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Covariant M Functions for Higher Spin~

M. D. ScADRQN) AND H. F. JQNKs

I'hysics Department, Imperial Co/leg@, London SW7, England

(Received 18 March 1968)

Ke give a systematic treatment of high-spin M functions in the Dirac-Rarita-Schwinger formalism. The
main difhculty in writing such M functions is that apparently independent covariants are in fact related. %'e
derive these relations (equivalence theorems) and show how they may be used to obtain a kinematic-
singularity-free expansion of the M function. Many examples are given and the general pattern is discussed.
Ke also analyze the restrictions due to discrete symmetries and show how to choose invariant amplitudes
whose discontinuities are given by unitarity. The connection with the helicity formalism is stressed
throughout.

1. INTRODUCTION

~N recent years high-spin processes have been in-
~ - creasingly dealt with in terms of helicity amplitudes'
rather than the invariant amplitudes of the 3f func-
tion. ' The main reasons for this have been the generality
of the helicity approach, the simplicity of the partial-
wave expansion, and the very direct connection with
cross sections.

These advantages are, however, gained at the cost
of rather complicated analytic' and crossing' properties,
together with constraints which must be satisfied at the
boundary of the physical region' and at thresholds and
pseudothrcsholds. ' Then concentrating on one par-
ticular aspect of the probleIn, one can sometimes
circumvent these difficulties, as in the use of reduced
t-channel helicity amplitudes' for superconvergence'
or in the use of s-channel helicity amplitudes for
Reggeization. Nevertheless, it is clear that in general
it would be desirable to work in R formalism in which
thc dlTlculties do not RIisc.

The 3f-function approach in principle provides such a
framework. That is to say, a judiciously chosen set of
invariant amp1itudes wi11 satisfy simple crossing and
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analyticity properties and mill be free of threshoM
constraints; the difhculty of writing a partial-wave
expansion has to a large extent been overcome. ""

It is the purpose of this paper to provide a systematic
treatment of high-spin M functions in the Rarita-
Schwinger" (RS) formalism, thus complementing a
previous analysis' of on-shell propagators and vertex
functions. Ke have chosen to work with the RS for-
malism rather than with SI.{2,C)" because of the ex-
tremely simple way in which parity invariance can be
incorporated. Again, however, this simplicity is not
without its cost; the redundancy of components in the
formalism, implicitly removed by subsidiary conditions,
leads to complications which are the main stumbling
block in writing 3f functions foI' highcI' spin. Namely
apparently independent covariants are, in fact, de-
pendent when taken between RS wave functions, giving
rise to "equivalence theorems" (Sec. 5). This difliculty
is closely associated with the problem of choosing in-
variant amplitudes without kinematic singularities
(KSF) and certainly constitutes a drawback to the
M-function approach. %e wouM, however, like to
make a sharp distinction between these diKculties and
the corresponding ones in the helicity formalism: Our
difhculties are those of a choice of amplitudes, which
must be solved prior to any dynamical calculation; on
the other hand, the forward scattering conditions on
hcllclty amphtudes~ foI' example, have to bc Impose
afterwards on quantities which are the result of such a
calculation.

Section 2 is concerned with setting up the notation
that we use throughout the paper, and the general
kinematics of 4-particle scattering.

In Sec. 3 we discuss the conditions on the M func-
tion imposed by the discrete symmetries I', C, and T
and, where applicable, the statistics of identical
particles. It is shown how I'T invariance provides a
criterion for choosing invariRnt RIQplitudcs which Rrc
real analytic.
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In the next two sections we turn to the problem of
writing the M function explicitly as a sum of invariant
amplitudes multiplied by kinematic covariants con-
stx'Uctcd frolTl thc vcctoI's RDd 'y matrices of thc
problem.

Section 4 is concerned with the two simplest classes
of M functions: those for the reactions 0+0-+ 0+ss',
2+O~sp'+0 (class I) and those for the reactions
0+1 -+ 0+st', -,'+0-+ —,'+sII' (class II), where ss' (sr')
can be any integer (half-integer). III functions of the
flI'st kind CRQ bc wllttcn immediately; fol 3f fUQctlons
of the second kind one needs the "abnormal reduc-
tions"—decompositions of products of abnorInal
covRI'1Rnts 1Dto sums of QorITlal covarlants. These RI'c

dcllvcd floIQ gcQclRl ldcQtltlcs glvcD ln Appendix A.
Section 5 is concerned with higher-spin processes,

where even after performing the abnormal reductions
onc ls left with R sUlfclt of covRI'1Rnts which must
thcI'cfox'c bc related, Rs mentioned Rbovc, by cqulvRlcQcc
theorems. We divide the higher-spin M functions into
two classes: those for which the number of equivalence
theorems is small compared with the Dumber of covari-
Rllts (class III) Rlld tllose fol wlllcll tllcsc 'two numbers
are of the same order of magnitude (class Iv). For 3f
functions of the third kind, which turn out to be those
for BF reactions with two vector indices, normal 88
I"cRctloQs with foul vcctox' 1Qdlccs, and thc FE lcactlon
—',+—,'~1+1, we show how the general equivalence
theorems (derived in Appendix 8) provide us with a
DMRQS of reducing the covariants to an independent set
without introducing klDclTlRtlc slDgulRI'ltlcs; foI' thc
process I+I ~ I+I this turns out to be quite involved.
In principle, one couM deal with 3f functions of the
fourth kind in a similar manner, but in practice the
algebra would become unmanageable; for cxampl. e, for
the process —,'+0 —+ s2+I one can write 38 possible
covariants, of which 14 have to be removed by equiva-
lence theorems.

FinaHy, in Sec. 6 we compare our procedure with
other possible ways of proving invariant amplitudes
fI'cc of klncIQRtlc slngUlalltlcs.

P,fA, 51

If.=p+V=P+9 ~

A=-,'(p —q),
A'—=—,

' (p' —q'),
with s=E2.

The i channel (cf. Fig. 2) is taken to be the process
BI'+sl-+ s~'+8, , obtained from the s channel by the
crossing p' —+ p'= —p', lil' —& XI', q~ g= —

q, 4 —+ lj.l.
The natural momenta in this channel are

p' p=—c——v',
I'= l (p+ p—')

Q=—l(&+v'),
with t= 62.

