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We give a systematic treatment of high-spin M functions in the Dirac-Rarita-Schwinger formalism. The
main difficulty in writing such M functions is that apparently independent covariants are in fact related. We
derive these relations (equivalence theorems) and show how they may be used to obtain a kinematic-
singularity-free expansion of the M function. Many examples are given and the general pattern is discussed.
We also analyze the restrictions due to discrete symmetries and show how to choose invariant amplitudes
whose discontinuities are given by unitarity. The connection with the helicity formalism is stressed

throughout.

1. INTRODUCTION

N recent years high-spin processes have been in-
creasingly dealt with in terms of helicity amplitudes?
rather than the invariant amplitudes of the M func-
tion.2 The main reasons for this have been the generality
of the helicity approach, the simplicity of the partial-
wave expansion, and the very direct connection with

cross sections.
These advantages are, however, gained at the cost

of rather complicated analytic® and crossing? properties,
together with constraints which must be satisfied at the
boundary of the physical region® and at thresholds and
pseudothresholds.® When concentrating on one par-
ticular aspect of the problem, one can sometimes
circumvent these difficulties, as in the use of reduced
t-channel helicity amplitudes” for superconvergence®
or in the use of s-channel helicity amplitudes for
Reggeization.? Nevertheless, it is clear that in general
it would be desirable to work in a formalism in which

the difficulties do not arise.

The M -function approach in principle provides such a
framework. That is to say, a judiciously chosen set of
invariant amplitudes will satisfy simple crossing and
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analyticity properties and will be free of threshold
constraints; the difficulty of writing a partial-wave
expansion has to a large extent been overcome.!®!1

It is the purpose of this paper to provide a systematic
treatment of high-spin M functions in the Rarita-
Schwinger!? (RS) formalism, thus complementing a
previous analysis’® of on-shell propagators and vertex
functions. We have chosen to work with the RS for-
malism rather than with SL(2,C)™ because of the ex-
tremely simple way in which parity invariance can be
incorporated. Again, however, this simplicity is not
without its cost; the redundancy of components in the
formalism, implicitly removed by subsidiary conditions,
leads to complications which are the main stumbling
block in writing M functions for higher spin. Namely,
apparently independent covariants are, in fact, de-
pendent when taken between RS wave functions, giving
rise to “equivalence theorems” (Sec. 5). This difficulty
is closely associated with the problem of choosing in-
variant amplitudes without kinematic singularities
(KSF) and certainly constitutes a drawback to the
M-function approach. We would, however, like to
make a sharp distinction between these difficulties and
the corresponding ones in the helicity formalism: Our
difficulties are those of a choice of amplitudes, which
must be solved prior to any dynamical calculation; on
the other hand, the forward scattering conditions on
helicity amplitudes,® for example, have to be imposed
afterwards on quantities which are the result of such a
calculation.

Section 2 is concerned with setting up the notation
that we use throughout the paper, and the general
kinematics of 4-particle scattering.

In Sec. 3 we discuss the conditions on the M func-
tion imposed by the discrete symmetries P, C, and T
and, where applicable, the statistics of identical
particles. It is shown how PT invariance provides a
criterion for choosing invariant amplitudes which are
real analytic.
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In the next two sections we turn to the problem of
writing the M function explicitly as a sum of invariant
amplitudes multiplied by kinematic covariants con-
structed from the vectors and y matrices of the
problem.

Section 4 is concerned with the two simplest classes
of M functions: those for the reactions 040 — 04sz/,
3+0— 5540 (class I) and those for the reactions
0+1— 0+s5’, ++0— :-+s5’ (class IT), where sz’ (sF’)
can be any integer (half-integer). M functions of the
first kind can be written immediately; for M functions
of the second kind one needs the “abnormal reduc-
tions”—decompositions of products of abnormal
covariants into sums of normal covariants. These are
derived from general identities given in Appendix A.

Section 5 is concerned with higher-spin processes,
where even after performing the abnormal reductions
one is left with a surfeit of covariants, which must
therefore be related, as mentioned above, by equivalence
theorems. We divide the higher-spin M functions into
two classes: those for which the number of equivalence
theorems is small compared with the number of covari-
ants (class IIT) and those for which these two numbers
are of the same order of magnitude (class IV). For M
functions of the third kind, which turn out to be those
for BF reactions with two vector indices, normal BB
reactions with four vector indices, and the FF reaction
3+3—++%, we show how the general equivalence
theorems (derived in Appendix B) provide us with a
means of reducing the covariants to an independent set
without introducing kinematic singularities; for the
process 14-1 — 141 this turns out to be quite involved.
In principle, one could deal with M functions of the
fourth kind in a similar manner, but in practice the
algebra would become unmanageable; for example, for
the process 3+0— 341 one can write 38 possible
covariants, of which 14 have to be removed by equiva-
lence theorems.

Finally, in Sec. 6 we compare our procedure with
other possible ways of proving invariant amplitudes
free of kinematic singularities.

2. HELICITY AMPLITUDES AND M FUNCTIONS
—NOTATION AND KINEMATICS

We begin by discussing the generalized 7V kinematic
notation which we will use throughout the paper.

The s channel is taken to be the process s;+s;—
s1"+s2’. Momenta and masses are defined in Fig. 1,
where by writing p,, ¢/, etc., we mean that the particles
with these momenta are described by RS wave func-
t1ons!® Yureeous; AP (P), Yuyrewnser 22(¢"), etc. The most
convenient set of momenta (‘“‘natural” momenta) for

F1c. 1. The s channel.
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gms, s,
Fic. 2. The ¢ channel. ji
Bymis! Qpisy

this channel is
K=p+q=p'+¢,
A=3(p'—¢),
with s= K2,

The ¢ channel (cf. Fig. 2) is taken to be the process
5y'+s1—> $o'+ 3., obtained from the s channel by the
crossing p'— p'=—p', M > M = J=—¢, 2= .
The natural momenta in this channel are

AEﬁl—qu—q,)
P=3(p+7), (2)
0=3(¢+¢),

with = A2,

Finally, the « channel (cf. Fig. 3) is taken to be the
process si+ 38’ — 51’4+ 3., obtained from the s channel
by the crossing ¢— g=—¢q, Ae—X\e; ¢ = §'=—¢,
)\2/ - )\2/.

