)

dz dz A 'A'*~s', (34)
v'( —~& )

so that the dispersion relation for A'(s, t,u) will require
three subtractions. It is easy to see that because of the
nonlinear nature of the unitarity integrals, Inore and
more subtractions may be needed as we go to higher-
order iterations. However, here crossing symmetry

6 We note that now 'A is no longer given by A (O.,o.).From the fact
that f"(ln(—a))=0 for ln( —a) =0, we have ) =A(—1, —1, —1),
which means that P can be obtained from the amplitude itself
only by extrapolating it off the mass shell.

dispersion integrals in Eq. (24) have been evaluated;
the mth-order amplitude will then take the form

A" (s, t,l)—f"(s,t,N) =A"(n,n) —f"(ln( —n)) =k", (29)

where k" is some constant independent of s and t, and
may be taken to be zero. In this manner' we have
removed the logarithmic divergencies from the finite s-t
planes at the expense of a threshold singularity.

In the third-order iteration,

8(—K,)
p'(s, t) =-', 8(s) dsr ds2

v'(-&.)

X [A'(s,ss)+A'*(s, s2)]. (30)
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comes into play, and to satisfy it A' must take the form

A'= X)+ (s+t+u)Xs. (35)

Since s+t+N=o, therefore 2'=A. l, i.e., the linearly
divergent term cannot be present because of crossing
symmetry. Even for the finite-mass case, s+)'+u =4m',
so that the linearly divergent input can always be
included in the constant term Xl, provided that there
is complete symmetry in s, t, and, N. Furthermore, we
have seen that at least up to the third order the sub-
traction constant ) can generate through iterations an
RIQplltudc Rnd its Rbsolptlvc pRI'ts which bchRvc only
like a power of logarithms in s, t, and e, which is
consistent with the initial assumption that only one
subtI'RctloQ ls Deeded. If R supcrQuous subtlRC'tloQ ls
made on the single density function. integrals,

(s—n)' " 0 s')ds'(
A (s,t,u) =A(n, n)+ +c.p.

s 0 (s'—s) (s'—n)'

+contributions from the.double density functions,
(36)

then by closslQg symmetry the contllbutlon of second
subtl action ls

s—n 3 nu ——n).(~)« —; +, +,(&- )' (~'- )' (e- )'/

s+3+u 3n—
~(g) -=—0. {37)

(5-n)'

0(—z,)
dory dspv'(-&.)

pe(n 1)(s s )Ale(s s )+-(A(m—2)A24 A&(n-2)A&24)

+ . +A'A(" "*j, (38)

nn (s)—2g (s)

Hence the extra subtraction gives no contributions,
even for a 6nitc-mass particle. Ke see that in any case a
linearly divergent subtraction term cannot be present
due to crossing symmetry and there is no need to
assume initially a twice-subtracted dispersion relation
for A (s,(,u) However. , we shall see in the following that
quite diferent situations may come up in iterating the
double density functions.

Coming back to our iteration procedure, we remarked
that starting from the fourth order, the s-channel

absorptive part is no longer just R function of s because
there are Qow contributions from the double density
functions. From Kq. (16), the single density function

0 (s) is that part of P(s, )!) which depends on s alone.

Since ) (s,)l) as well as p(s, f) can be generated by the
unitarity relations, (»(s) can be obtained once these
quantities are known. However, it will be more con-

venient if we can calculate the eth-order single density
function 0." from the unitarity relation directly. This
is easily done using the fact that 0." is that part of
)""(s,() which is only a function of s; it is given by

where a prime means only those terms that have s;,
i= i, 2, or equivalently either t; or I; dependence are
included. This definition for 0-"(s) actually follows
uniquely from Eqs. (16), (10), and (11) because if
another function g"(s) is added to o "(s), then con-
sistency with these equations requires that

)(ngm (s)
a=1

(39)

Because this is true for all values of X, we must have
g"(s)=0 for each u.