Finally, the I channel (cf. Fig. 3) is taken to be the
process»+81'~ sl'+8~, obtained from the s channel

by the closslng g'~ g= —g, X2 —+ X2,' q
—+ q = —It,

Thc natuI'Rl ITloITlcntR RI'c now

&=p v'= p'—
A= 2(p+—C'),

A' 2(p'+=—V),

with u= K' and s+ t+u= rn'+vs"+p'+p's.
We shaH always label the particles so that the t chan-

llcl 18 a boson cliR1111cl (Lc., tile IIlltlal RIld filial states
have baryon number zero). For BF reactions the
fermions wiH always be associated with the momenta

p, p, In Rllalogy wltll IrE ScattCI'1Ilg. To obtain SIIllplC

crossing properties for the case of elastic scattering
(cf. Sec. 3), it is customary to write the general M func-
tion in terms of the f-channel natural momenta P, Q,
and h. We note that

X=I'+Q, E=J' Q,
'—

2. HELICITY AMPLITUDES AND M FUNCTIONS—NOTATION AND KINEMATICS whllc the vRI'ious scRlR1 px'oducts RI'c

We begin by discussing the generalized mE kinematic
notation which wc will use throughout the paper.

The s channel is taken to be the process sl+sm-+
sl'+s1'. Momenta and masses are defined in Fig. 1,
where by writing p„, q'„, etc., we mean that the particles
with these moxnenta are described by RS wave func-

convenient set of momenta ("natural ' momenta) for

8 Q—= I =-'„(s—I),

8'= -,'(m"+m') ——,'t, Q'= -', (1l"+si')—-', s, (6)
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Finally, we define the covariant normal vector lV„
as14

E„=e„(PQA),

which can also be written

N„= e„(p—'Qp) = —e„(A.'KA.) .

Then —1P is the determinant of Kibble, '~ whose
vanishing determines the boundary of the physical
region. It is related to c.m. scattering angles by

—E%=p, 'p,"sin'8„

and similarly for the t and u channels.
The T matrix for particles with spin has rather com-

plicated transformation properties under the action of
the Lorentz group, the helicity components being
"shuffled" by the so-called Wigner rotations. "By the
well-known device of introducing wave functions
(matrix elements of boosts) which carry the helicity
labels, one can define an amplitude (M function) which
transforms simply, in our case like a tensor-spinor,
under Lorentz transformations.

Thus in the s channel, omitting momentum labels,
we define M from the helicity amplitude by'7

{S)'S2', P )'X2'
i
T

i
S)S2,' X24)

=)P, oi'))P„, (&2') ~,„,, „)P oi))P„(&2) (11)

M function is channel-independent, we can also expand
it in terms of s-channel covariants:

and similarly for the I channel.
For FF scattering we have to de6ne a convention for

the order of the spinors. We define t-channel covariants
by u(g') Ou((t)u(p') 8u(p), s-channel covariants by
u(p') 8Cu~((I')u~((I)C 't')u(p), and u-channel covari-
ants by u(p') 8u(g)u(q') Ou{p)

3. SYMMETRY TRANSFORMATIONS
ON M FUNCTIONS

Before discussing the actual forms that kinematic
covariants must have in various high-spin reactions, we
establish restrictions on them due to invariance under
discrete transformations.

We shall write the M function in a symbolic way as
5Re, where (2 and p stand for the set of initial and final
vector labels. For fermion reactions it is imagined as
being sandwiched between one BF or two FF pairs of
Dirac spinors.

We remind the reader that high-spin wave functions
may be compounded from elementary spin-1 and spin-~~

wave functions according to"

One can go further and introduce scalar amplitudes
by writing the 3II function as a linear combination of
tensor spinors (kinematic covariants) constructed ex-

plicitly from momenta and y matrices":

5E„.„.,„„(P,Q) =g„A „(s,t)X„.„,.„„"(P,Q) . (12)

Xe '""(p) e '""(p)

ol)(p). . .e () J)(p)u()$)(p)

(14)

It is important (cf. Sec. 6) that the kinematic
covariants should be chosen in such a way that the de-
cornposition (12) does not introduce kinematic singu-
larities into the invariant amplitudes A„. There will
be as many i2)dePe22de22t kinematic covariants as there
are helicity amplitudes, viz. , X=+(2s;+1).However,
in high-spin processes one can in the first instance write
down more than this number of kinematic covariants.
Care must then be exercised to ensure that the reduction
to an independent set does not introduce unwanted
kinematical singularities.

In Eq. (12) we have expanded the M function in
terms of t-channel kinematic covariants" depending on
the 5-channel natural momenta: This is the most con-
venient form for imposing discrete symmetries or cal-
culating helicity amplitudes in that channel. Since the

'4 The notation here is ~„(ABC)=—~„p~A "B&C&. Our e symbol
is de6ned so that &0123=1.

~' T. W. B. Kibble, Phys, Rev. 117, 1159 (1960).
'6 E. P. Wigner, Ann. Math. 40, 149 (1939).' Here the covariant label p, for example, is symbolic for the

set of labels p1 ~ p J for a particle of spin J or J+~.
"Because of the subsidiary condition p p(p)=0, the explicit

dependence of the X's on 6 can be removed except for abnormal
BB reactions.

"Therefore we strictly should have written A„(s,t) as A „(')(s,t).

where J=Lsj, the integral part of s.
We shall follow the phase conventions of Jacob and

Wick, ' in which the antiparticle helicity wave functions
are given by

where $),——(—1) " and C is the Dirac matrix22 such
that C—'y„C= —y„~, with yP= —i.

A. Parity

Under the action of the parity operator, helicity
states" transform as ~y) ) —+ 2)) $), ~

—y, —X), where 2))

is the intrinsic parity. Hence the statement of parity
conservation for hehcity amplitudes is

(p)'4'p2'&2
(

2'~ yl)(lp24)
=22(—1)"'-"(—y)', —x&', —p2', —4'I

&(Ti —p), —X)) —p2, —4) ) (16)

where A. =3~—4, A.'=X~'—X2', and e is the "over-all

"In what follows we shall take y to lie in the 1-3 plane, in
which case C can be taken as gag.
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normality, " the product of the individual normalities

~.(-1)'.
By relating the parity-reversed wave functions to the

original wave functions,

4«( "(-1)=-bg(-) 4-(")(1),
~( "'(—P) = bVoN("'(1),

(17)

where g( )
= (1, —1, —1, —1), we can rewrite (16) as a

parity statement on the M function:

ORp-(f z) =mr(p)a(. )VoORp-(Ff Fz)vo (lg)

which just means that if the reaction is normal (zz= 1),
5K should be expanded in a set of proper tensors X+,
whereas if it is abnormal (e= —1), 5R should be ex-
panded in a set of pseudotensors X, containing one
over-all p& or one over-all Levi-Civita symbol e p».
The number of independent kinematic covariants X+ is
then E+=-',S for BF or FF reactions and X+=—',(X&1)
for 88 reactions, agreeing with the number of independ-
ent helicity amplitudes under parity conservation.

