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From the Regge hypothesis for the high-energy scattering amplitude and the unitarity condition in the
s channel, the functional equations for the Regge parameters n(t) and P(t) are obtained. By examining
these equations, the lower bound due to Cerulus and Martin for the high-energy scattering amplitude is
derived. An additional assumption, that the scattering amplitude does not increase exponentially as s goes
to infinity for fixed cos9, enables us to show that the high-energy behavior of the scattering amplitude for
axed cosS is something between expL —ai (cess) (gs) In(s/ss) j and exp/ —as(cosS)gsj. The possibility of
the appearance of narrow dips in the high-energy scattering at relatively large momentum transfer is also
pointed out.

I. INTRODUCTION

EVERAL years ago Cerulus and Martin' derived
the lower bound of the elastic scattering amplitude

A(s, t) for fixed s in the region —1&s&1:

with

8= (134.6&11.7) mb(GeV/c) '
g= (1.24&0.01) GeV', for s sin8& 16.0 GeV'

~A(s, t)
~

~C expL —a(gs) 1n(s/ss))
8= (56.4&3.4) pb(GeV/c) '
g= (2.77&0.02) GeV for s sin8~ 20.0 GeV'.

Equation (3) violates the lower bound due to Cerulus
and Martin, as pointed out by Akerlof et al.4 Therefore,
if we take the lower bound of Eq. (1) seriously, it is
more desirable to fit 1n(sdo/dQ) with a linear function
of p plus possible dips.

In a previous paper' we obtained the functional
equations for Regge parameters ct(t) and P(t) from the
Regge behavior of scattering amplitudes and the
unitarity condition in the s channel. The purpose of the
present article is to derive the lower bound due to
Cerulus and Martin by solving the functional equations
for n(t) and P(t). In Sec. II we shall briefly review the
assumptions that were used in order to obtain the
equations for Regge parameters as well as these equa-
tions. In Sec. II the solutions of these equations are
examined and the upper bound, in addition to the
lower bound due to Cerulus and Martin, is derived.
In Sec. IV the general form of the high-energy scatter-
ing amplitude at relatively large momentum transfer is
given, and the possible appearance of the narrow dips
in this region of scattering is pointed out.

11. EQVATIONS FOR THE REGGE PARAMETERS

Ke start from the following two assumptions:

(1) The high-energy behavior of the quasi-two-body
scattering amplitude Ar;(s, t) is given by

do/Ct= B exp) —(s/g) sin8j, (3)
*On leave from the Department of Physics, Tokyo University

of Education, Tokyo, Japan.' F. Cerulus and A. Martin, Phys. Letters 8, 80 (1964).' T. Kinoshita, Phys. Rev. Letters 12, 257 (1964).' J. Orear, Phys. Rev. Letters 12, 112 (1964); Phys. Letters
13, 190 (1964).

4 C. W. Akerlof et al. , Phys. Rev. Letters 17, 1105 (1966).' J. V. Allaby et al. , Phys. Letters 23, 389 (1966); 25$, 156
(1967).

A, (s,t)=Du(s/s, )g P, ,(t)(s/s, )- +", (4)

where E is a non-negative integer to be determined.
In Eq. (4), s and f designate the quasi-two-body
(including two-body) channels.

6 T. Sawada, Phys. Rev. 156, 1848 (1968).
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for large s. It is remarkable that this lower bound was
obtained from the very general assumption that A (s,t)
is bounded by s~ when z is 6xed in the cut z plane, in
addition to the assumption (which is directly obtained
from experiment) that the total cross section o;.,(s)
is almost constant for large s. Later, Kinoshita' pro-
posed a hypothesis of minimum amplitude, which
states that the scattering amplitude A(s, t) realized
in nature is the minimum amplitude consistent with
the lower bound of Cerulus and Martin given in Eq. (1).
This hypothesis agrees with the measurement of high-
energy proton-proton scattering at relatively large
momentum transfer except in the neighborhood of
0=90'. It is worthwhile to point out that the gross
features of the elastic p-p scattering at high energy
(except for the forward cone) can be reproduced by
Orear's formula, '