To show that the integrals on the right-hand side
of Eq. (38) give a function of s alone, we note that
wlthlD CRch supcI'SCI'lpt pRl CQthcscs 1D thc lntcgrand»
'thc quRntl'ty depends only on clthcl sy ol 82 bu't Qo't

both. If we make use of the expansion~

~")(s) = 80(s)

ds&LA'A'*+ (A.'A'*—A12A'&)+A&A3*j

(41)

which gives after symmetrization the following contri-
bution to A&+:

A «(~(); s,s) =—,', (—(23/3) ln (—s}+26ln (—s)
—$40—(44/3)s'j ln( —s)}+c.p. (42)

There are now also contributions coming from the
double density fUQctlons which gx'cRtly complicate thc
calculation. From Eq (11),)t)"(.')'(4) {s,t) is given by

) ""'"'(s~) =it)(s)
0(&.)

ds(ds2 —f2) '(t) s) ) '*(t2 s)jE

(43)

' R. Omnes, Nuovo Cine@to 25, 806 (I962).

(){—z,)= k)r Z(2f+1)~((s.)&)(s))&)(s2), (40)
QZ, )-0

then one of the intcgrals can be easily carried out and
because of the orthogonality of the Legendre poly-
nomials, only the L= 0 term is left, so that the s depend-
ence drops out of the remaining integrals. It follows
that 0 "(s) depends only on s. This also means that
(r"(s) has no t or u cut and is trivially symmetric in t
and N. Ke also note that in our approximation the
inelastic processes being incorporated do not contribute
to o "{s) since these contributions have explicitly a
$ oI' Q cut.

Let us now apply Eq. (38} to the fourth-order
ltcl Rtlon
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or, since s=1+2t/s,

p"("{4)(s,t) =—,', 4rs{ ln(s+t) —Insg. (46)

After symmetrization, this gives the following contri-
bution to A(4):

"
p(&, )«

A (') (p(4};s, t) =A4(n, n)+ (s—n)
o (ts).—(E n)—

+c.p.+—,', (s—n) (t—n)

ds'dt'+c. p. (47)
2 ln (s'+ t') —lns' —lnt'

(s' —s) (s'—n) (t' —t) (t' —n)

The integrals involving Ins'+Int' are easy to perform:

(lns'+Int') ds'dt'

s (s'—s) (s'—n) (t'—t) (t'—n)

n)L2 ln( —n) —In( —t)—ln( —s)j
+—,', ln (—n) L2 In'( —n) —In'( —s)—ln'( —t)]

+—,', ln'( —s) ln( —t)+—,', ln'( —t) In( —s) . (48)

As remarked after Eq. (26), the first two terms may
be absorbed into the subtraction terms of }s(s,n) and
f(n, t). The integration with In(s'+t') is more tedious
to carry out. After leaving out infrared divergencies
it gives

where the integration region is restricted by 8(E,)
and is given by the shaded region of Fig. 2, and where

ss ——ssi —(s'—1)'('(sts —1)'{s. (44)

The integrals in Eq. (43) can be carried out explicitly
to give

(45)p"{')'{4&(s,t) =—,', ssgln(s+1) —ln2j,

I I

r's (s—n) (t—n)Fn. 2. The curves shown correspond to E,(g., 1, 2)—s s s2) =0 on the
s1-s2 plane. The shaded area is the region where the s-channel
elastic unitarsty in egra s't '

tegrsls for the double density function p"(') s,t
32.h-ld b.-.l-t.d.

'

s(s—n)(t —n)
2t+sln (s'+ t') ds'dt' 1 1

2t+s

s+t nn 1 s——,', ln( —t) —-', In'( —s—t)+ln(s+t) In ln(s+t)+ P ———
s-& its t+s

+Z —
( l +{s I). (49}

16 s=i its s+t - t

n

Collecting all the results, we obtain the fourth-order arnphtude as

A' s t = —,', I
—(23/3) Ins(—s)+26 In'( —s)—t 40—(44/3)ssj ln( —s) }+c.p.}ss

1 1
—,', ln'( —s) ln( —t)+ln'( —t) In( —s)+c.p.}+— -)r'ln(t s)—-', In' t s———ln'( —t)

—
(

—ln' s I}+ln{s+—s}I—n +ln(s+I) Dn( —s}jln(—s)j+21n(—t) ln +g —— + —ln' s t n s- —
t+ s s=& rt' t+s 2
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We note that the fourth-order double density
function p(4' behaves like a logarithm of z. This is a
coincidence. More generally, there are also terms be-
having like a power of z, because suppose 2"(s,t) with
n&E have only terms behaving like a power of loga-
rithm in s, t, and u, then

amplitude at fixed angles, namely, in the region where

s, t, and I are all large in magnitude while the c.m.
scattering angles in all three channels are held at fixed

values. We shall obtain the leading terms for the scatter-
ing amplitude and its spectral functions in each order
of iteration and subsequently sum the resulting series.