B. Time Reversal

Under time reversal, a one-particle helicity state
transforms as ~y,X) 4 z)z(—1)"

~

—
1&, &(). Invariance of

the S matrix under time reveral, Sf;=q~Sp;, zf, then
reads for helicity amplitudes

(p( 4 1)2 ) 2
~

T
~ p» &yz&(2)

7JT( pl) &(&) pzp&(2~T~ pl I Xl g pz I Xz )I (19)

ORp, (fi)= zzz)oz) r( zy—z)OR.p(Ci, Cf) (iyz) (23)

On the other hand, crossing of all four particles gives

ORp (fi)=i~OR p(Ci, Cf; {—p)), (26)

where P is the number of fermions and the notation

{—p) means that all 4-momenta are reversed Sin.ce
this reversal can be achieved for the kinematic covari-
ants by

X -(F,Q) =(—)"V.X.(—F, -Q)zV. , (»)
where J is the total number of indices, the scalar in-
variants .remaining unaltered, we can write (26) as

ORp. (f, )= '(—)'( v )OR-p(C, Cf)( V ), (2g)

which by comparison with (25) gives a constraint on
the over-all C, P, T phases:

variance for the S matrix, Sf,;=ggSgf g;, into the
corresponding relation for the M function:

ORp (f,i) =z&o( C—)ORp "(Cf,Ci)C '. (24)

As in the case of time reversal, this is in general a
relation between the M functions of different processes.
However, it will give restrictions on the number of in-
variants when applied in the t channel of an elastic pro-
cess, where both initial and final states are essentially
self-conjugate (cf. Sec. 3 E).

Combining the results of C and PT, we get the CPT
relation

where gz is the product of the four time-reversal phases.
Using the relations

fII'g GENT j- ~ (29)

4-*("'(-I)= g(-)4-("'(1),
~'""(—1))= »'"'(I)), (2o)

C. Charge Conjugation

Using the relation

vr(")(p) =C—'u(")(p) (23)

we convert the statem. ent of charge-conjugation in-

where T is the Dirac matrix such that Ty„l '=
II, („~y„~

(T=iyoyzC '), we wr—ite (19) as a time-reversal condi-
tion on the M function:

ORp (f i)=z)z'g(p)g( &T 'OR p"(Ti, Tf)T (21).
This only restricts the number of covariants for

elastic processes (cf, Sec. 3 E); otherwise it relates the
amplitudes of a reaction to the inverse reaction.

For future reference we note the condition for in-
variance under the combined transformation PT:

ORp (fi)=mz&rB 'OR p~(z, f)B, (22)

where 8 is the Dirac matrix such that By„B—'=y„
(B=iyzC '). —

Sf;——8)~+z(2zr) 4i&'4(pf —p;) Tg;, (30)
1eads

zi(Ty, T;(*)=—z p T —~*T„,(2~)484(p~ p„). (31)—
We would like to show that the kinematic covariants

can be chosen in such a way that the corresponding in-
variant amplitudes are real analytic and that the left-
hand side of Eq. (31) corresponds directly to discon-
tinuities of invariant amplitudes.

In terms of M functions, Eq. (31) reads

——,'GLOR p.(f,z) —OR.,(z,f)g

=—', P 5Kp(zz, f)(P OR (zz, z')(2zr)484(Pf P.), (32)—
where (P„ is the product of the spin projection operators
for the intermediate state and 5R—=yPR~yo.

The second term on the left-hand side can be related
back to OIY(f, z) by use of the PT relation (22). Taking

D. Discontinuity Condition

The unitarity condition for the T matrix, defined in
terms of the S matrix by
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E,+=-,'g(2 '+1)'(2s+1)'+(2s'+1)(2s+1)+—,'j—2~6~~-(f t) ~c—( )'—B '~-s'(f, &)Bj
for BBelastic scattering (s+s' ~ s+s')."

The above restriction can also be obtained from
charge-conjugation invariance in the t channel. This
g1ves

Then, if we always choose our kinematic covariants
to satisfy

Xs-(P,Q) = nc( )'—B 'Xs-'{P,Q)B,
(38)X~.{P,Q) =CX-s'(-P, -Q)C-',

the unitarity condition can be cast in the desired form

g (ImA. )Xp "(f,i)
which because of the CPT condition (27) is equivalent
to (37).

=-', g ax, (~,f)O„m.(e,i)(2~)'S'(p, —p.). (34)
F. Identical Particles and Crossing

into account Eq. (29), we can write the left-hand side for BF or FF elastic scattering and to
of Kq. (32) as

When all four particles are identical (in the s channel),
the number of covariants is further reduced by the
constraint

X„,,„,(P,Q) = X', „,,„(Q,P),

where in X' the spinor sets y(') and y(') are interchanged.
If only two of the particles are identical, crossing re-

lates the invariant amplitudes of one channel to those of
another. If we choose our covariants in the proper way,
each invariant amplitude will satisfy crossing sym-
metry. Ke distinguish three cases.

(a) If the t-channel initial state consists of two identical
bosons (momenta g and g'), crossing symmetry (s~N)
states that if we choose our covariants to satisfy

X, c{PQ)
—] QX, a(P Q) (40)

Tt, "' "'(s,t) =Q A„(s,t)x„'"' "'(P,Q), (35)
where t„o=a1, then

we have shown that

The discontinuity condition, Kq. (33), determines the
number of factors of ~ accompanying each kinematic
covariant. If we choose to write the 3SI function in terms
of the set of y matrices (1,ys, y„,y„ys, gy„,y,j), then for
processes such as elastic scattering where pc= (—)~ the
M function will contain no explicit factors of i. There
will be one over-all factor of i for processes such as
mX~AqA", where pc= —(—)~. For other processes,
such as 7rE ~ EZ, qq is not observable. In such cases
we can choose gc to be (—)~; the phases of effective
Hamiltonian (vertex functions) will correspondingly be
affected so that Born terms will be real.

As a byproduct of the discontinuity condition, we can
rederive the Hermitian analyticity theorem of Olive. "
Writing in an obvious notation

T, &~' "&*(s,t) =Q A„*(s,t) X„&"' "~(P,Q)
=g A„(s*,t)x„&"' ~&(P,Q),

in the s channel, or

T,t*(s,t) = Tt, (s*,t), (36)

A„&'&(v, t) = P„oA„&o{—v, t). (41)

(b) If instead the s-channel initial state consists of
identical particles, crossing symmetry {t++I) states-
that if we choose the s-channel covariants to satisfy

so that again the left-hand side of Eq. (31) corresponds
to a discontinuity when the A„are real analytic.

E. Elastic Scattering

x„, (~',~)=~p.'x,„"(h.', —~)

for identical bosons or fermions, respectively, then

A „&'&(v,s) = $„~A„&'&(—v, s),

(42)

As remarked above, for a general process only I'
reduces the number of covariants, C and T relating one
process to another. For elastic scattering, however, C
and T do lead to a reduction in the number of covariants,
as is well known.