The natural momenta are now
p—q=p'—q,

Yo+0), 3
:'+9),
with #=K? and s+t-+u=m2Fm'*+u+pu'2

We shall always label the particles so that the ¢ chan-
nel is a boson channel (i.e., the initial and final states
have baryon number zero). For BF reactions the
fermions will always be associated with the momenta
p, p’, in analogy with =V scattering. To obtain simple
crossing properties for the case of elastic scattering
(cf. Sec. 3), it is customary to write the general M func-

tion in terms of the {-channel natural momenta P, Q,
and A. We note that

K=P+Q, K=P-0Q, 4)

Il

‘ﬁ':ml =i

while the various scalar products are
P-Q=v=1(s—u),
P-A=5(m"*—m?), ©)
Q-A=—3(u"—u?),

and
Pr=onttm) =3, Q=3WHu)—Y, ()
so that
PrQi=}(su). )
Bm.S: p,".,m',si
Fic. 3. The u channel.
N a

q;:"""sx
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Finally, we define the covariant normal vector N,
as4

Ny=e,(PQA), )
which can also be written
N,=—¢€.(p'0p)=—e.A'KA). 9

Then —XN? is the determinant of Kibble,!® whose
vanishing determines the boundary of the physical
region. It is related to c.m. scattering angles by

—N?/s=p:*p,'? sin%,,

and similarly for the ¢ and # channels.

The 7" matrix for particles with spin has rather com-
plicated transformation properties under the action of
the Lorentz group, the helicity components being
“shuffled” by the so-called Wigner rotations.!® By the
well-known device of introducing wave functions
(matrix elements of boosts) which carry the helicity
labels, one can define an amplitude (M function) which
transforms simply, in our case like a tensor-spinor,
under Lorentz transformations.

Thus in the s channel, omitting momentum labels,
we define M from the helicity amplitude by’

(10)

<51/52,; )\1,}\2,] T’ §152; )\1)\2)
EJ/,,’ (h’)ih, (\2") EKTZ,‘/,';,,,%,. (M)l/,y(kz) . (11)

One can go further and introduce scalar amplitudes
by writing the M function as a linear combination of
tensor spinors (kinematic covariants) constructed ex-
plicitly from momenta and y matrices!8:

mﬂ'"';MV(P)Q) =Zx Ax(s:t)xn'v’;uvK(P;Q) .

It is important (cf. Sec. 6) that the kinematic
covariants should be chosen in such a way that the de-
composition (12) does not introduce kinematic singu-
larities into the invariant amplitudes A4,. There will
be as many independent kinematic covariants as there
are helicity amplitudes, viz., N=]](2s;+1). However,
in high-spin processes one can in the first instance write
down more than this number of kinematic covariants.
Care must then be exercised to ensure that the reduction
to an independent set does not introduce unwanted
kinematical singularities.

In Eq. (12) we have expanded the M function in
terms of {-channel kinematic covariants!? depending on
the ¢-channel natural momenta: This is the most con-
venient form for imposing discrete symmetries or cal-
culating helicity amplitudes in that channel. Since the

(12)

14 The notation here is €,(4ABC)= €,a5,4*BFCY. Our e symbol
is defined so that epoz=1.

18T, W. B. Kibble, Phys. Rev. 117, 1159 (1960).

16 E. P. Wigner, Ann. Math. 40, 149 (1939).

17 Here the covariant label u, for example, is symbolic for the
set of labels u;- « - us for a particle of spin J or J+3.

18 Because of the subsidiary condition p-y(p)=0, the explicit
dependence of the X’s on A can be removed except for abnormal

BB reactions.
19 Therefore we strictly should have written 4,(s,?) as 4.9 (s,8).
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M function is channel-independent, we can also expand
it in terms of s-channel covariants:

MAA) =22 A (s,) KA A),

and similarly for the # channel.

For FF scattering we have to define a convention for
the order of the spinors. We define ¢-channel covariants
by 4(q") 0u(g)a(p”) Ou(p), s-channel covariants by
a(p")0CaT(¢)uT(q)C—*0u(p), and wu-channel covari-
ants by a(p’) 0u(g)i(g’) Ou(p).

(13)

3. SYMMETRY TRANSFORMATIONS
ON M FUNCTIONS

Before discussing the actual forms that kinematic
covariants must have in various high-spin reactions, we
establish restrictions on them due to invariance under
discrete transformations.

We shall write the M function in a symbolic way as
NMga, where a and B stand for the set of initial and final
vector labels. For fermion reactions it is imagined as
being sandwiched between one BF or two FF pairs of

Dirac spinors.
We remind the reader that high-spin wave functions

may be compounded from elementary spin-1 and spin-3
wave functions according to'?

€areasM(P)= . ZA e+ Ag[IN)
Xem“”(?)' v fw““(?) )

Uaroas ()= T (- Ay THE,N) (14)
ISTERY Wo ¥

Xeal()‘l)(P) te GaJ()‘J)(P)%(M")(P) )

where J=[s], the integral part of s.

We shall follow the phase conventions of Jacob and
Wick,! in which the antiparticle helicity wave functions
are given by

ea*()‘)(P) = fxéa(*)‘)(P) )
2O (p)=CaT M (p) =yserutN(p),
where £=(—1)** and C is the Dirac matrix®® such
that C~1y,C=—~,7, with ys?=—1.

(15)

A. Parity

Under the action of the parity operator, helicity
states?® transform as |[p\) — npé&i|—p, —\), where np
is the intrinsic parity. Hence the statement of parity
conservation for helicity amplitudes is

<p1,)\1’p2’)\2'l T l D1>\1P2>\2>
=%(_1))\,——)‘<_ pll) —_)\1,: ‘pZ,) _>\2,I
XT‘_DI: —'}‘11 — P2, _>\2>> (16)
where A=A—N\g, M=M=\, and # is the “over-all

20 In what follows we shall take p to lie in the 1-3 plane, in
which case C can be taken as yso2.
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normality,” the product of the individual normalities
np(—1)7.

By relating the parity-reversed wave functions to the
original wave functions,

€N (=P) = — Erger€aM(D),
(= p)=byau™(p),

where gy=(1, —1, —1, —1), we can rewrite (16) as a
parity statement on the M function:

Mpal(f,0) =18 8 rYMpa P f,P1)y0, (18)

which just means that if the reaction is normal (rn=1),
91 should be expanded in a set of proper tensors X,
whereas if it is abnormal (n=—1), 9 should be ex-
panded in a set of pseudotensors X, containing one
over-all ys or one over-all Levi-Civita symbol eqgys.
The number of independent kinematic covariants X+ is
then N*=1N for BF or FF reactions and N*=1(N=+1)
for BB reactions, agreeing with the number of independ-
ent helicity amplitudes under parity conservation.