el (s); (X+2)

1 1

yX p20 . . . p2 pe& IV. HIGH-ENERGY BEHAVIOR

s ln(s' —1)+. . (51)
z~m

Our above comment is already made evident in the
6fth-order iteration,

To study the high-energy behavior of the scattering
amplitude at fixed angles, let us erst note that in the
region where s, t, and u are large in magnitude, ln( —t)
and In( —tt) are of the same order of magnitude as

ln( —s), since for s&0 real,

pe((8) ' (5) (s t)

dsg dsm -(2 Intg —2)
1 1

ln (—t) =Ins+In[-,'(1—s)] Ins,

ln( —I)= Ins+ In[2 (1+s)]~lns,
ln( —s)+lns —im. Ins.

(53)

+2(s—1)+2 ln2] —3n'
ln(s( —1)

ds(. (52)

= ——,',~'(3 ln-', s—2) In(t/s+1)

——'vr'[(s —1) In'(s —1)—3 (s—1) ln(s —1)

+2(s—1) ln(s+1)+ (s+1) In(s+1)

We see that in the region of large energies, the leading

term of the amplitude can always be reduced to a power

of Ins. To make crossing symmetry explicit, we may
take as the leading term In (—s)+ln (—t)+ln (—u),
which also has the correct analyticity properties. Now

we already have the complete expressions of the ampli-

tude for the first few orders of iteration;

This would mean that in writing a dispersion relation
for p(", two subtractions are needed. It is not difficult
to see that as we go to higher and higher order iterations
with the double density functions, more and more
subtractions may be needed. This is to be compared
with iterations with the single density functions, where
we found that the number of subtractions required in
each iteration is unchanged. This difierence comes from
the fact that the elastic unitarity integral in the s
channel, say, is expressed as a function of z for a given s.
The domain of integration for the double density
functions is linearly dependent on z, making the double
density function p" ('~ ("~(s,t) dependent in general on a
power of z, while the z dependence drops out when the
nth-order single density functions is obtained from the
unitarity integral. This means, for instance, that in
integrating pe(('&'("&(s, t) over t, enough subtractions
must be made to insure convergency. We should note,
however, that these subtraction terms are not a power
of s, t, or u but a power of z„z&, and z„. If the in6nity
in the s-t planes is reached along lines of fixed z, these
subtraction terms will remain Gnite; indeed, when
they are weighted by X" their contributions should
become vanishingly small as n gets large insofar as A.

is assumed to be small. Thus instead of carrying out
further algebraic details of iterations, which can be
done in an increasingly tedious manner, we shall study
in Sec. IV the high-energy behavior of the scattering

s See the discussion after Eq. (39).

3'= —-', [ln( —s)+In( —t)+ In( —I)],
3'= ~'~ [ln'( —s)+ In'( —t)+In'( —u)]+0(lns) .

Furthermore, from the fact that the leading contri-

bution of the integral

oo

1n s' — — ds'

is of order In~+'( —s), we see that the leading term of
2" may be taken to be

2"(s,t) = C„[ln"—'(—s)+ln" '(—t)+In"—'(—I)]
+0(ln" 's), (54)

where C„ is some real constant to be determined by
the unitarity condition. The leading contribution to the

double density functions must be obtained separately

from the unitarity integrals because in Eq. (54) we

have already reduced the crossed terms by use of Eq.
(53), so that although Eq. (54) gives the correct

high-energy behavior for the amplitude and its absorp-

tive parts, it has in fact no double density functions,

the leading contributions of which will be obtained

later in this section. From Eq. (54), the leading term

for the nth-order s-channel absorptive part is

t"(s,t)= —C ~(N —1) ln"—'s+0(ln" 's). (55)
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dE(x) = g C.(n —1)x=28( E—)
$2'2

Q(—lt, )

dxr"(s,t) = s8(s)

On the other hand, s"(s,t) is also given by the From Eq. (62), it follows that
unitarity integral

X L P A"-&'(s,si)A&'*(s,s~)

00 ss—1
E(x)'= g x" ' g C,C, (65,)