For elastic scattering, with n=gg ——gq= j., I'T in-
variance, Eq. (22), gives

Xs-{P,Q) =B 'X.s'(P, Q)B (3"t)

Combined with the restriction due to parity that
X=X+, this reduces the number of independent kinema-
tic covarlants to

X i+=-'P(2s'+1)'(2s+1)'+(2s'+1)(2s+1) j
D. I. Olive~ NUovo CLmento 26' 73 (1962}.

where v=8 A.'=',(t u). -—
(c) Finally, if in the s channel one initial (p) and one

6nal (p') particle are identical and, furthermore, if the
other two particles are self-conjugate bosons, 23 then
charge conjugation and crossing imply that

A„{v,t)=rtc(„vA„( v,t)—
X„„{P,Q) = $.vCx„„r( P, Q)C '. —(45)

Such constraints as Eqs. (40), (42), and (45) indicate

"P. L. Csonka, M. J. Moravcsik, and M. D. Scadron, Ann.
Phys. (N. V.~ 4I, j. (&Wi)."For example, ~op —+ au'p. Crossing symmetry for m.X scattering
can be obtained from either (a) or (c).



TABLE I.BB reactions of the first kind. TABLE III. BB reactions of the second kind.

Reaction

0+0-+0+j.
0+0~ 0+2
0+0~ 0+3

I', Q
I'I', PQ, QQ

I'I'I', I'I'Q, I'QQ, QQQ

Reaction

0+1 ~0+1

0+1 -+0+2

(»Q)v (»Q)~
gI 'S

(P& &Q QQ)u1'~2'(»Q)~
&1 sl(»Q)F2

(.(&Q)'(»)'(Q~))."
f&~&.&~)

(~(&Q).~(»).~(Q~) )~1'~(»Q)~a'
gS X'I +$2'

that symmetrized forms of covariants such as

P.Q.+Q.P,-={P,Q)„,
P.Q.—Q,P.—=O',Qj... Lv",v.j, b.,Q j, «c,

should be used as far as possible.

4. M FUNCTIONS OF THE FIRST AND
SECOND KINDS—ABNORMAL

REDUCTIONS

Ke build up the kinematic covariants 6rst for
"simple" and then for "compound" reactions. %e shall
return to the problem of proving that the resulting in-
variant amplitudes are free of KSF in Sec. 6.

M functions of the 6rst kind are those for the basic
reactions (in spin space) 0+0 —+ 0+$II' and 2+0~
sp'+0, where sII' (ss') can take any integer (half-
integer) value.

For the basic boson-boson (J3&) reactions one simply
writes all possible covariants (in terms, say, of the
momenta P, Q); the number of kinematic covariants
wiB always be the correct number E+, In Table I me

give a few examples.
Metric tensors g„,.„,. do not appear in these covariants

because they vanish due to the tracelessness of the
spin s&' wave function. Similarly, because of the sub-
sidiary condition, the momentum 6„ is equivalent to
2Q, .

For the basic boson-fermion (BF) reactions we give
the first few sets of normal covariants in Table II.

Here the notation (P,Q) (1,Q) means the set of covari-
ants P„, Q„, P„Q, Q„Q, and so on (with Q= y„Q&). —
VVe have not written the abnormal covariants X ex-
plicitly since these are simply y5X+.

In place of 1 or Q we couM have used yqN; however,
this would lead to kinematic singularities, being related
to (1,Q) by the identity (cf. Appendix A)

y5N 2(P'—m ')Q —2nlpI+m Q 6, (46)

where tII~—=—,'(IIs'+m) and m =——,'(m' —III). We shall call
ldentltles sllcll Rs Eq. (46) Rbllol'lllal reductions.

M functions of the second kind are those for the re-

TABLE II. BF reactions of the first kind.

Rctlolls 0+1~ 0+SII Rlld 2+0~ ~+$II, wlllcll Rl'e

products in spin space of the above basic reactions.
One might have hoped to obtain the kinematic

covariants for these reactions as a direct product of the
basic covariants according to the factorization rule"

X,+=X,+Xy+X SXy+.

However, although one obtains the correct number of
covariants in this way, the corresponding invariant
amplitudes would have kinematic singularities. This
can be seen from the fact that, using these covariants,
the s-channel helicity amplitudes, as calculated from
Eq. (11), do not automatically have the right 0, de-
pendence (cos-', 8,)~"'+l~(sin-,'8,)~l' "~. Thus, for ex-

ample, the factorized normal covariants for 0+1-+
0+1 are PP, PQ, QP, QQ, and XX. Then one or more
of the corresponding invariant amplitudes must have
a kinematic singularity, since otherwise a simple cal-
culation gives (X =1

~
T~ X=1)~ sin'O„which is in-

correct. Homever, by replacing the factorized covariant
X„X,by g„, and assuming no kinematic singularities
of the new set of invariant amplitudes, we obtain the
correct angular dependence (X'=1

~
T

~

X= 1)~ cos (28,).
Ke therefore draw the general conclusion that at

least one new nonfactorizable covariant must be in-
cluded in the set of covariants for high-spin (compound)
reactions if one is to obtain KSF invariant amplitudes.
YVe relate factorized covariants to the new covariants
by means of abnormal reductions such as Eq. (46) or

yaS, = (-,'t —IN ')Ly. Qj+(sII+Q 6—2m P)y,

+2(m+Q„+mM„) Q—(2PQ.+Q DP„), (48)

X„Ã„=1Pg,.+(tQ' —(Q.h)')P„P„+(P EQ.6 fl)—
X(P,Q},.—2(pQ &—Q'P. h)tP Qj, ,

+(4("—P'Q')+~P' —(P ~)')Q"Q (49)

etc., obtained by saturating the identities of Appendix
A with various momenta.

Ke give the 6rst few KSF covariants of the second
kind for 88 reactions in Table III.

TABLE IV. BI reactions of the second kind.

Reaction

1+0~ 1+0
—,'+0~ a+0
—,'+0 —+ —,'+0

1, Q
(&,Q)(&,Q)
P z,JQ,Qg(~, q~

Reaction

2+0~ 4+I (~,e(~,e
v, Lv,Ã
I.'&&,&Q,QS0,Q)
(~,L~,Oj)(~,S'
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Here, for the abnormal reactions, we used the
abnormal reductions

[X,Pj;„=P A „„(PQ)+P'e„„(QA)+pe„„(AP),
[tV,Qj„„=Q Ae„.„(PQ)+ve,.„(QD)

+Q", ,( ), "')
—2O' Q}".=«" (PQ)+P A""(QA)+Q A""(AP),

which follow from Eq. (A2)."
The 6rst few KSF covariants of the second kind for

BF reactions are given in Table IV. Again X—is simply
y5X+.