sda/df) = A exp| —(p/pt) sin8j, (2)

which is consistent with the lower bound of Eq. (1).
Precise measurement of the differential cross section
for P-P scattering at 8= 90' by Akerlof et al.s revealed
some deviation from Ores, r's fit of Eq. (2). The devia-
tion of these data from Orear's formula is shown in
Fig. 1. On the other hand, usually high-energy p-p
scattering data are 6tted' by two straight lines on a
plot of In(do/dt) against s sin8, with a break at s sin8= 18
(GeV/c)':
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(2) When we write the unitarity condition by
separating the intermediate states into two parts,

&fl Tli& —
&fl Tli&*=» 2 &flT[n')&il Tln'&*

f n')

where the ln'&'s are the quasi-two-body intermediate
states and the ln")'s are the uncorrelated intermediate
states with more than two particles, then the second
term of the right-hand side of Eq. (5) is negligible for
relatively large momentum transfer, say

I tl larger
than some critical value

I
t,

l
.

We may justify assumption (2) in the following way.
At t= 0 the two terms of the right-hand side of Eq. (5)
have the same order of magnitude for large s, since
experimentally 0.,)(s)/ai, i(s) =0.2 for Pr) 10 (GeV/c).
Therefore we cannot neglect the second term in Eq. (5).
However, when —t increases from zero, the second term
of the right-hand side of Eq. (5) decreases faster than
the Qrst. Van Hove' has computed the t dependence
«&flTln"&&ilTln"&* to be exp( —oltl) «r ltl«lsl
when we take the intermediate state ln") as the
uncorrelated jet state. On the other hand, as we shall
see later, (fl Ttn')&il Tln')* decreases as exp( —an/ —t)
if ln) is a quasi-two-body intermediate state. Con-
cerning the intermediate states with a relatively large
number of particles, we can regard the states
ln") as approximately uncorrelated jet states and

(fl Tln")&il Tln")* decreases as exp( —attl). We can
expect that there is a tendency for (fl Tln"&(il Tln"&~
to decrease faster with

I tl as the number of particles
of the uncorrelated intermediate states ln") increases.
Thus for ltl ) It, l

we can neglect the second term of
the right-hand side of Eq. (5) and retain only the terms
with quasi-two-particle intermediate states. Equation
(5) becomes

$.o

0.5'

tl
I

I

I

1.5' 2.0
P 6teVj&

rIG. 1. Deviation of the elastic proton-proton cross section from
Drear's formula: R= P(sdcr/dQ)exp/(sd0. /d0) orearj.

Eq (4):

pin(s/so)] Imps;(t) (s/so) ~~')

dQ'
= 2Dn(s/so)]'" Q pt i(t')p; i*(t")

E=2g—1,

~(n) =2~(2n) 1, —

»»pr *(n) = if(2n) 2 Pr s(2n) p; a*(~g),

(10)

(11)

(12)

where w'e define

v ( t) ~())=a(t) Pf (1) pf, '('t) (13)

2
f(2~) = ~'(2n-)~" (2v)

--1/2

(14)

)((s/so)~(&')+~(&") (9)

By comparing the power of s/so and its coefficient on
the two sides of Eq. (9), we obtain'

where the summation k extends to all the quasi-two-
body states. In Eq. (16), t, t', and t" are connected by

(7)cos0"= cos8 cos9'+ sino sine' cosQ',

where 0, 8', and 8" are related to t, t', and t" by

t = —2p'(1 —cos8), etc.

For large values of s, we can replace the scattering
amplitudes in Eq. (6) by the asymptotic form given in

' L. Van Hove, Rev. Mod. Phys. 36, 655 (1964).

p dQ'

Immit;(s,

t) =
, P — Ar ~(s,t')A-;, *(s,t"), ,

gs ) 4'
«» ltl) lt. l (6)

n(i)) = 1—))T((ln)))/(1n2)), (15)

where T(x) is an arbitrary periodic function with
T(x+1)=T(x). Therefore, the Regge trajecotory u(t)
is essentially a linear function of g( t) If we separa—t.e

T. Sawada, Nouvo Cimento 48, 534 (2967); 51, 208 (1967).
If E= 1 and a(0) = 1, the total cross section increases as Ot ~~(lns).
It is interesting to assume that some of the meson trajectories
are also Regge dipoles; in this case the dipole form of the nucleon
form factor can easily be understood.

