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X„Form Factors in Current Algebra with Hard Pion and Kaon
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The X&3 form factors f+ (q ) are calculated using the current commutators, partially conserved axial-vector
current, the Weinberg-type sum rules, and the Schnitzer-Weinberg technique with hard pions and kaons,
which involves the domination of certain vertex functions by vector and axial-vector mesons. The results
are very similar to those obtained recently by B. W. Lee using chiral dynamics and 6eld-crurent identity.

I. INTRODUCTION

~N the present paper we present calculations of the
&- E~s form factors f~(q'), using the algebra of cur-
rents and the hard-pion and hard-kaon technique of
Schnitzer and Weinb erg. ' This technique involves
partial conservation of axial-vector current (PCAC)
and vector and axial-vector meson dominance of
various vertex and spectral functions besides the usual
current commutators. Previously we have studied this
problem in the soft-pion and soft-kaon approximation
and have obtained the EE3 form factors at zero mo-
mentum transfer. ' In particular, we obtained

f+(o) = (fx'+f-' f'))2f-f—~
f-(0) 1 fir f.

&(0) -=

f+(o) 2 f- fx
(1.2)

where f&, f, and f„are, respectively, the decay
constants for E~~, x~~, and ~~g decays.

Recently, Lee' has obtained the predictions of chiral
dynamics and field-current identity on the E&3 form
factors. Comparison of Kqs. (1.1) and (1.2) with his
predictions shows that while Kq. (1.1), which has also
been obtained by Glashow and VVeinberg4 with broken
chiral symmetry, holds even when the kaon and pion
are not soft, Kq. (1.2) is modified with terms propor-
tional to m~' —m '. Thus the soft kaon and soft pion do
not appear to be a good approximation for $(0). To
remedy this, we do not use this approximation in this

paper but instead follow the hard-pion (and hard-kaon)
technique of S%, still, of course, using current com-
mutators. Our results are very similar to those ob-
tained by Lee.' There are, of course, differences and
these may be due to his speci6c form for the effective
Hamiltonian for the E*Em vertex. Numerically, the
results are almost the same for f+(q'), while for f (q')
the predictions are diferent and may be signi6cant,
as discussed below.

Since a number of theoretical papers on the Ega form
factors have appeared recently, it is perhaps pertinent

~ H. J, Schnitzer and S. Weinberg, Phys. Rev. 164, 1828 (1967),
referred to hereafter as SW.

'Riazuddin, A. Q. Sarker, and Fayyazuddin, Nucl. Phys. (to
be published), referred to hereafter as RSP.' B.W. Lee, Phys. Rev. Letters 20, 617 (1968).

4 S. L. Glashow and S. Weinberg, Phys. Rev. Letters 20, 224
(1968).
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to comment. on them in the light of the present work
and that of Lee. First, we mention the work of various
people using the current-algebra and soft-pion tech-
nique, ' which gives the relation

f+( ~x')+f ( ~x'-) =—fxlf- (1 ~)

In order for this relation to be useful, one needs to
know the q' dependence of the form factors' f+(q').
One way of getting this dependence is through the use
of dispersion relations, and it therefore depends on
whether the relevant dispersion relations do or do not
have subtractions and on the values of the coupling
constants which enter when dispersion integrals are
dominated by poles. It is well known that the simple E*
pole dominance gives $=f (0)/f+(0)= —0.29, X+=4
=0.024, where A,+ and X determine the q' dependence of
f~(q') in their linear approximations, without recourse
to any current-algebra technique. If one now includes
the a meson, it is found that it gives a contribution
opposite to that of E* in f (q') tno contribution to
f+(q')j and, for I'„=20 MeV, the contribution from
E* is completely cancelled depending upon the various
assumptions used for estimating f, and other a parame-
ters. Since experimentally the a width is quite uncertain
((30MeV), people can safely diifer. In a recent paper,
Matsuda and Oneda' apply the dispersion technique to
a direct calculation of f~(q') and dominate the un-
subtracted dispersion-relation integrals by E* and a

poles. They then make use of current algebra involving
charge commutators to 6x certain coupling constants
which appear in the dispersion relation expressions of
f+(q') and find the a contribution to f (0) and $(0)
to be smaller than the E*contribution, with the result
of a small negative value of $ (=—0.16), whereas Lee'
and we 6nd a small positive value. In our case, the a
contribution does not appear. This is because f„ turns
out to be very small in our approach, and therefore we
can use the approximation of conserved strangeness-

' C. G. Callan and S. B. Treiman, Phys. Rev. Letters 16, 153
(1966); M. Suzuki, ibid. 16, 212 (1966); V. S. Mathur, S. Okubo,
and L. K. Pandit, ibid. 16, 371 (1966).