Finally, we may include in class II the normal re-
action 0+1-+ 1+1.Only abnormal reductions are re-
quired to reduce all possible covariants to the KSF set,
which is (P,Q)„(P,Q), (P,Q)„g„„(P,Q)„, g;,(P,Q)„,
and g„.„(P,Q)„..

S. M FUNCTIONS OF THE THIRD AND
FOURTH KINDS EQU—IVALENCE

THEOREM 8

So far, in obtaining KSF covariants of the first and
second kind, we have followed the prescription of
Hearn, "viz. , simply to remove the "obvious" covariants
such as y~Ã„, E„X„etc., by abnormal reductions. How-
ever, a problem arises when, after all abnormal reduc-
tions have been made, one is left with more covariants
than there are independent helicity amplitudes. Such
is the case for the covariants of the third kind, occurring
in the reactions

—',+0~ 2+0, -,'-+0~ —,'+1, 2+1~ ~+1,

0+2 —&0+2, 0+1~1+2, 1+1~1+1.

For example, for E*x scattering there are eight
"natural" covariants (PP, {P,Q},QQ, g) (1,Q), of which
only six can be independent, while in AE scattering
there are again eight natural covariants (the combined
sets of GNO, " GGMW, " and ALV28), of which only
6ve are independent.

Thus seemingly independent covariants must in fact
be related when taken between Dirac-Rarita-Schwinger
(DRS) wave functions. The relations between covari-
ants for the examples above have already been given
in the literature.

'4Remember that because of the subsidiary condition d„ is
equivalent to —2Q, and 6, to 2Q, .

'5 A. C. Hearn, Nuovo Cimento 21, 333 (196j.)."M. L. GoMberger, V. Nambu, and R. Oehme, Ann. Phys.
(N. Y.) 2, 226 (I957)."M. L. Goldberger, M. T. Grisaru, S. W. MacDowell, and
D. Y. Kong, Phys. Rev. 120, 2250 (1960).

'8D. Amati, E. Leader, and 3. Vitale, Nuovo Cimento 17,
68 I'1960). We use the notation X8——I{')I{'&, XP=y5{')y5{'),

~{S),~(1) X~—~ (2)~.{1)~{'2).~{1) and g~ —&0 {2)0 {1)

For A~a scattering" they are

2P„.P„Q=m{P,Q}„„—mpg„„+P'g„„Q, (51)

m{P,Q};.Q= 2Q—'P;P.+2tQ'Q. +2p{PQ}".
+mug, .Q—("+4tQ')g. .. (52)

while for SE scattering" they are

m(y&" P+y&'& Q) =p(XB Xp)—+m'Xv ', tX—r )-(53)
y&'& Pp&" Q= m'X—p+pXr ,'tXg—, — (54)

75 7 'PVS t 'Q &( Xs+Xp+XA)
+P'(X r Xr) .—(55)

Such relations, which we term "equivalence the-
orems, "will always occur for high-spin processes. They
arise essentially because of the redundancy of com-
ponents of the DRS wave functions and are derived
in a general way" for all M functions of the third kind
in Appendix B.

The equivalence theorems not only provide the neces-
sary relations between seemingly independent covari-
ants' their form also indicates which covariants may
be eliminated without introducing kinematic singulari-
ties. Namely, covariants which occur with numerical
codBcients, such as those on the left-hand side of
Eqs. (51)—(55), may be eliminated in favor of the others
without dividing by factors such as v and t and thereby
introducing kinematic singularities.

Thus possible KSF sets of covariants are (PP,QQ, g)„„
X {P,Q}„.„, (QQ,g)„.„Q for Ã*m scattering and the so-
called "P-decay" covariants (Xs,Xr,Xr,X~,Xp) for
EE scattering. However, other choices are possible. The
covariant P„.P„Q may be used instead of {P,Q}„.„
in the Ã*vr case and (y "& P+y "& Q) instead of
Xv y&'& Py&" Q instead of Xp in the tV1V case.

Consider next the process ~+0~ )+1 (e.g. ,
tVm. —+E*p) with 12 independent covariants. The 14
possible (normal) covariants (PP,QQ, PQ,QP, g)„.(1,Q),
(P,Q)„(y,[y,Q)). can be reduced to a KSF set of 12
by removing, for example, P„P,Q and Q„Q„Q by
means of the equivalence theorems

P.P"Q= P.Q"Q+ .Q.-P"+l 'P. [v;,Qj
—m-Q'Q" —p Qg'"+(m+' —lt)

X (g. "Q Q.»") (56)—
m+Q'Q" Q= —m'P'Q"Q+ m-Q. »"Q+ (~+it~ Q) 2P,

x[~, ,Q3+p' QQ„.P, +(p' Q—
Q )P„,Q„,

+[P Q
—(m '—~t)7Q„Q„—Q'P„P„.

m'p QQ—'»"+ Qm'P. v" k(m ' —4t)Q;-—
X[y„.,Q)+(m, p ——,'m ~ Q)g„...Q

-{"+-.tQ -= Q —:('Q))g;;, (57)
"H. F. Jones and M. D. Scadron, Nuovo Cimento 52A, 62

(1968).
'0 From the present point of vievv the EE and X~m problems

are on exactly the same footing; the first two XX equivalence
theorems &vere originally derived |Ref. 28) by a different met:hod
which does not lend itself to generalization.
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which are special cases of the general BF equivalence
theorems (81) and (82).

The third BF reaction, 2+1 —& 2+1, for elastic
scattering (e.g., i&&rp —+ Np) has the set of 14 normal
covariants (PP,QQ, {P,Q},g)„„(1,Q), {y,E}„„,{y,Q}„.„,
LE,b,Qjj"., l:Q,b,Qjj"., Lv",v.j, »d bQvl".
=—y„Qy„—y„gy„, from which the covariants {P,Q}„,Q
and Q. Q„Q can be removed via the equivalence theorems
Lagain special cases of (81) and (82)]

2{E,Q}".Q= —2&2~LE",V.]—E'LVQV]".
—2&gl:l:E 6" Q3+»{QV}", (Sg)

2~Q"Q Q= —("+l&Q')Lv",v 3—~~LvQvj"
—~LL'E,vl".,Qj+g&lie, Qj".,Qj+2~Q'{Q,v}"

—2Q'{EQ}".+2~Q"Q' (59)

The general-mass FF reaction 21+12 ~ 12+21 has eight
independent normal covariants. Ke can choose the
setXs XI X —=y&2& P—y&I& Q X =—y g&2y&4&I&7&2&. P
X,—=kg&2&kg&I&y&I& Q, without introducing any kinematic
singularities, as can be seen from the general-mass FF
equivalence theorems of Appendix B.