Now Eq. (54) gives

+ Q A. '" &(s sg)A'&*(s sg)]. (56)
On the other hand, the recurrence relations imply that

13 n-1
Q (e—1)C x"=——g x" Q C„,C,
n=2

A"—
&(s,sl)A&'*(s, s2) =9C,C; In"-'s+0(ln"-'s) (57)

+-', P C„gx"——',Crx'. (66)

We see that E(x) satisfies the following differential
A'" '(s,s )A' '"(s,s2) =4C„,C; ln" 's+0(ln"-'s), (58)

so that in the limit of large s,

g~+—Z ss—2

(st) —2"c;c= —,+ 2 c;c —,) 1D" 'z
4 ~=1

+0(ln"—'s) . (59)

Consistency between Eqs. (56) and (59) requires that

13
= ——E'(x)+-',E(x)—-', ,

which has as its solution

2 2 xo x
E(x)=——+tan

133 2

(69)*o=2 tan '(g')

13 —1—(e—1)C =—P CC —-'C r for x=2. (60b)
4

2 2 -', —tan-', x
E(x)= —+—

13 3 i+-', tan-', x)
Together with the initial condition that C1= 3, these
recurrence relations give C„ for all higher e. The reason
for n= 2 to be diferent from other cases comes from the
fact that in the above equations the summations are
carried out from j=1 up to and including j=e—1,
except for n=2, in which case the terms j=1 and
j=n —1 are ~ust one and the same term. Our purpose
now is to be able to sum

As a result, the leading series for the scattering ampli-
tude can be summed to the following close form, which
we write as

2X —,
' —tan(-', X ln( —s))

A(s, t,)~= 2+ +c.p. . (71)
13 1+-', tan(-,'X ln( —s))

Similarly, in the region 1ns)&1 but iklnsi&1 the
leading series for the s-channel absorptive part is

(61)A (s,t) X g C„fP ln( —s)]"+c.p. ) .

where xo is the constant of integration and is deter-

( 1)C p C C sC f )3 (60 )
mined by the boundary condltlon Eq. (63),

4 ~-1

n=1

When the coupling is weak, or more precisely„ for
iX lnsi &1, the series obviously converges. To sum it
into closed analytic form, let us consider the function

E(x)= P C.x"i-'
n=1

within the unit circle [xi(1, and with the boundary
condltlon

r (s,t) = —P X"s(e 1)LC.„ln—"—'s+0(ln" 's)].

From Eq. (64) we see at once that

dE(x)
r (s,t) —sA'

g=x lns

2s.X' -', —tan(-', X ins)
1+

13 1+-', tan(-', X ins)
(73)

E(0)=-', . (63) This is to be compared with that obtained directly



F. F. K. CHEUNG AND J. S. TOLL

from Eq. (71),

2X
v(s, r) = Im —tan(-,'x()——',X lns)

13

2lr X' 1+tan'(-,'x()—-', X Ins)
e

13 I+-,'xA' tan'(-,'x()——',X Ins)
('74)

Neglecting the term @AX' tan'(-,'xo ——,'X lns) in the
denominator, it becomes just Eq. (73), which shows

that in the high-energy limit, taking the sum and the
imaginary parts are interchangeable.

Having obtained an asymptotic form for the scatter-
ing amplitude and its absorptive parts, we can go back
to Eq. (11) to get the vlth-order double density function

r
e) (s); (e) (s r)

s(E,)
dsl ds2 I

v" 'v'*+K' 'v'*

+.. .+vive —28] (75)

The leading contribution is obtained by substituting
the leading term of r' as obtained from Eq. (73) into
Eq. (75) and subsequently reducing them to powers
of lns with Eq. (53);

n—2

1""""'(s,r) =x'{In" 's) Z U—1)(I—i—1)C C.—
j=2

8(E',)
dsl ds~ I 1+0(In 's)j. {76)

which can likewise be summed to a closed form. In fact,
the series is nothing more than IdE(x)/dxj'I
and hence

r)el(s) (S r)

2s ' r+s- -', —tan(-,'X lns)
In 1+ . (78)

13 s 1+-', tan(-', X lns)

Comparing this with Eq. (73), we see that the leading
series of v{s,r) and )I)"(') (s,r) satisfy the following simple

relation:

r ""(s,r)=C (s,r)j' InC(s+r)/s3.