6See, e.g., R. Oehme, Phys. Rev. Letters 16, 215 {1966).
V. S. Mathur, L. K. Pandit, and R. E. Marshak, Phys. Rev.

Letters 16, 947 (1966); 16, 1135{K)(1966). Earlier references for
the simple pole-model calculation of f+(q') may be traced from
here.

8 S. Matsuda and S. Oneda, 169, 1172 (1968).There seems to be
another work in which a similar approach may have been used:
N. Fuchs, Phys. Rev. 170, 1310 (1968).
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changing vector current. Of course, we do not put
m~= nz, the approximate conservation of V~~is being
solely due to the negligible value of f.. The comparison
of our results as well as Lee's with those of Matsuda and
Oneda' also shows that our predictions for f+(q') con-
tain, besides K*-pole terms, other terms which one
can attribute to high-energy contributions from multi-
particle states, to a subtraction constant, or to both, in
dispersion-theoretic language. Lee regards these con-
tributions as model-dependent, while in our case they
are consequences of the PCAC, vector and axial-vector
meson dominance, current commutator s, and the
steinberg-type sum rules. Our results diGer in detail
from those given by Lee, as discussed below. This may
be due to the specific Lagrangian for E*Ex taken by
Lee or due to some other approximations which are not
obvious or easy to check from Ref. 3.

We also mention the method of Fubini and Furlan, '
used by d'Espagnat and Gaillard' to calculate $ and )( .
If h+ is given (from experiment), then they are able
to predict upper or lower limits for ] and k, neglecting
the so-called leakage term [to outside the SU(3)
representation]. Mann and Primakoffto have taken into
account the leakage term, the parametrization of which
does not seem to be unambiguous, as discussed in Ref. 3.
Fitelson and Kazes's" approach is to find a formal solu-
tion of the algebra of currents and saturate it with a
vector-meson resonance. That their results &or f~(q')
are very close to those of K*-pole dominance is there-
fore expected.

II. PORMALISM

abc d4~d4~ —i (kz+py)

X(T(B„A„'(x)A„'(y)Vb'(0)})o

f.m. 'gb '

(k'+m. ')

f m 'fb
„Fg "(k —p), (2.3)

2(k'+m. ') (P'+mbs

abc — $4&d4~ ~—. i (ke+py)

X(TP. (*)~.'(y) V '(o) }&

—:kg igb tg &«—)(k)g &(b)(—p)F, ),abc(k —p)

ig fbp.+ g A (a) (k) F abc(k p)
(p'+mbs)

$gb faks
ct (b) ( p) P abc(k p)

(k'+m. ')

fafbk ÃPc—
2Z Fb(k p) (2 4)

(k'+m s)(p'+mbs)

where g = —(p+ k), and 6„„vand 6„„"are the covariant
spin-1 part of the unrenormalized vector and axial-
vector propagators:

Ke begin with a sequence of formulas which in turn
define the Eis form factors f+((I'), the (K7r Vq' 0)
vertex I')„ the (E~rr I

Vq'I 0) vertex I'„)„the (EAi Vb' 0)
vertex F„)„and the (X~A)I V),'IO) vertex I'„„)„where
V),'= V),'+i V),b is the strangeness-changing vector
current:

~b= s~2[f+(C')(p —k)b —f-(C')(p+k) b]

d&sp (ps) [0s,+ksk„/, s]

X[ps+k'] ', (2.5)

(V (~) V, '(0))o——(2~)-'(-', &.b) d'k e(k,) e'" *

= (2tr) '(4k ops) ')s

X(~o(p),&+(k)
I
Vb'+" (0) I0), (2.&)