17

B. Time Reversal

Under time reversal, a one-particle helicity state
transforms as |p,\) — nr(—1)2¢| —p, A). Invariance of
the S matrix under time reveral, Sy;=7rSri s, then
reads for helicity amplitudes

(P/M'p' N | T pihipahe)
=nr(=py, A1, =P, M| T| —p/, N/, —po, N, (19)

where 77 is the product of the four time-reversal phases.
Using the relations

ea* M (—p)=g@e™(D),
aMT(—p)=Tu™(p),

where 7' is the Dirac matrix such that 7'y, 7= g(yy.”
(T=1v¢ysC™Y), we write (19) as a time-reversal condi-
tion on the M function:

Mool f,0) =118 8 T Mg (T3, TH)T.  (21)

This only restricts the number of covariants for
elastic processes (cf. Sec. 3 E); otherwise it relates the
amplitudes of a reaction to the inverse reaction.

For future reference we note the condition for in-
variance under the combined transformation PT':

Mpa(f,1) =nnrB~'Mas" (5, ))B, (22)

where B is the Dirac matrix such that By,B-1=+v,”
(B=i75c— 1).

(20)

C. Charge Conjugation
Using the relation
IO ()= Cu(p), (23)

we convert the statement of charge-conjugation in-
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variance for the S matrix, Sy i=79¢Scys,ci, into the
corresponding relation for the M function:

Mga(f,5)=nc(—C)MpaT(Cf,CP)C1.

As in the case of time reversal, this is in general a
relation between the M functions of different processes.
However, it will give restrictions on the number of in-
variants when applied in the ¢ channel of an elastic pro-
cess, where both initial and final states are essentially
self-conjugate (cf. Sec. 3 E).

Combining the results of C and PT, we get the CPT
relation

Mpalf,5) =nnenr(—ivs)Mas(Ci,Cf) (ivs) -
On the other hand, crossing of all four particles gives
mﬂa(f,i) = szZaﬂ(Cz,Cf, {_P}) ) (26)

where F is the number of fermions and the notation
{—p} means that all 4-momenta are reversed. Since
this reversal can be achieved for the kinematic covari-
ants by

Kpa(P,Q) = (—=)7ivsKga(— P, —Q)iys,  (27)

where J is the total number of indices, the scalar in-
variants remaining unaltered, we can write (26) as

Mga(fy8) =17 (=) (bys)Map(Ci,C1)(Gvs),  (28)

which by comparison with (25) gives a constraint on
the over-all C, P, T phases:

(24)

(25)

npnenr=1. (29)

D. Discontinuity Condition

The unitarity condition for the 7" matrix, defined in
terms of the S matrix by

S i=8i4i(2m) %5 (py— p3) T, (30)

reads

—3U(Tri—Tif*)=% 2 Taf*Tni(2m)46%(ps—pn). (31)

We would like to show that the kinematic covariants
can be chosen in such a way that the corresponding in-
variant amplitudes are real analytic and that the left-
hand side of Eq. (31) corresponds directly to discon-

‘tinuities of invariant amplitudes.

In terms of M functions, Eq. (31) reads
—'%i[mﬁa(ﬂi) - maﬁ(zyf)]
=3 Z mﬁ("’)f)@nma(n;i)(27r>454(pf_pﬂ) ’ (32)

where ®, is the product of the spin projection operators
for the intermediate state and St=~,M'y,.

The second term on the left-hand side can be related
back to 9M(f,7) by use of the PT relation (22). Taking
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into account Eq. (29), we can write the left-hand side
of Eq. (32) as
—%Z[mﬂa(fﬂ)_‘ ﬂc(—)JB—lstaﬁ T(fﬂ‘)B:] .
Then, if we always choose our kinematic covariants
to satisfy

_jéﬂﬂ(P:Q): WC(_)JB—I:K'ﬂdT(P)Q)B »
the unitarity condition can be cast in the desired form
2 (ImA4.)XKsa*(f,0)

=3 2 TMp(n, f)®n Ma(n,i) (2m) 3% (ps—pn) . (34)

(33)

The discontinuity condition, Eq. (33), determines the
number of factors of ¢ accompanying each kinematic
covariant. If we choose to write the M function in terms
of the set of ¥ matrices (1,vs,vu,YuY5[Vu,¥~)), then for
processes such as elastic scattering where n¢=(—)7 the
M function will contain no explicit factors of 7. There
will be one over-all factor of ¢ for processes such as
7N — AN, where n¢=—(—)7. For other processes,
such as 7V — KZ, 5¢ is not observable. In such cases
we can choose n¢ to be (—)7; the phases of effective
Hamiltonian (vertex functions) will correspondingly be
affected so that Born terms will be real.

As a byproduct of the discontinuity condition, we can
rederive the Hermitian analyticity theorem of Olive.?!
Writing in an obvious notation

TV V() =1 As)RNM(PQ),  (35)
we have shown that
Ti 0 ¥(s )= 4,405 N D(P,0)
=¥ A(F)KNDP0),
in the s channel, or
Tif*(s,)=Ti(s*1), (36)

so that again the left-hand side of Eq. (31) corresponds
to a discontinuity when the 4, are real analytic.

E. Elastic Scattering

As remarked above, for a general process only P
reduces the number of covariants, C and 7" relating one
process to another. For elastic scattering, however, C
and 7 do lead to a reduction in the number of covariants,

as is well known.
For elastic scattering, with n=n¢=ny=1, PT in-
variance, Eq. (22), gives

Jclsa(P’Q> = B_lﬂca,gT(P,Q)B . (37)

Combined with the restriction due to parity that
X=X+, this reduces the number of independent kinema-

tic covariants to
Net=3[3(25"+1)2(2s4+1)2+(25'+1)(25+1) ]
21 D. I. Olive, Nuovo Cimento 26, 73 (1962).
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for BF or FF elastic scattering and to
Nat =305+ DM @'+ 1) @5 +1)+1]

for BB elastic scattering (s+s" — s+57).2
The above restriction can also be obtained from
charge-conjugation invariance in the ¢ channel. This
gives
Kpa(P,Q)=CRap™(— P, —Q)C, (38)
which because of the CPT condition (27) is equivalent
to (37).

F. Identical Particles and Crossing

When all four particles are identical (in the s channel),
the number of covariants is further reduced by the

constraint
SCM'V'-IW(P)Q) = JC'p',,',,,,,(Q,P) ’ (39)

wherein &’ the spinor setsy (¥ and y® are interchanged.