In the equal-mass elastic-scattering limit the equiva-
lence of the f and I annihilation channels (or Fermi
statistics in the s channel) can best be exploited by
making a Fierz transformation to the five natural
s-channel covariants. " In the unequal-mass case, the
Fierz matrix is enlarged to an 8)&8 matrix; its exact
form is discussed elsewhere. "

Abnormal BFor FF covariants are constructed simply

by inserting an over-all factor of y~, that is, X =y5X+
for BF and either y~&"X+ or y5(')X+ for FF reactions.
The corresponding abnormal equivalence theorems can
immediately be obtained from the normal equivalence
theorems of Appendix 3 by the substitutions m' ~ —m'

(424+4—
& 2II ) for BF —reactions and either 2&g'~ —2&g'

(4424. 4-+ —
2&g ) or &&4'4-& —&I4' (&4+4—&

—
&I ), respectively,

for FF reactions.
BB reactions of the third kind have two general

equivalence theorems (cf. Appendix 8).However, when

a spin-2 particle is present, the symmetry of its wave
function reduces the equivalence theorems to one.

Thus for 0+2~0+2 elastic scattering, the nine
KSF covariants are (PEEP, PQPQ, EQQQ+QQQP,
QPPP+PPPQ, QQQQ)„, „,.„,„, and g„, „,(PP, {P,Q},
QQ, g)„,„.The covariant (EPQQ+QQEE)„, „,„,„, can
be related to the others by the equivalence theorem

l
cf. Kq. (88)j

4 '(PEQQ+QQPE). .2".,= —4P'Q. , Q., Q„Q.,
-2(Q' —:)P., Q..P.,Q..+4 (EQQQ+QQQE)„„„„
+-'~(E'Q2 —")g."g '.,+2k(Q2 '~)E2 "j—
X gv~'vyQvg'Qvg 2 &Q gvg'vgEvg'6 2

+21& g„, „,{P,Q}„,„,, (60)

3' B.Kellett, Nuovo Cimento (to be published).

the result of Rivers and of I'apastamatiou and
Pakvasa.

For the normal reaction 0+1-+1+2, there are
24 possible covariants, of which 23 are independent.
The covariant P„Q„;E„2Q„for example, can be re-
moved by the general-mass form of Kq. (88).

For 1+1~1+1 elastic scattering there are two
equivalence theorems relating the 27 possible covariants
to 25 independent ones. Specializing further to the
scattering of identical particles (e.g. , pp

—+ pp), these
numbers are reduced by Kq. (39) to 19 possible covari-
ants, of which 17 are independent. The problem here is
to write the equivalence theorems in such a way that
two covariants appear multiplied only by mass coef-
6cients and may therefore be eliminated without in-
troducing kinematic singularities.

With X» . Xj9 as dered in Appendix 8, we evaluate
Kq. (88) and then again with &4' and &4 interchanged.
Next we add and subtract the resulting equations and
group terms to obtain the equivalence theorems

42&gg(xg —X4) =4P'(2xg+ Xg—X4)
4&v(4X2+Xg+X4)+4S/24(Xlg XIV)

+lP'(XII —Xl2)+ f (Xlg—XI4)

+(S24+ t& ) (Xl4 X&2)—, (61)
t

84&22(XI+2X2) =4»(2xg+ Xg—X4)+2f(XI+5X2)

+2/X2+ gsf24(2XIg —XII—Xlg)

+2(sl —fP )Xg—(sl+ fP) (Xlg+ Xlg)

jP (2Xg+ XII+XI2)

+t& (2XIg—XI4—Xlg). (62)

From these forms it is clear that of the covariants
Xl Xg, we can elinlinate Xg—X4, and Xl+2X2 in
favor of 2Xg+Xg —X4, 4X2+Xg+X4, and Xl+SX2
without introducing kinematic singularities.

Having singled out all the relatively simple equiva-
lence theorems, we classify all remaining high-spin
reactions as having 3E functions of the fourth kind.
The dif6culties encountered in the analysis of these
reactions are of two types.

First, the previous basic equivalence theorems may
occur with permuted indices, as in normal BBreactions,
where, for example, in the processes 0+2~0+sl&,
0+1 -+ 1+ss the number of equivalence theorems is 1,
2, 3, ~, lors' ——2, 3, 4, , and in the process1+1 —+

1+s~ the number is 2 4 6 ~ . for s~ ——1 2 3
Second, new equivalence theorems exist for higher-

spin BF, FF," and abnormal" BB scattering. In the
BF case two "3-index" equivalence theorems can be
obtallled fl'OIII tile folIIIS ~ (pg&vQv)g~(rQp) all&i gp vl~(p Q)I
Xg„(P'yP). Theprocessesg+1-+ —,'+SI&or-', +0—+ —,'+sII

'2R. J. Rivers, Phys. Rev. 161, I687 (f96"j); N. J. Papasta-
matiou and S. Pakvasa, ibid. 161, 1554 (196/). There are, however,
some errors in the equivalence theorem as given in these references.

'3 B. Kellett, Nuovo Cimento 53, 625 (j.M8).
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have 2, 6, 10 . . . equivalence theorems for s2 ——7, 2,3,and the process —,'+0 —+ ~+spy has 2, 14, . for
so=0, 1. For example, in 23+0~ ~+1 there are 38
possible but only 24 independent covariants. Of the 14
equivalence theorems, two are new, four are the two
fundamental relations (51) and (52) with permuted.
indices, and the remaining eight are the fundamental
relations (56) and (57) with permuted indices.

We stress that in these latter cases the complications
that arise are of the same fundamental nature as in
previous cases. M functions of the third kind include
equivalence theorems of the 4-index 88, the 2-index
BF, and the 0-index E&'I" varieties, whereas 3E functions
of the fourth kind also include equivalence theorems of
the 3- and 4-index 8P and 1-, 2-, 3-, and 4-index I"P
types. Once these relations are tabulated, in a manner
analogous to that of Appendix 3, no new relations occur
for arbitrarily high values of the spins. Permutation
symmetry for high spins does not alter the KSF pro-
perties of the covariants. Furthermore, we think it
reasonable to conclude that the basic equivalence
theorems of the fourth kind (finite in number) always
contain terms with with constant (mass) factors, as is

consistently the case for equivalence theorems of the
third kind. In this scnsc wc have dcmonstrRtcd thc
covariant KSF devclopITlcnt of I'c actions 1nvolvlng

pRrt1clcs of al b1tl'RI'y spin,

6. KINEMATIC SINGULARITIES

The basis of our claim that the amplitudes in the ex-

pansion that wc have chosen are KSF is the method of
Hearn. 25 Namely, one takes the point of view that the
compte(e set of covariants which would arise from pertur-
bation theory have KSF amplitudes and that an ie-
dependeriI, set of amplitudes will be KSF if in reducing

to them from the complete set one does not introduce
kinematic singularities. These would arise from eliminat-

ing covariants which appeared in the equivalence
theorems multiplied by kinematic factors such as v, t,
etc. We have demonstrated explicitly that the equiva-
lence theorems for the M functions of the 6rst-third kind

can be cast into a form where the covariants to be re-
moved appear with cotntant {mass) coeflicients.