X (p v( —k') [8„,—k„k„/k']

+p v( ks)ksk } (26)

~~a bc — d4gd'4y ~
—i(ke+yy) ~" (k) —= dp'p" (p') [0s,+k,k,/p']

X (T(e)„A„(x)e)„A„'(y)V&'(0) })o X [)is+ks]—' (2 7)

ifafbm. 'mb'
F abc(k p)

2 (k2+m 2) (P2+m bs)

(~. (~)4.b(0))o=(2~) sar Lb d'k 0(ko)e'"'

X(p"(—k') [8„,—k „k„/k']'B. d'Espagnat and M. K. Gaillard, Phys. Letters 25B, 346
(1967);S. Fubini and G. Furlan, Physics 1, 229 (1965). +p "(—k')k k }. (2.8)"A. K. Mann and H. Primako8, Phys. Rev. Letters 20, 32
(j968).

"M. Fitelsoir and E. Kazes, Phys. Rev. Letters 20, 304 (1968). The decay constants gvs, gz', f„s, and f, are defined as
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the coeKcients of 5(p' —rev'), 8(p' —mg'), b(p' tn—'),
nd'( ~)inp(p') p(p) p (u) ndp ()

res1'ectively, the suSxes p and 0 representing the
pscudoscRlar and scRlar IQcsons. If wc now make Qsc of
the Wcinbcrg identity" and the weB-known current
commutation relations, we obtain, as in RSF,

where E), is the familiar 0--type term and

A(x)(k)

d'x e
*'" (T('1 i'+"(0)A 4—"(x)}), (2.10)

f fx Ri
— ns 'mz'-

v2 (k'+mx')(P'+m. ')

=k„p„3f„„i+Re——,'i(p —k)„a,i v(x'(g)

+.'ipu~i.-"("'(P) 'ib~—i."'"'(k)

+k d'y' '" "(T(~i'(0)~.~'(X)})o

d4*' (k s(—T(g 4+(6(0)g g 4—(5(&)})

and similarly for 5),„+(~')=~~+~„~(~+& and Q&„«~&. So
far, no approximations have been made.

RSF took the soft-meson limits k' p' k p-+ 0 so
that the term k„pPI„,i on the right-hand side of (2.9)
vanishes; the left-hand side of (2.9) was then evaluated
in these limits. In the present paper we shaB tak.e the
mesons on the mass shell, so that p'= te ' and-
k'= —mx', and we shall also retain the term k„p„3f„„i.
Then the left-hand side of (2.9) has singularities in
these limits. Ke therefore substitute the definitions
(2.2)-(2.4) for a=4 i5,—b=3, and c=4+i5 in (2.9) and

(2 9) then, equating the coeScients of each order of singu-
larltlcs from both sldcs, %'c obtain

Rg=iTg(k, —p),

pi~&gxg 'f C" kp', i=:i'~f fx'i ',f.'p)„—-

'i~g", 'fx-C" p,~,),=', i&&f.fx'),+ ', fx'4, -
—2fV2gx. gz~ CA CA kppprpvx=2'~~gxg fwCA kp'pi+2&~gAy fxC" py'px 2&~fwfxrx g(p k)v

&&(~" *(c)+La"v"l(c'+ ')lf' ~ (C '—+f')}+lLC P +f-'P P(C —+f')3

(2.11)

(2.12)

(2.13)

g$CA 4+fx 4 k' 9gx(CA +'f'x )$+Rx y (2.14)

where we have made use of the foBowing expressions for the propagators:

d'x e'" ~(Tf V„(x)V„'(0)})0= ', zb. '(5„,—'(-'(k)+ /k„k((k'+mP) jf„' q„g„(C~"y—f,')}, (2.15)

d''e"*P'(~. (~)~.'(0)})o= ki' '('"'(k)+—Lkk./(k'+~&') jf.' v,n, (C~"+f.')—} (2.16)

g„=(0,0,0,1}.
p ~.i"(p)=Cvpi,

p,~,"'(p) =C""i,
(2.17)