Finally, from crossing symmetry we have in the large-

energy region,

5+5 5+3
p{s,r)~I r(s, r)]'In +I v(r, s)O'In . (80)

Another important check in the model is the ratio of
the elastic cross section to the total cross section, both
approximated as given by Eq. (21).For weak coupling,
the high-energy form of o,i can be obtained by inte-
glatloll of Eq. (71):

I
A (s,r) I

s (s.Il'/13)'(1+ tan2(-,'xo —-', X lns))'

+ (4X'/13') {2+3tan(-,'xo—g'& lns)

+I({1+tan(-,'xo ', X ln—s)-) Int:,'(1—s')g}' (81)

Again for weak coupling, I
X lns

I
(I, the leading series

and

for p"&'& ~s then

~el(s) (S r) P ass~el(s); (e) (S r)
u.l(s) =

I
~ I'df1=4~(4~'/13')L2+3 tan(2'x, —-', Z»s)

r+s se e 2— —2X(1+tan (-', xo—-,'X Ins)) j'. {82)
=n.9'ln Q (X Ins)"—' g C,C;, (77)

n~4 j=2 Hence the ratio in Eq. (21) becomes

0.,1 1 L2+3 tan(-', xo——,'X lns) —2X(1+tan(-', xo—-', X Ins)) j'
)

agog 1+tan'(-,'xo—-', X lns)

where xo 2.08, as given by Eq. (69). For X Ins~1, the
above ratio is approximately equal to 11/13; for
tanPx() ——,'X Ins) =0, it is 4/13; for tan(-', xo—-,'Kins) =0,
it is 4/13; for tan(-,'xo—-', X Ins)= ~, it tends to 9/13.
Equation (83) shows that in the high-energy limit,
the inelastic effects which we have incorporated are
considerable.

The above process of generating leading series for
the scattering amplitude in the region of large s, t, and m

can be carried out further. The point here is that
because of Eq. (53), we can expand s'1" as simple
powers of logarithm of s, ~, and I
A"=g C„ll Ine-&'{—s)+In" s'(—r)+In" '(—I)j, (84)

where the coeKcients C; will be uniquely determined

by requiring that the absorptive parts obtained from

this equation must be the same as the ones given by
the unitarity condition. Let us illustrate this by con-

sidering the next leading series for A (s,r),

A" (s,r) =C.I
In.-'(—s)+c.p.j
+D Pln" '(—s)+c.p.]+O(ln" 's). (85)

r"(s,r) = —x(e—1)C„ln"-'s

—m (e—2)D„ ln"—'s+O(ln" —'s), (86)
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while the unitarity condition gives

9~ n—1 R—2

t"(s,t) = —P C;C,+7r P C,C; ln"—'s

+L-', Q (C;D; (n ——2)C„,C,)

+x Q (C„;Dt (n —2—)C,C;)]ln" 's

+0(ln" 4s) . (87)

Consistency between these two expressions gives,
besides Eq. (60), the following recurrence relations
for D„:

—(n —2)D =-,' g D,C. ,+20/26(n —1)(n—2)C

——',D„g—(46/39) (n —2)C g„n& 3 (88)

with Dq ——D2=0. If we de6ne

This is a general feature of the iteration solution,
namely, that for large s, ], and I, the summation of
successive series formed from the elements appearing
in Eq. (84) is consecutively suppressed by a factor of &.
Now although the series in Kq. (62) converges only
for

~
X lns~ (1, the analytic form in Kq. (71) is regular

to at least ~X 1ns~ (5. Prom our discussion and Eq.
(92), one can expect that for small X, Ar(s, t) will

still be dominant even beyond the radius of convergence
of the original series.

This suggests that, in the asymptotic region, we
may take Eq. (71) as the erst-order approximation
to A (s,t), starting from which we can again iterate the
dispersion relation with the unitarity relation. Thus
to second-order iteration, we can approximate 0 by
ox'+~'~nX' lns for s(e't''o~&, say, and

