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The K3 form factors f,. (¢?) are calculated using the current commutators, partially conserved axial-vector
current, the Weinberg-type sum rules, and the Schnitzer-Weinberg technique with hard pions and kaons,
which involves the domination of certain vertex functions by vector and axial-vector mesons. The results
are very similar to those obtained recently by B. W. Lee using chiral dynamics and field-crurent identity.

I. INTRODUCTION

N the present paper we present calculations of the

K3 form factors fi(g?), using the algebra of cur-
rents and the hard-pion and hard-kaon technique of
Schnitzer and Weinberg.! This technique involves
partial conservation of axial-vector current (PCAC)
and vector and axial-vector meson dominance of
various vertex and spectral functions besides the usual
current commutators. Previously we have studied this
problem in the soft-pion and soft-kaon approximation
and have obtained the K;3 form factors at zero mo-
mentum transfer.? In particular, we obtained

JrO)=(f&*+fa*= )/ 2/ [k, (1L.1)
0 1/fe [

O)=——r~|———}, (1.2)
“ J+(0) Z(fw fK)

where fx, fx, and fy are, respectively, the decay
constants for K;e, w2, and «;2 decays.

Recently, Lee? has obtained the predictions of chiral
dynamics and field-current identity on the Kjs form
factors. Comparison of Egs. (1.1) and (1.2) with his
predictions shows that while Eq. (1.1), which has also
been obtained by Glashow and Weinberg? with broken
chiral symmetry, holds even when the kaon and pion
are not soft, Eq. (1.2) is modified with terms propor-
tional to mg®—m.% Thus the soft kaon and soft pion do
not appear to be a good approximation for £0). To
remedy this, we do not use this approximation in this
paper but instead follow the hard-pion (and hard-kaon)
technique of SW, still, of course, using current com-
mutators. Our results are very similar to those ob-
tained by Lee.® There are, of course, differences and
these may be due to his specific form for the effective
Hamiltonian for the K*Kr vertex. Numerically, the
results are almost the same for f,(¢?), while for f_(g?
the predictions are different and may be significant,
as discussed below.

Since a number of theoretical papers on the K;3 form
factors have appeared recently, it is perhaps pertinent

1H. J. Schnitzer and S. Weinberg, Phys. Rev. 164, 1828 (1967),

referred to hereafter as SW.

2 Riazuddin, A. Q. Sarker, and Fayyazuddin, Nucl. Phys. (to
be published), referred to hereafter as RSF.

3 B. W. Lee, Phys. Rev. Letters 20, 617 (1968).

4S. L. Glashow and S. Weinberg, Phys. Rev. Letters 20, 224

(1968).
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to comment on them in the light of the present work
and that of Lee. First, we mention the work of various
people using the current-algebra and soft-pion tech-
nique,® which gives the relation

fi(=mx?)+ f(—mk®)= fx/fx. (1.3)

In order for this relation to be useful, one needs to
know the ¢ dependence of the form factors® f.(¢?).
One way of getting this dependence is through the use
of dispersion relations, and it therefore depends on
whether the relevant dispersion relations do or do not
have subtractions and on the values of the coupling
constants which enter when dispersion integrals are
dominated by poles. It is well known that the simple K*
pole dominance gives £=f_(0)/f+(0)=—0.29, A\, =\_
=0.024, where \; and A_ determine the ¢* dependence of
f+(g?) in their linear approximations, without recourse
to any current-algebra technique. If one now includes
the « meson, it is found that it gives a contribution
opposite to that of K* in f (¢% [no contribution to
f+(¢»] and, for T',=20 MeV, the contribution from
K* is completely cancelled depending upon the various
assumptions used for estimating f, and other x parame-
ters. Since experimentally the x width is quite uncertain
(<30 MeV), people can safely differ. In a recent paper,
Matsuda and Oneda® apply the dispersion technique to
a direct calculation of f.(¢?) and dominate the un-
subtracted dispersion-relation integrals by K* and «
poles. They then make use of current algebra involving
charge commutators to fix certain coupling constants
which appear in the dispersion relation expressions of
f+(¢?) and find the « contribution to f_(0) and &(0)
to be smaller than the K* contribution, with the result
of a small negative value of ¢ (=—0.16), whereas Lee?
and we find a small positive value. In our case, the «
contribution does not appear. This is because f, turns
out to be very small in our approach, and therefore we
can use the approximation of conserved strangeness-