(2.18)

~'(~')~ 'du',

n" (~')v 'd~'

First, we note that the Schwinger terms (coeKcients of g&,) cancel out in (2.14) because of Weinberg first-suin rules:

' S. Weinberg, Phys. Rev. Letters 17, 336 (1966).

g Cw —f2 f2
xCa f2f

(2.20a)

(2.20b)
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Then we get from Eqs. (2.11)—(2.14), by eliminating k„i'„&, and p„I'„i,

,'v2—f f.Ri= ',iv2-f.f I' = ,'—iV2—g 'g-C xC k„k„I'„„,'—C —p+-,'C„xk,+-,'f.'p ,'f——'k,

+-'(P—k) (6 ),x*(q)+[q qi/(q'+m„')] f ') —Eg~. (2.21)

Before we proceed further, let us first evaluate the term I'„„z(k, —P) in Eq. (2.21). Following SW, by invoking
the meson dominance we make the further assumption that the current Vi~"(0) is conserved, which means that
in a relation for I'„„i(k, —p) like (2.24) of SW, we neglect terms like

i —d xd y e '~ ~e "'"(T(B„A„'(x)B„A, (0)8&U&4+"(y)))0

m. 2

d'x e *"*(0
~
T(A „'—"(x)A„'(0))

~
+(—q)) .

g +'ff/I

This is probably not a bad approximation, since the decay constant f„obtained from the algebra of currents and
the spectral-function sum rules and also from the broken chiral dynamics, is quite small, so that the SU(3)-violating
eRect from the ~ meson is negligible. We have assumed that the main contribution to SU(3)-violating effects comes
from the mrr —m„mass difference, so that when we multiply I"„,&, (k, —p) by k,p„, we put the physical masses mrr and
m in the final expression. Then, making use of Eq. (3.5) of SW and symmetrizingit, following Fenster and Hussain, "
we obtain (with our normalization)

I'„„(k,—p). (-', i%2)-,'(grr„/g»+gg, /gx„)(8„„(k—p))+ (8„„q„—8„„q„)(2+ g)y b„p„—i1„„k„)

where 8 is a dimensionless parameter, so that

k„p,I"„, (k, —p) = (-,'iv2)-,'(gx, /gA, +gA, /gx, )[(p—k)),—,'(1+5)(2q')+q&, —.'(1+&)2(p'—k')].
Substituting (2.23) in (2.21) and making use of the relations (2.20), we obtain, on using (2.1),

(2.22)

(2.23)

'f fir [f-(q')(P —k)&+f (q')q&]= ~(P—k)i[(fry'+ f '—f') g
'—i''/m 'r(cq'+m i)r+2X (g&„/g&, +g&,/g )x

Xgee, 'g~, 'CaxC~ ,'(1-+8)q']+ —',q)((fz' f.-') (p' —k') grr
—"/m—x*'(q'ymir")

+2X(gx~/g»+g»/gx. )gx~ 'g» 'C~ C~ (p' k')k(1+~)+—[(p'—k')/(q'+m. '))f'}—A . (2.24)

We have already evaluated the 0. contribution E& in

RSF and can express it in the form

&i = [(p' k')/(q'+m. ')—]f.', (2»)
so that it cancels the last term occurring in the curly
brackets on the right-hand side of (2.24). We then ob-

tain from (2.24)

f+(0)= (fx'+f ' f.')/2f fx. —(2.26)

Since, because of the Ademollo-Gatto theorem, "
f+(0)=1, to first order in SU(3)-symmetry breaking

Eq. (2.26) predicts

(2.27)

which gives for the total width of the a meson about 1

MeV for If: —+ Ex with ns„=725 MeV, which is indeed

small. This justi6es the approximation of taking V~ +"
to be conserved in the evaluation of F„„),'~' in the form

(2.22). If we now make use of the relations

C„=g»'/mA CA gKg /mKg (2 28)
and

g~, '= g, ', gir~' ——grr*', mz, ' ——2m, ', (2.29)

"S. Fenster and F. Hussain, Phys. Rev. 169, 1314 (1968).
'4 M. Ademollo and R. Gatto, Phys. Rev. Letters 13, 264