If only two of the particles are identical, crossing re-
lates the invariant amplitudes of one channel to those of
another. If we choose our covariants in the proper way,
each invariant amplitude will satisfy crossing sym-
metry. We distinguish three cases.

(a) If the t-channel initial state consists of two identical
bosons (momenta ¢ and ¢’), crossing symmetry (s<> )
states that if we choose our covariants to satisfy

J{V’VK(PrQ) = EKQ:K:W' K(P: _Q) ) (40)
where £,9=1, then
A D@, )=£CA4,D(—, ). (41)

(b) If instead the s-channel initial state consists of
identical particles, crossing symmetry (<> u) states
that if we choose the s-channel covariants to satisfy

JC,,,,"(A',A) ==+ EKAJC,,,,"(A’, "‘A) (42)

for identical bosons or fermions, respectively, then

4 K(s)(;;s) = EKAAK(S)(_ 2 S) ’ (43)
where 7=A-A'=1(t—u).

(c) Finally, if in the s channel one initial (p) and one
final (") particle are identical and, furthermore, if the
other two particles are self-conjugate bosons,? then
charge conjugation and crossing imply that

it AK(V’t)_—'nC’E& PAK(_Vy t) (44)
I
JC,,',,(P,Q) = fx PCSCW T(_ P: Q)C_1° (45)

Such constraints as Egs. (40), (42), and (45) indicate

22 P. L. Csonka, M. J. Moravcsik, and M. D. Scadron, Ann.
Phys. (N. Y.) 41, 1 (1967).

%8 For example, 7% — «%. Crossing symmetry for =V scattering
can be obtained from either (a) or (c).
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TaBLE 1. BB reactions of the first kind. TasLe III. BB reactions of the second kind.
Reaction xt bl Reaction x+ x-
g+8__, 8+; Pg’ g NN 0+1 —0+1 (P,QZ'E,P,Q» (e(PQ)-;I(VI:'A';;:)(QA))v'v
040 013 PPP, PP, Pg’(_)?gqg NPPJ,VZ}\;’PQ,QNQQ AR e+ e e el

that symmetrized forms of covariants such as

POA+0uP={P,Q}w,
P,0.~QuP,=[P,Q)w, [vvyv], [1,Q 1, etc,

should be used as far as possible.

4. M FUNCTIONS OF THE FIRST AND
SECOND KINDS—ABNORMAL
REDUCTIONS

We build up the kinematic covariants first for
“simple” and then for “compound” reactions. We shall
return to the problem of proving that the resulting in-
variant amplitudes are free of KSF in Sec. 6.

M functions of the first kind are those for the basic
reactions (in spin space) 0+0— 045z’ and 40—
sp’+0, where sg’ (sz’) can take any integer (hali-
integer) value.

For the basic boson-boson (BB) reactions one simply
writes all possible covariants (in terms, say, of the
momenta P, Q); the number of kinematic covariants
will always be the correct number N+. In Table I we
give a few examples.

Metric tensors g,,+»,y do not appear in these covariants
because they vanish due to the tracelessness of the
spin sz’ wave function. Similarly, because of the sub-
sidiary condition, the momentum A,  is equivalent to
2Q..

For the basic boson-fermion (BF) reactions we give
the first few sets of normal covariants in Table II.

Here the notation (P,Q)(1,Q) means the set of covari-
ants Py, Qu, P, QwQ, and so on (with Q=r,0%).
We have not written the abnormal covariants X~ ex-
plicitly since these are simply vsX*.

In place of 1 or Q we could have used vsN; however,
this would lead to kinematic singularities, being related
to (1,Q) by the identity (cf. Appendix A)

vsN=2(P*—m_Q—2muw+m_Q-A,  (46)

where my=21(m'+m) and m_=3(m’—m). We shall call
identities such as Eq. (46) “abnormal reductions.”
M functions of the second kind are those for the re-

TasLE II. BF reactions of the first kind.

Reaction x*
140— 140 1,0

3+0— §+0 (PP,PQ,00)(1,Q)

actions 0+1— 0+sp’ and 140— 455/, which are
products in spin space of the above basic reactions.

One might have hoped to obtain the kinematic
covariants for these reactions as a direct product of the
basic covariants according to the factorization rule?

KeE= K QKED K QKT - (47)
However, although one obtains the correct number of
covariants in this way, the corresponding invariant
amplitudes would have kinematic singularities. This
can be seen from the fact that, using these covariants,
the s-channel helicity amplitudes, as calculated from
Eq. (11), do not automatically have the right 6, de-
pendence (cosif,)M+M(singd,)» M. Thus, for ex-
ample, the factorized normal covariants for 0+1—
0+1 are PP, PQ, QP, QQ, and NN. Then one or more
of the corresponding invariant amplitudes must have
a kinematic singularity, since otherwise a simple cal-
culation gives (\'=1|T|\=1)=sin%,, which is in-
correct. However, by replacing the factorized covariant
N,N, by g and assuming no kinematic singularities
of the new set of invariant amplitudes, we obtain the
correct angular dependence (\'=1|7|A=1) « cos?(36,).

We therefore draw the general conclusion that at
least one new nonfactorizable covariant must be in-
cluded in the set of covariants for high-spin (compound)
reactions if one is to obtain KSF invariant amplitudes.
We relate factorized covariants to the new covariants
by means of abnormal reductions such as Eq. (46) or

vslNy= (it—m_2)[y,,Q1+ (ms Q- A—2m-v)y,
+2(mQu+m_P,) Q— (22Q,4+Q-AP,),
NN, = N2gy 4+ (10°— (Q- AP, P, (P-AQ - A—tv)
X{P,Q}»y—2(Q-A—Q°P-A)[P, Q]
+ @02 — PN +1P*—(P-8)*)Qv 0,

etc., obtained by saturating the identities of Appendix
A with various momenta.

We give the first few KSF covariants of the second
kind for BB reactions in Table ITI.

(48)

(49)

Tasie IV. BF reactions of the second kind.

Reaction X+
%[7,Q]
140 — 342 (PP,PQ,Q0)(1,0)
([0 (2,0
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Here, for the abnormal reactions, we used the
abnormal reductions

[N,PTy,=P-Ae(PQ)+ P, (QA)+ves,(AP),

[N:Q]l"v= Q ' AGV'V(PQ)"‘VGV’v(QA)
+Q2GV’V(AP) ’

=2{N,Q}v=ter,(PQ)+ P L&y (QA) Q- Aer(AP),

(50)

which follow from Eq. (A2).%

The first few KSF covariants of the second kind for
BF reactions are given in Table IV. Again &~ is simply
753€+.