(2orX'/13){1+tan'L-,'(xo—X Ins)]}

for s&e'~("~' then for s&&e"~ we obtain from the dis-
persion relation,

(89)
Ar"'(s, t)~(2X/13){'o+tan —,'Pxo —X ln( —s)]}+c.p.G(x)=P D.x" ',

%=2 3 1 1 1
(~deli(1ox))

s t Ithen G(x) satisfies the foHowing difFerential equation:

dG(x) 5 dE' 2 dE(x)= H —oE(x)]G(x)+- +-
dS 2 dx 3 sg which is normalized in such a way that it coincides

with Ar(s, t) for s=t= ——',u=-,'e"".
As mentioned before, another general feature of the

iterative solution is that in the zero-mass limit it has
essential singularities of logarithmic nature at both the
origin and infinity. The dual character of these two
singular points is made transparent if we change
variables to

Making use of the boundary condition G(0)=0 and.
the integrating factor

W(x) = {sec/-,'(xo—x)]}—"t"e-*t" (91)

we get for G(x),

5 dE(x)
G(x) =— +-,'E(x)+

2 dS x 26

1 32S
E'(x') W(x') dx'

W() x=1/s, y= 1/t and s=1/u, n= 1/P,

(90)
X L(2/13)xone(xo+X ——,'())—(43/160 —3X/16)], (94)

35 43
E(x')'W(x') dx'+

4W(x) o 36W(x)

1 (4 18/o

X E(x')W(x') dx'+
o 8W(x) &13

(92)

so that points at inhnity are mapped to the origin and
vice versa. Since A(x,y„s) diverges logarithmically at
infinities, it, satisfies a similar once-subtracted dispersion
relation as that for A(s, t,u). In fact, from Eq. (18)
we have

If we wish, the integrals appearing on the right-hand
side can be easily performed numerically. However,
the point to be made here is that the sum of the second
leading series,

1
A. (x,y, s) =y+— dw e(w, 1/y)

x—w p—w

1 1
+— dw v(1/x, w)

0 y—w p—wArr(s, t) = Q D„X")In" '(—s)+c.p.]
=X'LG(Z ln( —s))+c.p.], 00 1 1+- dw '(w, 1/y) —,(95)

0 s—u p—wis seen to be suppressed by a power of X as compared
with the sum of the 6rst leading series obtained ~here we let 7 tobe ln general durerent from

The elastic unitarity for 6xed s is also that for fixed x
Ar(s, t)=X/E(X ln( —s))+c.p.]. because it is assumed thy, t once symmetrized, it is
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valid for all s and g(s) = g(x), so that

g(—+,)
=-', d(x) dm, dz, d —,s,)xy» Q(—K) x

XA' —,~

Expanding A (x,y) and v(x,y) in powers of y,

A(x,y) = Q y"A" (x,y),
n=1

v(x,y) = P y"v" (x,y),
n=2

(97)

then the eth-order amplitude satisfies the following
dispersion relation:

Iteration of this dispersion relation with the unitarity
integral Eq. (96) again give rise to infrared divergen-
cies. Using our previous normalization procedure, the
origin is again found to be an essential singularity of
logarithmic nature, and the first few orders of inter'-

actions give

21=1,
A'= —,

' fin (—x)+c.p.j,
A'= ~~~ fln2( —x)+c.p.g+~~ fin( —x)+c.p.j, etc. , (99)

where that branch of ln( —x) must be taken such that
lnf- (x+ie)j= lnx+im. for x real&0. Now for s= t= 1,
x=y = 1. At this point, we should require A (s, t)
=A(x,y). Then it can be shown immediately that
7=X and the solution in Eq. (99) can be obtained
directly from that for A(s, t,u) if we simply replace s
and t by 1/x and 1/y, respectively. To conclude, we see
that for s and t not far from unity or ~1). 1ns~ (g for
some small 8, the scattering amplitude is well approxi-
mated by the first few iteration terms given by Eq.
(99); while in the region of very large energies or very
small energies,

fins[, [lntj, flnuj))1 but /Xlnsf&5,

the amplitude is represented by Eq. (71). In the
immediate neighborhood of the origin and infinity,
the scattering amplitude is singular, and naturally the
iterative method is no longer suitable to use for finding
a solution.