(1964),

gSCg gA1
(2 30)

mg,2 2

obtained from the Weinberg spectral-function sum
rules, "and also

g&* /gu ™&*/mp ~ (2.31)

f q' 1+8 mx*'+mp'
f+(q')=1 , ,+-

fir q'+mx*' 4 2mp2

2

X ——,232
fir f. mx*'

"S.Weinberg, Phys. Rev. Letters 18, 507 (1967);S.L. Glashow,
H. J. Schnitzer, and S. Weinberg, ibid. 19, 139 (1967); S. K. Bose
and R. Torgerson, ibid. 19, 115 (1967);T. Das, V. S. Mathur, and
S. Okubo, ibid. 19, 470 (1967); P. P. Divakaran and L. K. Pandit,
ibid. 19, 539 (1967)~

"See, e.g. , S. Okubo, "Asymptotic Symmetry and Algebra of
Currents, " lectures delivered at the Institute of Physics, University
of Islamabad, 1967 (unpublished).

obtained from the asymptotic SU(3) symmetry, " we
obtain from (2.24) the expressions for f+(q') in the form
(with the pion and kaon on the mass shell)



1 fz f f.mz' —m ' tII»' n—s '
f-(q') =- ———— +

2 f~ fz fz g +re»* III»'

we have from (2.33)

f» f. mz' —m. '
5=k

f f» ~z*'
52»* +mp 2f~ fz

X 1— — ————,'(1+8), (3.6)
2nIp' fz f

g = t;(~—z' ~. )/~z- jf./f». (3.7)

The relations (3.6) and (3.7) predict

ss++ fÃp j. 8 2 g

The di&crencc between expressions (2.32) and (2.33)
for f~(q') and those given by Lee' from chiral dy-
namics should be noted. Ke believe that this diGcr-
ence arises from the speci6c form of the chiral-dynamical
Lagrangian for E Ex' used by Leep and also floDl soxDC

other approximations which aI'c not cxpllclt ln Rcf. 3.
NuIQcricaDy, this diGcrcnce ls not vcly sign16cant foI'

f+(q'), but for f (q') it may be significant, as indicated
be

(3.8)

(3 9)

$= 0.050,

X =—0.107, for 8=0

(3.10)

(3.11)

0.042,

k = —0.128 p
fOI' 8= —3.

low. All along vie have used the mean meson masses
m~=495.84 MCV and m =137.28 MCV. It is worth-

IG. NUMERICAL RESULTS while to note that the results (3.8)-(3.11) for $ and lI

( 2) i F (2 39)
~ Rrc 110't vcl'y sc11S1'tlvc 'to tile values ot 8. Tllls 1S dlle to

the fact that the terms containing 8 in (2.32) and (2.33)
are suppressed by the factor 2f,/fz f»/f . —

The experimental value'0 of X+, obtained from
'tllc p1011 II10111c11'tllI11 spcctl'11111 Hl E 3 Is (wl'tll Gill'

IlorrllRIIZRtlo11)

f~ 1+8 'is»+ +re 2f~ fz
~z*' fz 4 -2m, ' fz f. ~

=0.0166, for 8=0

=0.0172, for 8= —
3 (3.4)

f-(V') = k(1—l -V'/~. '), (3.5)

where we have used fz/f =1.28. The results (3.3)
and (3.4) are in agreement with those quoted by Lee.'
Now parametrizing f (q') in the usual form

Q=0.019&0.006, (3.12)

which is in good agreement with (3.3) and (3.4).
branc»ng ratio &„3/&,s measurement yields

/br= 0.6&0.3p willie tile IIllloll polal'IzRtlo11 measure-
ments gives $„1———1.0&0.2. No trustworthy value of~ is available as yet from experiments. Accurate ex-
perimental values of $ and X are, therefore, needed to
test the above predictions from the current algebra

well as those from chil al dynaIQlcs and othcl
approaches.

After m'e Gnished this work, mc merc informed by
Dr. Fayyazuddin that the technique of Schnitzer and
%einberg was also recently applied to the calculation
of the Ega form factors by Ueda at Toronto.