Finally, we may include in class II the normal re-
action 01— 1+41. Only abnormal reductions are re-
quired to reduce all possible covariants to the KSF set,
which is (P,Q)uw(P,Q)v(P,Q)sy gurw(P,0)sy 84(P,Q)w,
and gu»(P,Q)v.

5. M FUNCTIONS OF THE THIRD AND
FOURTH KINDS—EQUIVALENCE
THEOREMS

So far, in obtaining KSF covariants of the first and
second kind, we have followed the prescription of
Hearn,? viz., simply to remove the “obvious” covariants
such as ysV,, NN, etc., by abnormal reductions. How-
ever, a problem arises when, after all abnormal reduc-
tions have been made, one is left with more covariants
than there are independent helicity amplitudes. Such
is the case for the covariants of the third kind, occurring
in the reactions

BF:  §40-440, JH0-4+1, 1341,
FF: 34—+,
BBt:  04+2—0+2, O+1—142, 14+1—1+41.

For example, for N*r scattering there are eight
“natural” covariants (PP,{P,0},00,¢) (1,Q), of which
only six can be independent, while in NN scattering
there are again eight natural covariants (the combined
sets of GNO,% GGMW,?” and ALV?), of which only
five are independent.

Thus seemingly independent covariants must in fact
be related when taken between Dirac-Rarita-Schwinger
(DRS) wave functions. The relations between covari-
ants for the examples above have already been given

in the literature.

24 Remember that because of the subsidiary condition A, is
equivalent to —2Q, and A, to 2Q,.

% A. C. Hearn, Nuovo Cimento 21, 333 (1961).

26 M. L. Goldberger, Y. Nambu, and R. Oehme, Ann. Phys.
(N.Y.) 2, 226 (1957).

# M. L. Goldberger, M. T. Grisaru, S. W. MacDowell, and
D. Y. Wong, Phys. Rev. 120, 2250 (1960).

% D. Amati, E. Leader, and B. Vitale, Nuovo Cimento 17,
68 (1960). We use the notation Hs=1D1W R p=r Ay 1),
Ky =7® D, K 4= y;®Dy;Vy® . qy@ and Kr=130,,Po,0.
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For N*r scattering?® they are

2Pw P Q=m{P,Q}yu—mvguy,+Pgu,Q, (51)
m{P,Q}wuQ=—20Pu Pyt+3QuwQut+2v{P,Q} wu
+mvgu , Q— V410 gwu, (52)
while for NV scattering? they are
m(y® - P+y®-Q)=v(Ks—Kp)+m*Ky—§tXr, (53)
7‘2)-Pv(1)-Q=~m25€p+v5<’,v—%w€4, (54)
and
v5Oy @ - PysOy @ - Q=p(—Ks+ Kp+Ka)
+PAKv—Kr). (55)

Such relations, which we term ‘“equivalence the-
orems,” will always occur for high-spin processes. They
arise essentially because of the redundancy of com-
ponents of the DRS wave functions and are derived
in a general way?® for all M functions of the third kind
in Appendix B.

The equivalence theorems not only provide the neces-
sary relations between seemingly independent covari-
ants; their form also indicates which covariants may
be eliminated without introducing kinematic singulari-
ties. Namely, covariants which occur with numerical
coefficients, such as those on the left-hand side of
Egs. (51)—(55), may be eliminated in favor of the others
without dividing by factors such as » and ¢ and thereby
introducing kinematic singularities.

Thus possible KSF sets of covariants are (PP,00,2) 4
XA{P,Q0}wur (00,8)wuQ for N*r scattering and the so-
called “B-decay” covariants (Kg,&y,Kr,¥4,Kp) for
NN scattering. However, other choices are possible. The
covariant P,P,Q may be used instead of {P,Q}. s
in the N*r case and (y®-P+v®-.Q) instead of
Ry, y@-Py®.Q instead of Xp in the NN case.

Consider next the process 34+0— 341 (e.g.,
Nw— N*p) with 12 independent covariants. The 14
possible (normal) covariants (PP,QQ,PQ,QP,g) . (1,Q),
(P,Q)uw (v,[v,01), can be reduced to a KSF set of 12
by removing, for example, P,P,Q and Q.Q.,Q by
means of the equivalence theorems

P“, PV,Q = — PMQ,,/Q-{—‘WM.Q”'PV' %m,Pu’E'YV’)Q]
=~ m_QuQv—p-Qguwt (m2—11)
X (guvQ—Quwvr), (56)

My QuQwQ= “m,Pu’QV’Q+m~Qu’PV’Q+ (r+34 Q3P
X[y, @14 Q0w Put(p"- Q= 0H P Qs
+[p-Q— (m_2—3) 10w Qv — QP Py
=P QQuyy+m' Q Py —5(m_2—1)Qu
X[y, @1+ (msr—3m_A-Q)gunQ

— (30— m 20" —1(A-0) g, (57)

( 29 I’§ F. Jones and M. D. Scadron, Nuovo Cimento 52A, 62

1968).

3 From the present point of view the NN and N*r problems
are on exactly the same footing; the first two NN equivalence
theorems were originally derived (Ref. 28) by a different method
which does not lend itself to generalization.
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which are special cases of the general BF equivalence
theorems (B1) and (B2).

The third BF reaction, 3+1— 341, for elastic
scattering (e.g., Np— Np) has the set of 14 normal
covariants (PP;QQ7{P1Q}7g)V’V(1>Q)3 {7:P}V'V7 {7)Q}P'l’7
[P,[v, Q1] [Q[v,@1Dww, [ywvs], and [vQvl
=v,Qv,—7,Qvv, from which the covariants {P,0},.Q
and Q,,Q,Q can be removed via the equivalence theorems
[again special cases of (B1) and (B2)]

2{P,0}»Q=— m"[’)’v’ 771'] - PZ[’YQ’Y]V’V
_m[[P;VJV’”)Q]+ ZV{Q;Y}V’P ’

2mQ, Q,Q=— (*+103)[vv,vs ] —m[yQv v
— [Py ], @1+, 000, Q1+ 2mQ*Q,v } v
—20% P,Q}sst2000Qs.

The general-mass FF reaction $+% — 343 has eight
independent normal covariants. We can choose the
set X Kp, Re=y @ .P—y@ .Q, 3(37575(2)75(1)7(2) -P,
Ke=1;Py; Dy .0, without introducing any kinematic
singularities, as can be seen from the general-mass FF
equivalence theorems of Appendix B.