V. OTHER ITERATIVE SOLUTIONS

We remarked in Sec. III that when the scattering
particles have zero mass, it is not necessary to start

1
A" (x,y) =A"(P,P)+— dw v" (x,w)

7I 0

1 1
X — +c.p. 98

the iteration with A'=1. In the following, we discuss

briefly other solutions that can be generated by as-
suming different values for A'. Let us first consider

and denote the amplitude so generated by
B(s,t); then 8'=i. Using the same method and sub-
traction normalization as in Sec. III, it is easy to show
that

(100)8'(s, t) = —-„' fin( —s)+c.p.j
8'(s, t) = ——,'n. flu( —s)+c.p.7. (101)

Note that 8'=A', while for 8', the terms ln'( —s)
+c.p. present in A' are lacking. This comes from the fact
that in the elastic unitarity relation for the nth-order
single density function

o"(s) = sg(s)
g(—It.)

ds,ds, fB"—'(s, t))8'*(s,t2)
v'(-&.)

+(8" '8'* 8'" '8"—*)+—. +8'8" '*7 (102)

The contribution from 8" 8 ++8'8" '* is in general
one power of lns lower than if 8' were 1, except for the
case e= 2.

In the fourth-order iteration, we have

ln2s+ ~2

o &4) (s)= 5~ —16m. lns (103)

pe)
(e); (4) (s t) = g (s)

g(E',)
ds) ds2 (2v'v'*)

gE,

so that

while

=—'m'{ ln f (s+ t)/s j),
8&4)(p~4),s,t,u) =A &4) (p&4); s,t),

(104)

(105)

from which we get the recurrence relation for 8„,

13 n—2
—C„(n—1)=—P 8,6;, n)3

8&4) (o &4); s,t) = ~'~ f—(5/3) ln'( —s)+ 2 ln'( —s)
—5x2 ln( —s)j+c.p. (106)

In a region where all s, t, and u, or their reciprocals, are
very large in magnitude, the leading term for 8"(s,t)
may be tak.en to be

8"(s,t) = g„fin"—'(—s)+c.p.j+O(ln"—'s), (107)

where 6„ is some real number, except for 61, which
is 3t and

v"(s,t) = —te„s.(n 1) Ine 's+—O(inc 's), (108)

while from the unitarity condition

13m' n—2

v" (s,t) =' P 6„,8; ln —'s+O(ln" —'s), (109)
4
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Following the same method that we have been using,

(110) it is easy to obtain

and the scattering amplitude is approximated by

B(s,t)—Xi+A P 8„(P.ln( —s)]" '+c.p. ) . (111)

8(x)=Q 8 x" ',
%=2

(112)

To sum this series for weak coupling, ~Kins~ &1, let
us consider

H &'& (s,t) = ——,

'fin�

(—s)+c.p.],
H &'& (s,t) =—,', co~gin'( —s)+c.p.]

—-', (cosg+-,'x sing) Lln( —s)+c.p.],
H '41 = ——,

' (cos'&+5/18) Lln'( —s)+c.p.]
+f2 cos'y+Ir sing cosy+1]Lln'( —s)+c.p.]
+L2'Ir sin'4 —cos'4 —4sm' cos'p —Ism']

XDn( —s)+c.p.]+A &'&(p&4&; s,t), etc. (120)

with the boundary condition

8(0)=0.

The behavior of H(s, t) at 6xed scattering angles but
in the region of very large (or very small) energies can

(113) be studied in the same manner as we did for A(s, t)
and B(s,t). Thus taking

The recurrence relation for 8„ implies that $(x)
satis6es the following differential equation: H"=8~(g X)fin" '(—s)+c.p.]+O(ln" 's), (121)

—dh(x)/dx+81+81x= (13/4) h(x)'

—1 (+13)x
${x)=— tan

(114) 8 (y,X) is then to be determined by the unitarity
condition and satis6es the following recurrence relation:

j.3 ~2—(e—1)8 =—Q 88 +-'cos$8

Hence from Eq. (113) we have

X {+13)Xln( —s)
B(s,t) Xi— tan +c.p. 116

+13 4

Together with

|'-~= 3&'~»

and Eq. (126) gives 8 for all e. Defining

T(x)= Q 8 x"-' T(0)=0

(+13)Xlns
=X+ 1+tan' (117)

+13
We note that for small X, the imaginary part of B(s,t)
comes mainly from the constant term Xi. The ratio of
elastic cross section to total cross section is now given by

rr. i 9 {j/13)X lns
—Ixh 1+—tan'

tTtot

H(s, &) =&'~+P.T(»n( —.))+c.p.] (124)

and T(x) satisfies the differential equation

dT(x) =13
+281x+81———T'(x)+-', cosy LT(x)—81x]

dS

(125)

138 3
T(x) = u tan (xo—x) ——cosy,

4 13

a= —-- cos'P
j.3 132

For X lns I, the ratio is approximately 2m'» which is the solution of which is
a rather small number for small X. Por instance, if

0.02, the ratio is roughly O.j.3, so that the inelastic
contribution. to Oq, ~ is about seven times that of the
elastic contribution.

