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Deck" and others have pointed out, the assumption
of extreme forward peaking of the $13 amplitude leads
the 2-3 c.m. projections of Fig. j. to be peaked in the
low-s region, producing, or quite possibly distorting,
low-mass enhancements in the 2-3 channel. Further

'8 R. T. Deck, Phys. Rev. Letters 13, 169 (1964).

work on rescattering corrections to the Deck mechanism
is desirable.
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Threshold electropion production on nucleons, e+X—+ e+E+x, is studied by current-algebra tech-
niques using the hypothesis of partially conserved axial-vector current, which have proved useful in describ-
ing low-energy meson-baryon elastic scattering and photopion production on nucleons. The electric and
longitudinal multipole moments Eo+ and Lo+ are calculated at threshold in terms of the form factors of
the electromagnetic and weak axial-vector currents. The experimental upper bounds on the slope of the
differential cross section as a function of (u(, the momentum in the slV c.m. system, i.e. , (f/)u(l (d a/
dOdS&0~), where S&0~ is the laboratory energy of the Gnal electron, are suKciently strong to relate the form
factors for various values of —k', the momentum transfer squared of the electrons. More precisely, in this
way one can relate the neutron charge form factor 6,"(k') to normalized axial-vector form factor Fz(k').
If one takes F~(k') to have the dipole form Fg(k2) = (1+k'/M~') ~ with Afar'= 1.42 BeV' which is given
by arguments based on chiral SU(2) XSU(2) and consistent with recent neutrino experiments, then the
resulting values of G,"(k') in the range considered, 0.2&k'&0.6 BeV', are consistent with information
about 6,"(k') from electron-deuteron and thermal-neutron-electron scattering.

I. INTRODUCTION

'N the past few years much activity in elementary-
- ' particle physics has been devoted to the complete
exploitation of the principle that the equal-time com-
mutators of the weak and electromagnetic currents of
the strongly interacting particles form a chiral SV(2)
&(SU(2) algebra. ' One of the most fruitful branches of
these researches has been the investigation of low-

energy processes involving these currents. The current
algebra together with the hypothesis of partially con-
served axial-vector current (PCAC) leads to simple
models which compare remarkably well with the pres-

*Supported in part by the U.S. Atomic Energy Commission.

t Work performed under the auspices of the U.S.Atomic Energy
Commission.

I Supported in part by the National Science Foundation.
~ For a complete review of the references on current algebras,

see S. L. Adler and R. F. Dashen, Current Algebras (W. A. Benja-
min, Inc. , New York, 1968); and B. Renner, Current Algebras
and Their App/ications (Pergamon Press, Inc. , New York, 1968).

ently available data on meson-baryon scattering. '
These methods have also been applied to the case of
pion photoproduction. ' Here we consider the extension
to pion electroproduction.

Electroproduction provides an interesting problem
both theoretically and experimentally, and has received
considerable attention. Earlier analysis utilized the
static model and stressed the importance of the electro-
production process in describing the nucleon form
factors. 4 Fubini, Nambu, and Wataghin' (FNW) noted

2 A. P. Balachandran, M. G. Gundzik, and F. Nicodemi,
Nuovo Cimento 44, 1257 (1966); Y. Tomazawa, ibid. 46, 707
(1966); K. Raman and E. C. G. Sudarshan, Phys. Letters 21,
450 (1966);Phys. Rev. 154, 1499 (1967);S. Weinberg, Phys. Rev.
Letters 17, 616 (1966).' A. P. Balachandran, M. G. Gundzik, P. Narayanaswami, and
F. Nicodemi, Ann. Phys. (N.Y.) 45, 339 (1967); M. S. Bhatia and
P. Narayanaswami, Phys. Rev. (to be published).

4 G. F. Chew, F. Low, M. L. Goldberger, and Y. Nambu,
Phys. Rev. 106, 1345 (1957); S. Fubini, Y. Nambu, and A.
Wataghin, ibid. 111,329 (1958);R. Blankenbecler, S. Gartenhaus,
R. Huff, and Y. Nambu, Nuovo Cimento 42, 775 (1960); P.
Dennery, Phys. Rev. 124, 2000 (1961).
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that the scattering amplitude could be made manifestly
gauge-invariant. Further, by examining the lowest-
order perturbation theory of strong interactions, they
found that the subtraction terms for their dispersion
treatment of this problem are associated with the pion
pole-diagrams.