In the equal-mass elastic-scattering limit the equiva-
lence of the ¢ and # annihilation channels (or Fermi
statistics in the s channel) can best be exploited by
making a Fierz transformation to the five natural
s-channel covariants.?® In the unequal-mass case, the
Fierz matrix is enlarged to an 8X8 matrix; its exact
form is discussed elsewhere.?!

Abnormal BF or FF covariants are constructed simply
by inserting an over-all factor of s, that is, X~=7;X"
for BF and either vsVX* or v5» &t for FF reactions.
The corresponding abnormal equivalence theorems can
immediately be obtained from the normal equivalence
theorems of Appendix B by the substitutions m’ <> —m’
(my. <> —m_) for BF reactions and either m’ <> —m/'
(my> —m_) or u' <> —p’ (up <> —pu_), respectively,
for FF reactions.

BB reactions of the third kind have two general
equivalence theorems (cf. Appendix B). However, when
a spin-2 particle is present, the symmetry of its wave
function reduces the equivalence theorems to one.

Thus for 042 — 0+2 elastic scattering, the nine
KSF covariants are (PPPP, PQPQ, PQQQ-+QQQP,
QPPP+PPPQ, QQ00nyrsy and gm(PP,{P,0},
00,2)syv,- The covariant (PPQQ+QQPP), 1vys, can
be related to the others by the equivalence theorem
[cf. Eq. (B8)]

#Z(PPQQ+QQPP)V1'V2'V1P2= —4P%Qy;Qvy0rOrs
—2(Q*— %t)Pi‘l’Qva’PnQva'—f’4V(PQQQ+QQQP)V1’M’V1M
+%t(PZQ2_‘Vz)gvl'”lgvg'v2+2[(Q2_it)PL—V2]

X 8oy QraQra— 510G, Loy Py
+3008m {0} varvs

31 B, Kellett, Nuovo Cimento (to be published).

(58)

(59)

(60)
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the result of Rivers and of Papastamatiou and
Pakvasa.??

For the normal reaction 04-1-— 142, there are
24 possible covariants, of which 23 are independent.
The covariant PnQ,-K,yQ,, for example, can be re-
moved by the general-mass form of Eq. (B8).

For 141 — 141 elastic scattering there are two
equivalence theorems relating the 27 possible covariants
to 25 independent ones. Specializing further to the
scattering of identical particles (e.g., pp — pp), these
numbers are reduced by Eq. (39) to 19 possible covari-
ants, of which 17 are independent. The problem here is
to write the equivalence theorems in such a way that
two covariants appear multiplied only by mass coef-
ficients and may therefore be eliminated without in-
troducing kinematic singularities.

With &;- - - K19 as defined in Appendix B, we evaluate
Eq. (B8) and then again with u’ and x interchanged.
Next we add and subtract the resulting equations and
group terms to obtain the equivalence theorems

4m2(3€3— 3€4) = 4P2(25€5+ Ka— 5@4)
—4V(45C2+ JC3+ 3(’,4)“[—%“%(5&9"‘ 5@17)
+ 1P (R1— Kiz)+ v (Kie— K1)
+ (su+ tv) (3(:15"‘ 5(:13) 5 (61)
8m2(3€1+23{2)=4v(25€5+3(33-— 5@4)+2t(3€1+53€2)
+ 21K+ 3 51u(2K 15— Kir— Kio)
+2(su~ tPZ)v'Ks—' (su+tv)(5€13+8€15)
—tP*(2Ko+ K+ Kia)
+t1/(25€10—' 3C14— JCls) . (62)

From these forms it is clear that of the covariants
Ky K5, we can eliminate Kz— Ks, and XKi+2XK, in
favor of 2Xs+Ks—RKs, 4K+ Ks+ K4, and Ky+5K,
without introducing kinematic singularities.

Having singled out all the relatively simple equiva-
lence theorems, we classify all remaining high-spin
reactions as having M functions of the fourth kind.
The difficulties encountered in the analysis of these
reactions are of two types.

First, the previous basic equivalence theorems may
occur with permuted indices, as in normal BB reactions,
where, for example, in the processes 0+2— O+ss,
0+1 — 1+sp the number of equivalence theorems is 1,
2,3, -+, forsg=2,3,4, ---, and in the process 14+1 —
1-+sp the number is 2, 4, 6, -+ -, for sp=1, 2,3, ---.

Second, new equivalence theorems exist for higher-
spin BF, FF,*' and abnormal®® BB scattering. In the
BF case two ‘““3-index” equivalence theorems can be
obtained from the forms e, ($’Q)e,(yQp) and e (p'Q)
Xeu(p"yp). The processes 3+1 — §+sporz+0—§+sp

32 R. J. Rivers, Phys. Rev. 161, 1687 (1967); N. J. Papasta-
matiou and S. Pakvasa, 7b¢d. 161, 1554 (1967). There are, however,
some errors in the equivalence theorem as given in these references.

33 B. Kellett, Nuovo Cimento 53, 625 (1968).
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have 2, 6, 10, - --, equivalence theorems for s,=1, 2,
3, -+ -, and the process §4-0-— £+s5 has 2, 14, - - -, for
sp=0, 1. For example, in 3-+0— £-1 there are 38
possible but only 24 independent covariants. Of the 14
equivalence theorems, two are new, four are the two
fundamental relations (51) and (52) with permuted
indices, and the remaining eight are the fundamental
relations (56) and (57) with permuted indices.

We stress that in these latter cases the complications
that arise are of the same fundamental nature as in
previous cases. M functions of the third kind include
equivalence theorems of the 4-index BB, the 2-index
BF, and the 0-index FF varieties, whereas M functions
of the fourth kind also include equivalence theorems of
the 3- and 4-index BF and 1-, 2-, 3-, and 4-index FF
types. Once these relations are tabulated, in a manner
analogous to that of Appendix B, no new relations occur
for arbitrarily high values of the spins. Permutation
symmetry for high spins does not alter the KSF pro-
perties of the covariants. Furthermore, we think it
reasonable to conclude that the basic equivalence
theorems of the fourth kind (finite in number) always
contain terms with with constant (mass) factors, as is
consistently the case for equivalence theorems of the
third kind. In this sense we have demonstrated the
covariant KSF development of reactions involving
particles of arbitrary spin.