More general solutions can be obtamed by tak&ng
where

'to bc colllplcx. Dclio'tlllg by H ( f) s'tllc scattering
amplitude so generated, we let H&'& = e'& and

H(s, t) = Q X"H"(s,t). tan ' cosg
~

.
13@
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As a result we obtain

v(s &) = X sing+a P X" '8 (~—1)(—~)»" '~

13%'8 A. 130
=X sing+ 1+tan' (xo—x)

4 4
(128)

138
+~a tan Leo—X 1n(—s)j +c.p. (127)

4
It is easy to check that for p= 0 and ';s., H (s,t) reduces

to A(s, t) and B(s,t), respectively.

The ratio of the elastic cross section to the total cross section now takes the form

138 13ma'A, I3u
X smg+X —cosp+3XG tan ($0—X lnS) sing+ — 1+tan' (xo—x), (129)

j3 4 4

from which it is again easy to check that the inelastic
0~,~ is always comparable to the elastic contribution
for all @.

YVc have studied the iterative method of obtaining
a solution for the two-particle scattering amplitude of R

neutral scalar Geld based on the dispersion relation and
unitarity integrals. A minimal but considerable
amount of inelastic processes has been included in such
R way that crossing syIQmetry is maintained at all
stages of our calculations, It has been shown that
because of crossing symmetry, the iterative procedure
CRQ bc lnltlRtcd with oQc subtI'Rctlon constRnt cvcn
if one assumed at the beginning that the scattering
RIDplltudc satls6cd R twice-subtracted dlspcI'sloIl
relation. To simplify the kinematic factors in the
unitarity integrals, the actual calculation was done in
the limit that the scattering particles have zero mass. 9

In this limit, the solution has essential singularities
of logarithmic nature both at infinity and at the origin.
For 5 and t not far away from unity (assuming that s
and t are normRHzed to some convenient unit, like the
mass of the pion), the solution is described by the erst
fcw ordcls of ltcrRtlon, which wRs CRl"llcd out cxpllcltly
up to the foulth order. In thc vcI'y high, ol very low,
energy region where s, t, and I, or their reciprocals, are
all large in magnitude while the c.m, scattering angles
are held at 6xed values, the leading terms of the scatter-

9 The iteration solution for scattering particles with Rnite mass
will not have an essential singularity at the threshold; otherwise
it has the same main feature as that for the zero mass. In particu-
lar, the behavior of the scattering amplitude in the large-energy
region will be the same for both cases.

ing amplitude and its spectral functions have been
obtained~ Rnd thc lcsultlng lcRdlQg scI'lcs wcI'c subse-

quently summed to close analytic forms in the weak-

coupling limit. It was also shown that the sum of
secondary series is suppressed by at least a factor of A.,
which was assumed small. The ratio of the elastic cross
section to the total cross section has also been obtained,
and the result indicates that the inelastic c6ects which
were incorporated into the scheme are considerable.
IQ thc zcl o-mass llIQlt, 2 ls not, ncccssRl lly R 1cRl

number; consequently we have also considered in some
detail the cases with 2'=i or more generally e'&. The
solutions so generated have thc same gcncI'Rl fcRtuI'cs

as that for 3'= j.. In particular, the nth-order amplitude
behaves like a power of logarithm in s, t, and I; the
solutions hRvc csscntlRl slngulaI'ltlcs Rt thc OI'lgln Rnd

at infinity, and the inelastic contribution to 0.~,~ is
comparable to the elastic contribution for all cases.

If pole terms appear in the model, '0 questions con-
cerning subtractions and convergency properties will

be of a rather different nature. The residue of the pole
terms now plays the role of the couphng constant and
the inputs to the iteration are now inversely propor-
tional to s, t, or N. The iteration procedure discussed
here will be applicable, although the solution so ob-
tained will have rather di6'erent properties than the
ones obtained in this paper.
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'OThe iterative method for pion-nucleon scattering with pole
terms was 6rst discussed by Mandelstam (Ref. 2).