Another possible way of proceeding is to rela, te the
kinematic structure of our invariant amplitudes to that
of helicity amplitudes and in particular to the fact that
according to Ref. 3 the singularities of Tq &,

&" in s are
entirely contained in the factors

(cos-,'0~) ~"'+"~(sin-', 8i) ~"' ~~,

so that the reduced helicity amplitude

2'i q&"=—{cos-,'Oi) ~~'+"~(sin-,'8,)-~"'-"~Tq q&o

is KSF in s. Expanding the M function in terms of
t-channel natural momenta, we have

r, .,& i(s ~) =P ~,& &{s ~){~'~X.(~ Q) ~~) (63)

1n an obvious notat1on.
The crux of the proof is that because

e K) (g') .Q —~ (+) (g) .
Q

—e (+3 (p') jP=. e (+) (p) .p = 0

o"'(p')~'"'(p) = o

8=A++A

2=m+(A~+A )+(gs)(A~ —A ),
(64)

Thus A and 8 are KSF in both s and t but A~ will have
a kinematic pole in gs.
"For example, in ~N* scattering, Ref. 28, T&') c(:Bgq.
35 Strictly speaking, every invariant (scalar} amplitude crosses

into itself under a crossing operation. A crossing matrix ln the
covariant formalism simply relates one complete set of covariants
(say, the natural t-channel covariants} to another complete set of
covariants (say, the natural s-channel covariants}, as, for example,
the Fierz matrix of FF scattering.

in the 3-channel c.m. frame, the matrix (X'~ X„(J',Q) t X)
is "triangular"

t and also contains the correct angular
iactors (cos~H, )~~'+"'(sin20, )~"' ~t] for the M-function
expansions of Secs. 4 and 5. Thus the maximum
hclicity-Rip reduced amplitude T(qq&„. will be pro-
portional to just one invariant amphtude, '4 which is
therefore KSF. Thc next I'cduccd hcliclty amplitude
will be proportional to a linear combination of the first
invariant RInplitude and a second one, which is there-
fore KSF, and so on. Such a "triangularization"
always occurs with our choice of invariant amplitudes,
so that the proof that they are KSF in s is fairly
stl arghtfoI'% Rrd.

To show that the invariant amplitudes are also KSF
in t, wc switch to the expansion of the 3f function in
terms of the s-channel natural Inomenta. Again, since
e&+&(p') A'= e'~&(g') A. '=0, etc., in the s-channel c.m.
frame, the relation between the invariant amplitudes
A, &') and the s-channel reduced helicity amplitudes will
be triangular, showing that the A„&') are KSF in t.

Finally, we can relate the A„{'& to the A„&') by cross-

ing, writing A= —,'(P—Q) —6, etc. For BBscattering the
crossing matrix'~ is a purely numerical matrix; hence
in this case either set A„&'& or A„{'& will be KSF in

both s and t.
For BIi scattering the natural s-channel expan-

sion of the M function is of the form A+(X+gs)
+A. (I(.—gs). Again, the relation between A~ and the
s-channel reduced helicity amplitudes will be triangular,
so that A+ are KSF in t; similarly, 2 and 8, occurring
in the expansion A+BQ, are KSF in s. Now, however,

the crossing matrix is not purely numerical:



In FIl scattering we must make sure that the Fierz
crossing Inatrix has only constant coe%cients. This is
indeed the case for the GGMW'~ choice of amplitudes,
which are therefore KSF in s and I,. However, the
ALV" set Xp Xv Xy V"& P+V"'Q V&2' PV"& Q
%'ill have kinematic slDgulalltlcs ln f. This 18 also clcal'
from the equivalence theorems (53) and (54), where the
covariants to be eliminated, X~ and X~, appear
multiplied by R factor of I,.

Finally, we mention brieQy the method used by
GGMK'~ for EE scattering. Here, with the M func-
tion written as BRP =Q, A„(s,t)XP ", one constructs
the objects

+tt Tr@a'p' +p'p ~pa6 aa'

identities:
ga&a

gaPPP ~P gi feaP+g =—
CV'a

g$'P a

gaI p gar ~ ga

Qp gpss Q~
gv p gv v 8'v&

gal p ggi ~ ggI g

(A1)

+5&apyt'p pa'Qpy+5 gappyP8 gy8papp ga8+~y

gPvV «V&+g«vvPV&+gP~V»Vv

+g Pgv» g—vgP»+g»gPv

A special case of the latter is also useful:

V&»»Pv&v V»VP'Yv g«Pvv+g«vvP gPvv«(A4)

=Q L„„A„(s,t),

ttt
«

I'tttr' Trxa'p' +p'p Xpa +aa'

(65) Ourmetricisg«„=diag(1, —1, —1~ —1).The v matrices
are dined by tv„,v„)=2g„„,V»V„v»

——v„t. v» is dered
Rs +0+I72+g& so that p5 =—1.

APPENDIX 8
By the Hall-Wightman theorem the X„are free of

kinematic singularities. Therefore, by inverting (65),
so are the A„, except possibly where detL=O, which
turDs out Rlways to bc thc boundary of thc physical
region. This last possibility is rather diTicult to elimin-

ate. One couM hope to do so by demanding that
da/dt, given by

In this Appendix we derive the general BF, FF, and,
88+ equivalence theorems of the third kind.

(i) BF equivalence theorems: Consider the double
epsilon form»P(p'Qv)» (p'Vp) between spinors n(p')
and u(p). First expand it by determinants, Eq. (A1),
and then by spinors, Eq. (A4). Equating the results
glvCS-

do/dt~P A„*l.„;A„,

RIll Rll its polRrlzRtloQ moments bc 6nltc~ but fol' hlg
spins the procedure becomes quite impracticable.

Finally wc Dote that thc lnvRI'1Rnt RD1plltudcs Rlc
also free of kineInatic zeros and, in constrast to helicity
amplitudes, are independent at thresholds and pseudo-
thresholds. Insofar as wc have here displayed the
equivalence theorems and have previously" "indicated

Rnd
the method of covariant partial-wave expansions, we
believe that invariant amplitudes, vuth their simple
analytic and crossing properties, will continue to play an
important role in elementary-particle physics.