5C. G. Callan and S. B. Treiman, Phys. Rev. Letters 16, 153
(1966); M. Suzuki, bid. 16, 212 (1966); V. S. Mathur, S. Okubo,
and L. K. Pandit, sbid. 16, 371 (1966).

6See, e.g., R. Oehme, Phys. Rev. Letters 16, 215 (1966).

7V. S. Mathur, L. K. Pandit, and R. E. Marshak, Phys. Rev.
Letters 16, 947 (1966); 16, 1135(E) (1966). Earlier references for
flhe simple pole-model calculation of f.(¢?) may be traced from

ere.

8 S. Matsuda and S. Oneda, 169, 1172 (1968). There seems to be
another work in which a similar approach may have been used:
N. Fuchs, Phys. Rev. 170, 1310 (1968).
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changing vector current. Of course, we do not put
mg=my, the approximate conservation of V,*% being
solely due to the negligible value of f,. The comparison
of our results as well as Lee’s with those of Matsuda and
Oneda?® also shows that our predictions for f,(g%) con-
tain, besides K*-pole terms, other terms which one
can attribute to high-energy contributions from multi-
particle states, to a subtraction constant, or to both, in
dispersion-theoretic language. Lee regards these con-
tributions as model-dependent, while in our case they
are consequences of the PCAC, vector and axial-vector
meson dominance, current commutators, and the
Weinberg-type sum rules. Our results differ in detail
from those given by Lee, as discussed below. This may
be due to the specific Lagrangian for K*Kr taken by
Lee or due to some other approximations which are not
obvious or easy to check from Ref. 3.

We also mention the method of Fubini and Furlan,?
used by d’Espagnat and Gaillard® to calculate £ and M_.
If \; is given (from experiment), then they are able
to predict upper or lower limits for £ and A_, neglecting
the so-called leakage term [to outside the SU(3)
representation |. Mann and Primakoff!® have taken into
account the leakage term, the parametrization of which
does not seem to be unambiguous, as discussed in Ref. 3.
Fitelson and Kazes’s!! approach is to find a formal solu-
tion of the algebra of currents and saturate it with a
vector-meson resonance. That their results for fy(¢?)
are very close to those of K*-pole dominance is there-
fore expected.

II. FORMALISM

We begin with a sequence of formulas which in turn
define the K;3 form factors f.(g?), the (Kx|V\'|0)
vertex T'y, the (K 47| V2| 0) vertex T, the (KA4:| V'] 0)
vertex T, and the (K 44:|V\'|0) vertex 'y, where

=V\*+iV)\5 is the strangeness-changing vector
current:

Ra=1V2LF+(¢2) (b= f-(g?) (p+1)]
= (2m)3(4kopo)M'?

X (@°(p),K+(k)| V2*+5(0)]0), (2.1)

Myobe= / d“xd“y e~ (kz+py)

XAT{8,4 ,%(x)8,4,°(y) V2°(0) } Yo

’I:fafbmu2mb2

== (2.2)
2(k2ma2) (p2+ms?)

P)\abv(k;—P) ’

9 B. d’Espagnat and M. K. Gaillard, Phys. Letters 25B, 346
(1967) S. Fubini and G. Furlan, Phy51cs 1, 229 (1965).
K. Mann and H. Prlmakoff Phys Rev. Letters 20, 32
(1968)
11 M, Fitelson and E. Kazes, Phys. Rev. Letters 20, 304 (1968).
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M abe.— /d4xd et katpy)

XAT{0uA y*() 4,2 () V2%(0)} o

— famang_lA A(b)(__P)I‘ abc(k )
_(k2+ma2) 74 (2N ) {7
famasz
— vk, —p), (2.3
Kot (p2+mb2€ ok, —p),  (2.3)