The PCAC and current-algebra hypothesis have very
de6nite implications about the structure of the electro-
production process. There are at present two ways to
utilize these new theoretical structures. In one approach,
Adler and Gilman5 and Riazuddin and I,ee compare
the standard dispersion treatment of electroproduction
which utilizes pseudoscalar pion-nucleon coupling with
the PCAC-current-algebra approach, which in e8ect
utilizes pseudovector pion-nucleon coupling. Equating
these approaches and using a zero-pion-mass argument
to eliminate the continuum contributions in the latter,
they derive sum rules. As is the case in all electro-
production calculations, these sum rules place restric-
tions on the form factors.

In our approach, we consider the PCAC and current-
algebra hypotheses as supplying the entire structure of
the electroproduction process near threshold. This im-
plies that in this region the only possible coupling in the
Born amplitudes is the effective pseudovector coupling.
There is no use of the equivalence theorem which
characterizes the previous approaches. We then apply
the methods of Ref. 3 to derive threshold multipole
moments for the electroproduction process. Utilizing
these results as well as the experimental data, we
derive restrictions among the electromagnetic and
pseudovector weak form factors. Assuming a resonable
structure for the pseudovector weak form factor, an
analysis of the neutron electric form factor for 0.2~&k'

~&0.6 BeV2 is carried out.
The work is divided as follows. In Sec. II we present

the necessary kinematics and expressions for the multi-
pole moments in terms of invariant amplitudes. In
Sec. III we discuss the method of calculating the thres-
hold moments and the results are presented in Sec. IV.
The comparison of our results to the pion-electropro-
duction data near threshold and the resultant restric-
tions among the electromagnetic and pseudovector
weak form factors are presented in Sec. V. Finally, we
summarize our work in Sec. VI.

II. KINEMATICS

We assume the process e+Ar~ e+A+vr to second
order in the electromagnetic couplings, but all orders in
the strong couplings, proceeds via the diagram in Fig. j..
The initial (6nal) four-momenta of the electrons and
nucleons in the c.m. system of the final mE system are
Si(S&) and p&(po), respectively. Also in this c.m. sys-
tem, the virtual photon of four-momentum k= (ko,ir)
has a mass X'= —k' and the final meson has four-

' S. L. Adler and F. J. Gilman, Phys. Rev. 152, 1460 (1966).
6 Riazuddin and B. W. Lee, Phys. Rev. 146, 1202 (1966}.

FIG. 1. Diagram for the process e+N —+ e+N+m.

o = equi(So) v„g(Si)/(So —Si)'

~.= (qp 1 i.l pi).

(2.2)

(2.3)

F„contains the electromagnetic current of the strongly
interacting particles. Conservation of this current im-
plies the condition

k„I'=0.

Further the photon polarization e& satis6es the condi-
tion

k„e"=0.

Following Adler and Gilman, ' we factor the ampli-
tude into its isospin parts as

P~—g(+) Vi(+)+g(—) V~(-)+g(o) V~(o) (2.4)

where
g"'= XfV.*k(r.ro+ror. )X',

=Xf inc 2r~Xi y

with iP„xf, and x; as the isospinors of the fmal pion,
final nucleon, and initial nucleon, respectively. The
space-spin part of the amplitude can be expanded in
terms of six invariants as

exV) (+o) p V.(+, ,o)(v, vt), X )u(po)0(V;)oi(pi), (2.5)

momentum q= (qo, (l). The external nucleon, electron,
and pion masses are designated M, M„and p, . The
invariant energy and momentum transfer variables are
defined by

v= —(pi+ po) k/2M, vf) qk/2M——,

and

vt) —v= (Wo—Mo)/2M,

where W is the invariant mass of the final m+E
system.

The T matrix, defined by

Sfi=~fi+ (2') () (p2+q+k2 pl kl)

X (M'Me /plopooS10$2o2qo) Tfi) (2.1)

can be shown to have the form4

Ty;= e"F„,
where
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o(Vi) =k4v4{v,v),
0(V2)=4v0{pi+ P0,q),

O(V0) =v4{v q),

(2.6a)

(2.6b)

4)0———1 (2.6c)

The index l& of the multipole specifies the orbital
angular momentum l and the total angular momentum

J=l&~ of the 6nal pron-nucleon system. The hnear

relationship between the 5 s and the V s is given in
Ref. 5.