III. SOLUTIONS OF THE EQUATIONS AND THE
LOWER BOUND DUE TO CERULUS

AND MARTIN

Let us first find the solutions of Eqs. (10), (11), and
(12). Equation (10) implies that the leading Regge
trajectory is a Regge dipole' rather than a Regge pole,
namely, 1V=1 in Eq. (4). The general solution of
Eq. (11) is
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the signature factor from the residue functions by where

e~t —i~a(g) jy1
Pr. '(~) = — . 5r. '(n),

sins a(y)

e~t —i~~(&)j+1
(16) C(g) = —

~
sin-,'m.n(q) ~

sins.n(g)

where br„(rl) are real at least for some range of i1, then
Eq. (12) becomes

5r*(n), =kf(kn)
Lsin{ss u(—,'g))j'

&&2 4.~(2v)5'. ~*(k~). {17)

In order to eliminate the two factors in front of the
summation on the right-hand side of Eq. (17), we
introduce Br„(g)by.

5~.'(~) =f '(~)~(~)L»n'(2~~(~)) O'"B~.'(n), (1g)

and C(g) is a finitely oscillating function. If we combine
Eqs. (15), (26), and (27), the lower bound of the elastic
scattering amplitude is obtained:

»{En/»(~/~0) jl~(~,&) I) ~»IC(~) I
—Gi(~i)~

+L1—nT({in~)/{in2))3»(~/~o).

Since T(x) is a periodic function andg=&2P(1 —cos8)'",
Eq. {29)agrees with the lower bound of Eq. (1) due to
Cerulus and Martin when we fix cos9 in —1&cos8(i,
as long as we consider the exponential dependence of
the scattering amplitudes.

Let us introduce an additional assumption that the
scattering amplitude A (s,1) does not increase exponen-
tially for large s when cosa is fixed in —1&cos0(1, If
we define P(s, cos8) by

Equation {17)is reduced to

Br.'(n) =Z, B~..(kn)B'. i*(2n)

B{g)(s/so) &» '=exp/ —Z(s, cos8)g), (30)

then, in order to meet the assumption, H(s, cos8) must
be non-negative for large value of s, or more precisely

In particular, for the elastic scattering, i.e., for f=i,
Eq. (20) becomes

inf limP(s, cos8) & 0. (31)

B;.'(~) =Z I B',.(kv) I'.

Equation (21) illlplles

{21) Since, from Eqs. (15) and (23),

8'(s, cos8) =G(q)+ T{(in')/(in2)) in(s/so) ~0, (32)

we can estimate the upper and lower bound of H(s,
cos8) by using Eq. (24) and Eq. (31), respectively,

G, (it) = —(1/g) 1nB(g),
for large values of s, where c~ and c2 are constants.
Therefore, from Eqs. (27), (30), and (33), if we re-
member that T(x) is a periodic function, the high-

energy behavior of the scattering amplitude A (s,t) for
6xed values of cos8 is something between

then from Eq. (22) G(it) satisfies G(g) CG(-,'q), or more
generally

(24)G(2"q)~G(g), I=1, 2, 3,

When the functional value of G(q) is known in the basic

region exp L
—ai(cos8) (Qs) ln(s/so) j

alld expL 82(cos8)gs] ~

(253

where we have written merely B(g) for B;,;(ri) If we T{.{l )/{1 2)) l {/ )+introduce G g by ~ —inP (1—cos8)jT((in')/(in2))+c2~ 0 (33)

B(g) ~ expL —G(qi)g7,

then Eq. (24) gives an upper bound of G(g) in the
region of q) 2g(—1,). Therefore, the lower bound of