M“V)‘abcz /d4xd4y et (kztpy)

XAT{A (@) 4,5() V2%(0)} )o
= Ziga‘lgb“lAwA (@ (k)Aer (b)(—P) P‘ra)\abc(ky - P)

iga_lfbpv
— A AT bk, — )
(p*+m?) ' ,
185" foku

— A,,.,-A(b) —_ Fv abe k’ —_
AP )

fafbk pv
—§i Ty, —1), (24)
Tt md ¢ ma)

where g= — (p+k), and A7 and A4 are the covariant
spin-1 part of the unrenormalized vector and axial-
vector propagators:

A (k)= f AV (St /]

X[wHE2T,  (2.5)
(V) V20)o= 2r)*o) [ % (e
X (o (—B) [/ 1]
o, (= kDAY, (2.6)
A ()= / Aty () B/
X[ p2+E2T1, (2.7)
{4 ,4(x)A4,50) )= (21)‘3%8”/(14}3 0(ko)eit =
XA (= K [ o/ 17]
ot (— kDb . (28)

The decay constants gv? g4? f,? and f, are defined as
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the coefficients of d(u—mvp?), 8(ui—m4?), 6(u2—m,?),
and 8(uP—m,?) in p¥(u?), p*(u?), pp*(k?), and p,¥(?),
respectively, the suffixes p and o representing the
pseudoscalar and scalar mesons. If we now make use of
the Weinberg identity!? and the well-known current
commutation relations, we obtain, as in RSF,

fer R)\
- llbﬂmez
2 ) (prm)

= kuvafw)\‘*‘R)\”'— i’l(ﬁ—k)yzn V(K)(g)

+ %iP#ZMA = (P) - %ikuZ)\uA ) (k)

41 / dby e W T{A30)9,4,3(3)} o

-1 /d“x e~ (T{ANF5(0)9,4,7 (%) } o, (2.9)

Ry=1iT\(k, —p),
V2R f2Ca%k D in=3iV2 fo fxkTa—21 f22py,
$iV284,7 frCa™pul in=51V2 fr [k In+5 [ %Fen
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where Ry° is the familiar o-type term and

Rt O (R)
= / &b e = (T{AN5(0)4,45(2)} Yo, (2.10)

and similarly for Ay,A™=£A,,4" and 4,7, So
far, no approximations have been made.

RSF took the soft-meson limits %2, % k-p— 0 so
that the term &,p,M , on the right-hand side of (2.9)
vanishes; the left-hand side of (2.9) was then evaluated
in these limits. In the present paper we shall take the
mesons on the mass shell, so that p?=—m,? and
k*=—mg? and we shall also retain the term Z,p,M ..
Then the left-hand side of (2.9) has singularities in
these limits. We therefore substitute the definitions
(2.2)-(24) for a=4—15, =3, and c=4-+15in (2.9) and
then, equating the coefficients of each order of singu-
larities from both sides, we obtain

(2.11)
(2.12)
(2.13)

- %i\/?gKA_lgA{‘ICAKCA”kquPm)\ = %i\/?gKA_lwaAKkuPn)\'{“%’i\/ngl—lfKCA "Pul %i\/ijfKP)\"‘ %(P— k)v
X{anF*()+[gg/ (+md) If 2= num(Cy*+ £} +1[Ca™prt fo2pr—p- am(Ca™F f22) ]

—i[Ca®kat fror—k- mm(Ca®+ fx) T+ Ry, (2.14)

where we have made use of the following expressions for the propagators:

/ a4 e ={(T{V ,2(x) V,2(0)} o= — 3ias{ A @ (R)+ [kybr/ R24-m2) I f 2= (Cvi+ £}, (2.15)
/ dx e #(T{A4,2(x)A4,%(0) } o= — Fi8av{ A4 (k)4 [kuks/ (k2+mp?) 1 f 2 — num(Ca?+ f,2)} (2.16)
with
7.={0,0,0,1}.
Y (p)=Crpn, (2.17)
pBnt(p)=Caln, (2.18)
and
Cy= / p¥ (u?)p—2dp?, (2.192)
Ca= / (WD %dp? . (2.19b)

First, we note that the Schwinger terms (coefficients of 1) cancel out in (2.14) because of Weinberg first-sum rules:

CVK_CAW= wz—fx2,
CAE—Cy*=f2— fx*.