6. KINEMATIC SINGULARITIES

The basis of our claim that the amplitudes in the ex-
pansion that we have chosen are KSF is the method of
Hearn.? Namely, one takes the point of view that the
complete set of covariants which would arise from pertur-
bation theory have KSF amplitudes and that an -
dependent set of amplitudes will be KSF if in reducing
to them from the complete set one does not introduce
kinematic singularities. These would arise from eliminat-
ing covariants which appeared in the equivalence
theorems multiplied by kinematic factors such as », ¢,
etc. We have demonstrated explicitly that the equiva-
lence theorems for the M functions of the first—third kind
can be cast into a form where the covariants to be re-
moved appear with constant (mass) coefficients.

Another possible way of proceeding is to relate the
kinematic structure of our invariant amplitudes to that
of helicity amplitudes and in particular to the fact that
according to Ref. 3 the singularities of 7T\ in s are
entirely contained in the factors

(cos30,)!M+AI(sing,) MM
so that the reduced helicity amplitude

Ton®= (cosd8,)~IV+M(sindf,)—IM =M Ty
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is KSF in s. Expanding the M function in terms of
{-channel natural momenta, we have

IO () =2 4D (s )N [5(P,0) [N (63)

in an obvious notation.
The crux of the proof is that because

€D () -0=eD(g)- Q=D (p') - P=eH)(p)-P=0,
5 (P () =0

in the /-channel c.m. frame, the matrix (\'| %,(P,0)|\)
is “triangular” [and also contains the correct angular
factors (cos3f,)M+M(sing6,)!M M7 for the M-function
expansions of Secs. 4 and 5. Thus the maximum
helicity-flip reduced amplitude 7' (arm., will be pro-
portional to just one invariant amplitude,®® which is
therefore KSF. The next reduced helicity amplitude
will be proportional to a linear combination of the first
invariant amplitude and a second one, which is there-
fore KSF, and so on. Such a “triangularization”
always occurs with our choice of invariant amplitudes,
so that the proof that they are KSF in s is fairly
straightforward.

To show that the invariant amplitudes are also KSF
in #, we switch to the expansion of the M function in
terms of the s-channel natural momenta. Again, since
eB(PpN)-A'=eB(¢)-A'=0, etc., in the s-channel c.m.
frame, the relation between the invariant amplitudes
A4, and the s-channel reduced helicity amplitudes will
be triangular, showing that the A4, are KSF in ¢

Finally, we can relate the 4, to the 4, by cross-
ing, writing A=%(P—(Q)—A, etc. For BB scattering the
crossing matrix®® is a purely numerical matrix; hence
in this case either set 4, or 4,® will be KSF in
both s and ¢

For BF scattering the natural s-channel expan-
sion of the M function is of the form A (K-++/s)
+A_(K—+/s). Again, the relation between 4, and the
s-channel reduced helicity amplitudes will be triangular,
so that A, are KSF in {; similarly, 4 and B, occurring
in the expansion 44-BQ, are KSF in s. Now, however,
the crossing matrix is not purely numerical:

B=A,+A_,

AmmyAb A (/) (Ayma), P

Thus 4 and B are KSF in both s and ¢ but 4, will have
a kinematic pole in 4/s.

8 For example, in #V* scattering, Ref. 28, T « Bgq.

3 Strictly speaking, every invariant (scalar) amplitude crosses
into itself under a crossing operation. A “crossing matrix” in the
covariant formalism simply relates one complete set of covariants
(say, the natural s~channel covariants) to another complete set of
covariants (say, the natural s-channel covariants), as, for example,
the Fierz matrix of FF scattering.
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In FF scattering we must make sure that the Fierz
crossing matrix has only constant coefficients. This is
indeed the case for the GGMW? choice of amplitudes,
which are therefore KSF in s and ¢ However, the
ALV set Kg, Ky, Kp, y®-PHy®-.Q, y@.Py®.Q
will have kinematic singularities in ¢ This is also clear
from the equivalence theorems (53) and (54), where the
covariants to be eliminated, X7 and XK., appear
multiplied by a factor of Z.

Finally, we mention briefly the method used by
GGMW? for NN scattering. Here, with the M func-
tion written as Mga=2_r As(5,))Kse*, one constructs
the objects

= Trﬂ?’,a:gr “®prg" Mpa®Paar’

= Z LAy (Syt) ’ (65)

where
Liyp= Trﬁ—curpl ‘@ﬂ/ﬁfﬂclga"’@awi.

By the Hall-Wightman theorem the 91, are free of
kinematic singularities. Therefore, by inverting (65),
so are the A,, except possibly where detZL=0, which
turns out always to be the boundary of the physical
region. This last possibility is rather difficult to elimin-
ate. One could hope to do so by demanding that
do/dt, given by

do/dtcY AFLodv, (66)
and all its polarization moments be finite, but for higher
spins the procedure becomes quite impracticable.
Finally, we note that the invariant amplitudes are
also free of kinematic zeros and, in constrast to helicity
amplitudes, are independent at thresholds and pseudo-
thresholds. Insofar as we have here displayed the
equivalence theorems and have previously®-!! indicated
the method of covariant partial-wave expansions, we
believe that invariant amplitudes, with their simple
analytic and crossing properties, will continue to play an
important role in elementary-particle physics.
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APPENDIX A: COVARIANT IDENTITIES

All possible relations derivable among covariant
vectors and spinors follow from the three fundamental

3 We remark that ALV only claimed this set to be the perturba-
tive set, and not necessarily KSF.
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identities:
8ara Ba'p Loy Bard
T vEY = — gﬂ'a gﬂ’ﬂ gﬂ"y gﬁ’6 A].
€arfry’ 57 €apys Gra s Brv Zusl’ (A1)
gva Qi Loy Ews
€apysfor= €opysfart €aoyofr
+ eaﬂa6g7'r+ €afyodsr, (AZ)

V5€aBys="YoYBYvY5 ™ BaBYY5 Ev6YYB— BadVBYy
—g8yY Yot arYeYst gosYaYy

+ 8apgys— BargostGasgsy.  (A3)
A special case of the latter is also useful:
V5€apysY =VaY8Yy— GaBY vt Gav¥s— orYa. (A4)

Our metric is g,,=diag(1, ~1, —1, —1). They matrices
are defined by {v,,v} =28u, Yovsyo="4'. vs is defined
as yoyryzys, so that ys?=—1.

APPENDIX B

In this Appendix we derive the general BF, FF, and
BBt equivalence theorems of the third kind.