I 'YQv7p«='YpQv» v«Qvp=2v&(V»«Q) &

[P,v7P==PPv. -vPP-,
LP ~P7P»=PA P» PPP» ~

L~Lv, Q77p-= [[~,V7p- Q7.

In a similar manner, the form»p(P'Qv)» (QvP) yields

'P), Q7P.Q+P' Q[»V7P-Q
+P.QQ[v, p'7P-+2(~p'+~'P) Q[VQv7P-
+2[2P' QP Q—Q'(P' P—~'~)7[VP v-7
—l(p' P—~'~)[Q,[ QV77 -P+(~ '—P~'P) Ql:Q,v7P-

-Q[( P-'
P), V7P.+Q'[P', P7P-. (32)
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Thcsc cqURtlons Rlc VRlld fol RDy masses Rnd splnsq I.c.)
subsidiary conditions on the P and u labels. We could
convert p' and p to momenta P and 6 using p'=P+ ~D,
p=P —~~A, obtaining relations such as v, (p' P+tn'm)
=P'—»N

' —,'(p'. p —nz'va) =m '——,'t, etc. It ~s cl~ar
from these equations that either of the erst two terms
of Eq. (31) but only the 6rst term of Eq. (32) can be
clln11QRtcd w'lthoUt lntrodUclng klncn1Rtlc slQgulRI'ltlcs.

APPENDIX A ' COVARIANT IDENTITIES

All possible relations derivable among covariant
vectors and spinors follow from the three fundan1ental

"We remark that ALV only claimed this set to be the perturba-
tive set, and not necessarily KSF.

(66) O=LP P7 Q+ 'L( P+ P)-L Q77
+2(p' P+~'~)[VQV7P-+k(~p'+~'P) Q[vP v-7

+P' Q[P,V7P-+P. Q[v,p'7P-, (31)
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(ii) FF equivalence theorems: In a similar manner to
the BF case, we consider the forms « t&(gy(2)) « t&(P7('&),
e p„qh~o;~(')e py„d, ~r,„&", etc., between the natural /-

channel spinors. The latter gives

p+y(" P+m+7('& Q=u(xs Xp—)+p~m+Xv ', tx—r-
—p m Xg—p X,—m X(& (83)

and the former yields

y(2) Py&'& Q= m+p—+Xz+uXv+(m '+p ' ,'t)x—g-

+m p Xp+m Xg+p Xs, (84)

where X&—=y«(2)y«(»y "&P and X«=y«"'y«"'v '—"Q
We can obtain the third equivalence theorem by a
chiral transformation on Eq. (84) with m+«-u —m,
p+~ —p for consider forms such as «»(Ay(")« t&

X(~~('&)],

y5(2)y. (2)P/5(&)y. ())g—pX/ m p
+(m+'+p~' ,'t)xv p—m —Xs-

—(m+v"'P+ p+v(" Q) (85)

A similar analysis also yields the "spinor identities"

y(2) y(&)y('& Q=p+Xs+p Xr+m Xg+X&,
(86)

p('& y("y(2) P=m+XB+m Xr+p Xg+X(&,

along with their "chiral equivalents"

p«(2)p«())p(2) .p (&)p(() .Q
m~xr+—p~Xr pXp+y—(2) P,

p5(2)p~(&)p(2) .p(&)7(2) .P (87)

= —p+X,+m+X,—m Xv+y"'Q,
which we di8erentiate from equivalence theorems in
that the covariants appear only with numerical (mass)
coeKcients.

Ke note that from the general-mass BIi or IiIi

equivalence theorems it is always best to eliminate
covariants with mass sums (m+,p+) rather than mass
diRerences (m, p ), as the latter vanish in the equal-
mass limit. In Eq. (83) it is also better to write p+y(" P
+m~p"& g as -', (m~+p+)(v"& P+7"'Q)——,'(m+ —p+)
X(y('& P 7('& Q) and then eli—minate the sum as in
the equal-mass case, Eq. (53).

(iii) BB+ equivalence theorems: Such equivalence
theorems erst arise when the reaction in question has
at least four covariant labels. Hence we consider the
form «„(Pg)«„. »(t(,)«„(PQ)«„„»(t)), where p', u', p,
and v do not yet refer to speci6c particles with spin.
We then equate two of the possible determinantal ex-
pansions of this form. Assuming P A=g 6=0, this

leads to

0= t(PPggq QQPP PQ—PQ QP—QP)„.„.
+Q (PPt& 6+ t& APP PAPA APBP)u up

+p«(ggt a+a~gg —gaga ~gag—)„;„.
+ y(P&gt&, +QDPD+ DPt),g+ Agt&.P—MPQ

QAQ—P Pgt—& t). QPA—d )„.„.„„+t(P'Q' u')—
X(g. "g" g'—.g" )+(P'Q' ")—
X (g„„A„h„+g„.„t(.„.„—g„„.h„h„—g„.t( „t(:)
+tg (g„,„P„,P„+g„.„P„.P„g„.„.P„P—. g„.P„P—;)
+tP'(g. .g, e,+g".Q. e.-g. , Q.g.-g..g. Q, )
-t (g. .&p,e)".+g",(p,g)..-g. , &pg):

gu tP —Q)u" ) (88)

Since our choice of the 4-epsilon form in no way as-

sociates any particular label with any one momentum,
the above identity is also valid with p ~p. All other
permutations of the labels are equivalent to these two
independent forms.

Various equivalence theorems can be obtained from

Eq. (88) and its permutation by converting 6 to either
P or Q, according to the subsidiary conditions.

For the case of 1+1—+ 1+1 elastic scattering, we

de6ne the 19 possible identical particle (m =p)
covariants as

X = (PPPP+QQQQ) „„„„X=P„Q.P„Q, ,

X«= (PPQQ+ QQP'P)'""
X = (PQQP+QPPQ)„„„„,
X = (PPPQ+PQPP+PQQQ+QQPQ)'""
X«= (QPPP+PPQP+QQQP'+ QPQQ)'""
X7=Q'P"Q.P X8=g'.Q"Q+g" P'P.
XQ= gu'P"P +g" Q'Q.
x-=g. .&p,e)".+g,"(p,e)...
X =g'"(»+QQ)"+g"(»+QQ)'",
X»=g; (PP+Qg)u"+ g'.(PP+QQ)"
Xl(& gu'v'PuQv+ guvPu'Qu'

X)4=gu v'Qu v+ guvgu Pv',

X»= g "Pu Q+gu"PuQ"

X»=gu"Q'P+g' Q. ")
Xlv git'P'gtt P ~ Xls gita''fag&'P & Xt9 gite'P'gIs'P

Since the BIi and 88 identities are valid for bosons
of any mass, they will be applicable in particular to re-
actions involving photons.