12 S, Weinberg, Phys. Rev. Letters 17, 336 (1966).

(2.20a)
(2.20b)
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Then we get from Egs. (2.11)-(2.14), by eliminating %, and p,T,

V2 fkfrRa=3V2 frfrTn=—5V2gk 47 841 'CaXC a™kules Ty — $Ca " A+ 1C A K Ir+ 1 fr202— L f %
+1(0— A2 @+ L/ (P*+mA ][ —Ryw. (2.21)

Before we proceed further, let us first evaluate the term I'ua(k, —p) in Eq. (2.21). Following SW, by invoking
the meson dominance we make the further assumption that the current V3#%(0) is conserved, which means that
in a relation for Tya(k, —p) like (2.24) of SW, we neglect terms like

—3 / d4xdty e~ % 2g= 1 ¥(T{9,4 .4 %(2)9,4,3(0) VA F5(y) } Do

fumé | |
T e / a4 %= (0] T(A,(x) 4,5(0)) | e+ (— ).

This is probably not a bad approximation, since the decay constant f, obtained from the algebra of currents and
the spectral-function sum rules and also from the broken chiral dynamics, is quite small, so that the SU(3)-violating
effect from the x meson is negligible. We have assumed that the main contribution to SU(3)-violating effects comes
from the mx— m, mass difference, so that when we multiply I',,.(k, — p) by k,p,, we put the physical masses #x and
min the final expression. Then, making use of Eq. (3.5) of SW and symmetrizing it, following Fenster and Hussain, 3
we obtain (with our normalization)

Tun(k, — P)z(’lii\/—z-)%(gKA/gAl_'“ g4,/ & ) {8uw(k— A+ (8,:0g— 811qu) (2+8)+ Ounpr—0nk,} (2.22)
where § is a dimensionless parameter, so that
kup Tk, — p) = (31V2)3(gxa/ 8+ 8,/ 8 )L(p— EE (14-0) (2¢°)+ ai (1+8)2(p— k) ]. (2.23)

Substituting (2.23) in (2.21) and making use of the relations (2.20), we obtain, on using (2.1),
3o kL1 (@) 0=kt f-(g)p]= 20— INL(f&*+ f=*— [5) — gx¥*¢*/mr*(@P+mr+*)+2X (gxa/ g4+ 84,/ R 4)
X gr, 'ga Ca¥Cam i (14-0) P11 (f* — f2%) — (P°— kD)gx+*/mu*(¢+mx+?)
+2X (gra/8arF 841/ 8x DR ATGA T CaXCam(PP— )5 (14-0)+[(p°— kD) /(P*+m A fH —Ry*. (2.24)

We have already evaluated the o contribution R\ in
RSF and can express it in the form

Ry=[(p*—k3)/(@+mP)]1fE, (2.25)

so that it cancels the last term occurring in the curly
brackets on the right-hand side of (2.24). We then ob-
tain from (2.24)

J+O)=(fx*+ [~ 1)/ 2f «fx-

Since, because of the Ademollo-Gatto theorem,
fi(0)=1, to first order in SU(3)-symmetry breaking
Eq. (2.26) predicts

Caf=Car=—————=fI=f, (2.30)

mAﬁ

obtained from the Weinberg spectral-function sum
rules,s and also

(2.31)

gK*2/gp2=mK*2/mp2:

(2.26) . .

obtained from the asymptotic SU(3) symmetry,!s we

obtain from (2.24) the expressions for f.(g?) in the form
(with the pion and kaon on the mass shell)

P L

fx2"_“(fK_fﬂ'>27 +
e @?+mr? 4

which gives for the total width of the x meson about 1
MeV for k— K with m,=725 MeV, which is indeed
small. This justifies the approximation of taking V*+® N <2f x fK) q?