(i) BF equivalence theorems: Consider the double
epsilon form es(p’Qy)ea(p’vp) between spinors (p’)
and #(p). First expand it by determinants, Eq. (A1),
and then by spinors, Eq. (A4). Equating the results
gives

0=[7,01sQ+5[(mp"+m'p), [v,0]]sa
+3(0" - p+m'm)[vQvJpat-5(mp"+m'p) - Qlveyval

+2"- 0Lty Jsatp-QLv,p Js, (B1)
where
[vQvJsa=75Qva—7aQvs=2756s(vQ) ,
Ltyv1sa=psva—"sPa,
[#',pJsa=ps'Pa—pspa’,
and

[A [7)0]]!30! = [[A )7]5“10] .

In a similar manner, the form eg(p'Qv)e.(Qvp) yields

0= [(m?’__ m’P)» Q]BaQ+P' 'QEP:'Y]MQ
+1-Q0Ly,2 Jsat5(mp"+m'p) - OLyQv 54
+3[2p"-Qp-Q—Q*p" p—m'm) [ vp,7e]
=3 p—m'm)[Q,[v,Q11sat (mp’—m'p) - O[O,y Jse
— Q¥ (mp'—m'p), v Joat+Q[#,pJ6e- (B2)

These equations are valid for any masses and spins, i.e.,
subsidiary conditions on the 8 and « labels. We could
convert p” and p to momenta P and A using p’=P+31A,
p=P—3A, obtaining relations such as 3(p’- p+m'm)
=Pl—m2? L(p'-p—m'm)=m_2—1t, etc. It is clear
from these equations that either of the first two terms
of Eq. (B1) but only the first term of Eq. (B2) can be
eliminated without introducing kinematic singularities.
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(ii) FF equivalence theorems: In a similar manner to
the BF case, we consider the forms €q5(Qy @) éas(Py™),
€aBy50105 P €apeeAro, D, etc., between the natural #-
channel spinors. The latter gives

upy @ Pmyy @ - Q=v(Ks— Xp)+upm Ky — 5K
—pum_Ka—u_-Ki—m_Xs (B3)
and the former yields

Y@ Py®-Q=—mu Kp+vRy+ (m_Hp 2—1)Ka
+m_p_Kr+m_Kit+u-Ks, (B4)

where Kr=v;®@y;Vy-@P and Ke=r;Dy;Ly- DQ.
We can obtain the third equivalence theorem by a
chiral transformation on Eq. (B4) with my <> —m_,
up <> —u_ [or consider forms such as eus(Ay®)eap

X(A7(1))J)
5@y @ Py Wy OO =K g — 1 Ko
+ (P +u P — ) Ky —p-m-_Ks
~(myy® - Ptupy®-Q).  (BS)

A similar analysis also yields the “spinor identities”

7 ® ey WOy O . 0=y, RsFpu_Kr+m_KatKr,
T @y Wy @ Py, R gt K+ u_Ka+ Ks,

along with their “chiral equivalents”

75(2)75(1)7(2) .7(1)7(1) .Q
=—myKy+usKr—p-Kp+vy®-P,

75(2)75(1)7(2) "Y(D’Y @.p
= —-M+J€V+m+J€T*m_3<iv+’Y(” Q ’

which we differentiate from equivalence theorems in
that the covariants appear only with numerical (mass)
coefficients.

We note that from the general-mass BF or FF
equivalence theorems it is always best to eliminate
covariants with mass sums (#.,,u,) rather than mass
differences (m_,u_), as the latter vanish in the equal-
mass limit. In Eq. (B3) it is also better to write uyy® - P
+my®-Q as F(mytu) (v P - PHy®-Q)—3(mi—py)
X(y@.P—y®.0Q) and then eliminate the sum as in
the equal-mass case, Eq. (53).

(iii) BB* equivalence theorems: Such equivalence
theorems first arise when the reaction in question has
at least four covariant labels. Hence we consider the
form €, o(PQ)evas(A) €ur(PQ)eys(A), where u', v/, n,
and » do not yet refer to specific particles with spin.
We then equate two of the possible determinantal ex-
pansions of this form. Assuming P-A=Q-A=0, this

(B6)

(B7)
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leads to
0=HPPQO+QQPP—PQPQ—QPQP) v
+QPPAA+AAPP—PAPA—APAP) yry iy

+ P2(QQAA+AAQQ— QAQA— AQAQ) o

+v(PAQA+QAPA+APAQ+AQAP—AAPQ

—AAQP— PQAA—QPAA) yryr i +H(P*Q*— %)

X (Gurv guv— G ulorn)+ (P*Q*— »?)

X (gur wlr At gurv = v Dy — Zunly Ay)

+le(g,,:,,P,,P,—i—g,r,P,‘zP,,—g,,fy:P,,P,.—g,,,P,,/P,»)

+tP2(gM’MQV'Q”+ g”'VQM'QM_ gM'V'QI‘Ql‘_ gm/Qu’QV’)

— (g u{ P,Q} st &l P, QY wiu— uv AP0}

—g}W{P7Q}#’V’) . (BS)
Since our choice of the 4-epsilon form in no way as-
sociates any particular label with any one momentum,
the above identity is also valid with u’ <> u. All other
permutations of the labels are equivalent to these two
independent forms.

Various equivalence theorems can be obtained from
Eq. (B8) and its permutation by converting A to either
P or Q, according to the subsidiary conditions.

For the case of 141 — 141 elastic scattering, we
define the 19 possible identical particle (m=p)
covariants as

Ki= (PPPP+Q00Q)w»w
Ks=(PPQQ+QQPP)uw,
Ka=(PQOP+QPPQ)wvw,
K= (PPPQ+PQPP+PQQO+QQPQ)wv w,
Ke=(QPPP+PPQP+QQQP~+QPOQ)wvw
:K:7=Q14'PV'QMP1‘) Ms:gﬂ'ﬁlQ"'Q"_l—g”"Pﬂ/Plﬂ
Ko= gu ulPr Pyt 83QuQp

K10= gu w{ L,Q}v»t g {P,Q}wu»

Ki1=gu» (PP4+QQ)w+ guw(PP+QQ)uwv
Kio= g (PP+QQ)ws+t gurs(PP+QQ)wr ,
Ki3= gurw PuQot g P Qv

K1s= gur QuPrt guQu Py

K15= g Pu Oyt guvPuQv

R16= uQu Prt gurQuP

Kir=guvlw, Kis=8guwudvv, Ki19=guwgu.

Since the BF and BB identities are valid for bosons
of any mass, they will be applicable in particular to re-
actions involving photons.

Ko=PuQu P,