B(g) is
(26)

as long as we consider the exponential dependence. This
behavior agrees with the hypothesis of minimum ampli-
tude of Kinoshita. '

If we introduce a phenomenological parameter
{27) p '(p), which has the physical meaning of the inverseA (s,t) = ln (s/so) g

—'C (g)B(g) (s/so) s «&,

where qi is a point in the region D and connected, to q IV Ff~ROW DIpS Op d~/d~ gT RELgTIVELy
by g=2"gi with m=1, 2, 3, ~ . From Eqs. (4), (16), zgRGE MOMENTUM TRANSFER
and (18), the elastic scattering amplitude is
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of elasticity, Eq. (21) is then reduced to

(34)

and the nth factor vanishes at

n(2"it) = —2m with m=0, 1, 2, ~ . (40)

The general solution. of Eq. (34) is

1
1nB(rt) = itR((lnit)/(in2)) —P lnp '(2 "rt), (35)

p 2n+1

where R(x) is an arbitrary periodic function with
R(x+1)=R(x). In particular, if the reciprocal of the
elasticity, p '(z), is almost constant and is taken equal
to (p '), then the summation of the right-hand side
of Eq. (35) becomes ln(p '). Since

sdo/dQ=Dn(s/so)]'~~P(t) ~'(s/s, )'~&'& (36)

then using Eqs. (10), (15), (18), and (35), we can deter-
rnine the differential cross section up to two arbitrary
periodic functions T(x) and R(x):

Sp do
ln

Dn(s/so)]' s dQ

= 2itLR((lnit)/(in2)) —ln(s/so) T((lnrt)/(ln2))]

+f1 [n'fit'(it)]+lnL~F(it) ~'])—21n(p '), (37)

The gross feature of the elastic scattering is given by
the first term on the right-hand side of Eq. (37),
2Q(—t)LR+ln(s/so)T]; and the second term gives
the local structure —the dips. There are two types of
dips: periodic dips and signature dips. The periodic
dips occur when rt2f '(g) vanishes. Since

x= (Ing) / (In 2)

rt'f—'(it) is a periodic function of (1nit)/(ln2); this type
of dip appears in a periodic way and its width is rel-
atively broad. The signature dips occur when ~F(it) ~'

vanishes:

Since n(it) is a monotonous decreasing function, the
zeros of

~
F(it) ~' can be specified by two indices I and m.

The widths of the dips decrease very rapidly with e;
therefore, only the first few dips can be observed, which
correspond to small values of e.

It is well known that the scattering amplitude
A (s,t) is an analytic function of t on the cut plane if s
is fixed at a finite value. However, when w'e make the
asymptotic expansion at s= ~, in general, the coeKcient
of the leading term as a function of t goes not necessarily
have the same analyticity; very often it is not even
an analytic function. ' In fact, our solution of P(t) has
infinitely many dips and is not an analytic function.
For large but finite values of s, the very narrow dips
must be smeared out, since A(s, t) is an analytic func-
tion of t. Therefore, in the actual measurements we
can observe only the dips with appreciable width.

Finally, it is worthwhile to point out that our deriva-
tion is true only in the region s))~ t& )

~
t, ~, namely, at

relatively large momentum transfer but at small scat-
tering angle 0. At large scattering angle 8, we have to
add a background term to the contribution from the
leading Regge trajectory, since in this case the Regge
term p(t)(s/so)'&'& must be changed to P(t)(—s,) &'&,

where
—

s&
——2s/$2p'(1 —cos8)+4M'] —1, (41)

and this term does not dominate the high-energy
scattering amplitude any more. However, we can still
observe the narrow dips or bumps (which depend on the
relative phase of two terms) at the points where P(t)
vanishes, if the background term is a smooth function.
We shall comment about the regularity of the positions
of these dips and their shapes elsewhere. "
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)F(it) ['= g ]sin'f-,'mx(2"rt)])1/2"=0;
n=l

(39) ' For example, consider the entire function f(x,y) =(sinxy)/xy."T.Samada, Nuovo Cimento SS, 342 (1968).