2
2m,

to be conserved in the evaluation of I',» % in the form - , (2.32)

(2.22). If we now make use of the relations fr felmxe

_ _ 15 S, Weinberg, Phys. Rev. Letters 18, 507 (1967); S. L. Glash

T 2 2 K 2 2 g, Phys. Rev. Letters 18, ;S.L. Gla ,

Cyr=gat/ma?, Ca¥=grl/mx,*, (2.28) [ 7y Schnitzer, and S. Weinberg, ibid. 19, 130 (1)967); $. K. Bose

and and R. Torgerson, ¢bid. 19, 115 (1967); T. Das, V. S. Mathur, and
gat=g2, grl=gx*, ma2=2m,%, (2.29) S.Okubo, ibid. 19, 470 (1967); P. P. Divakaran and L. K. Pandit,

18 S, Fenster and F. Hussain, Phys. Rev. 169, 1314 (1968).
14 M. Ademollo and R. Gatto, Phys. Rev. Letters 13, 264
(1964) .

ibid. 19, 539 (1967).

16 See, e.g., S. Okubo, “Asymptotic Symmetry and Algebra of
Currents,” lectures delivered at the Institute of Physics, University
of Islamabad, 1967 (unpublished).
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1
2\fx fr/ [fr ¢*+mg+ mg*?

St m\1+802f i
X( owmt /4 \ fx f,)' (2.33)

The difference between expressions (2.32) and (2.33)
for fi(¢®) and those given by Lee? from chiral dy-
namics should be noted. We believe that this differ-
ence arises from the specific form of the chiral-dynamical
Lagrangian for K*Kr used by Lee, and also from some
other approximations, which are not explicit in Ref. 3.
Numerically, this difference is not very significant for
f+(g9, but for f_(¢% it may be significant, as indicated
below.

III. NUMERICAL RESULTS
The linear approximation to f1.(¢?) of Eq. (2.39) gives

(@)= 1=Ng%/ms?, 3.1)
with
m2 T e 148 me®tm,2/2fr
Ae= E w2 ff)] (3.2)
melfc 4 2m? \fx f.
=0.0166, for 6=0 (3.3)
=0.0172, for 6=-—1% (3.4)
where we have used fx/fr=1.28. The results (3.3)

and (3.4) are in agreement with those quoted by Lee.?
Now parametrizing f(¢?) in the usual form

f(g)=E1—N_g¥/m,?), (3.5)
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we have from (2.33)
fK fx MK —Mr®
(t)

2

f‘x fK 7”1{"‘2
Wy 2721,
X[ 1= d ~&>i(1+6)], (3.6)
2m,* /& fx
= —[(mg?—m.2)/mr*]fx/ [k . (3.7)
The relations (3.6) and (3.7) predict
£=0.050, (3.8)
A=—0.107, for 68=0 (3.9)
and
= 0.042, (3.10)
A=—0128, for s=—1. (3.11)

All along we have used the mean meson masses
mgr=495.84 MeV and m,=137.28 MeV. It is worth-
while to note that the results (3.8)~(3.11) for £ and A_
are not very sensitive to the values of 8. This is due to
the fact that the terms containing 6 in (2.32) and (2.33)
are suppressed by the factor 2f./fx— fx/ fx

The experimental value® of A, obtained from
the pion momentum spectrum in K, is (with our

normalization)
Ay=0.019-:0.006, (3.12)

which is in good agreement with (3.3) and (3.4).
The branching ratio K,3/K.; measurement yields
&:=0.6+0.3, while the muon polarization measure-
ments gives &o1=—1.04=0.2. No trustworthy value of
M is available as yet from experiments. Accurate ex-
perimental values of £ and A_ are, therefore, needed to
test the above predictions from the current algebra
as well as those from chiral dynamics and other
approaches.

After we finished this work, we were informed by
Dr. Fayyazuddin that the technique of Schnitzer and
Weinberg was also recently applied to the calculation
of the K3 form factors by Ueda at Toronto.