0(V4) =v4{v,pi+P0) 4iVv4—{v,v}, II4
——1 (2.6d)

0(V0) =4v0{k,q),

o(V0) =v4{k,v) *

1)4
———1 (2.6e)

I)0= —1 (2.6f)

6

0&V (+,0) Q P.(+,0)x @ g.g. (2.8)

where xr and x; are the nucleon spinors and the g s
are those of Ref. 5. The multipole expansions are given

by

with {A,B}=20B k—2kB 0—. The 4); are used to
specify the crossing properties of the associated ampli-
tudes

V;(+ ') (I,vs,i'.') = (&,+)I);V;("') (—4, 4)i,p', X'). (2.2)

Ke also expand our amplitudes in terms of the usual
c.m. frame amplitudes. These are defined as

III. METHOD

The method that we apply is a direct application of
the approach to pion-nucleon elastic scattering and pion
photoproduction developed by Salachandran e$ al.''
It is based on the observation that the threshold values

of the physical multipole Inornents of the process under

study are reached by a smooth extrapolation from those
found at zero-pion mass. %e discuss the off-mass-shell

(OMS) extrapolation of the electroproduction ampli-
tude and then the expansion of the OMS multipole
moments in energy (0) and x in the region Ix~ ~&i4 and
0~0. The quantities (( and 0 are defined as x= (—q')'"
and 6= go

—lc.

Ke begin by defining an amplitude G(0,x) which

satisfies the requirement

G.(0,x) I.=,=Px—= &qp0li. [PI).

This aInplltude ls defined by means of the usual

reduction formula to be

M)+ —— dy ~IPI(y) —~0PI+I(y)
2(l+1)

(1-y')PI'(y)

l(l+1)
(2.9a)

MI =— dy —PIP((y)+ &0PI 1(y)
2l

(1—y')
+~4 Pi'(y) (2 9b)

l(l+1)

Gi(0,x) =4(q'+i4')P. * de |)(x0)e "*

+ &P I I:(t.( ),i (0)jl p ) (3.2)

wllel'c (I) is tile Hci'Init1all pioll field wi'th isosp111 index
n. The reduction formula can be used to guarantee (3.1),
but it does not insure the uniqueness of (3.2). Having
noted this possible ambiguity which characterizes all

OMS extrapolations, we study G(0,x) as our extrap-
olated amplitude. The next step is the replacement in

(3.2) of the pion 6eld with the divergence of the axial-

vector current.
dy ~IPI(y) —~0PI+I(y)

2(l+1)

(1-y'), (1-y')
++0 PI'(y)+ &4 PI+I'(y),

(l+1) 4+2
I

dy ~IPI(y) —»PI+I(y)
2'l

(1-y'), (1-y')

l (f—1)

gyp a Cpu (3 3)

where [G[=v2[G+[, [G~[ being the PCA«oust»«or
(2 9c) the charged pion 6eld, I C+ I

= 0.935)4'.
Integrating by parts, we obtain

(q'+i')
G), (0,x) = — p * d'y e—44&b(y0)

C

(q'+i ')
X &P0[L~0 (y), J1(0)jl pi) — — -qV-*

C

LI+—— -- dy(ik0%4PI(y)+k0S0PI+I(y) j, (2.9e)'
2(l+1)

""t)(yo)&P IL~. (y),i (o)j[P )

=Ei (e,x)+R), (e,x), (3 4)

dyjk0%0PI(y)+k0%0PI 1(y)j. (2.9f)

~ A. P. Balachandran, M. G. Gundzik, and F. Nicodemi, Nucl.
Phys. (to be published); Lectures irl, Theoretical Physics (Gordon
and Breach Science Publishers, Inc. , ¹wYork, 1967), Vol. IXB,
p. 361.
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Gx'(e, N) = Gx ( (ce) kxk&G„(—e,x)/k' (3.5)

Obviously since the (0) and (+) isospin components
are already divergenceless the only modification arises
in the (—) isospin part. Since k. e=0, this added part
makes no contribution to the extrapolated scattering
amplitude

~Xi(x) I
o'=i'~Lfi ~ (3 6)

where Ex(e,x) is given by the covariant parts of the
equal-time commutator and Ei(e,x) contains all the
rest. In the usual spirit of current algebras, we assume
that the covariant part of the equal-time commutator
is given by the quark-model commutation relations,
The Schwinger terms of the equal-time commutator
and the retarded commutator, both of which are sepa-
rately noncovariant, combine in Rx(e,x) to form a co-
variant total. '%e are now in a position to discuss these
two covariant parts separately.

The Ex(e,x) term is given completely by the quark-
model commutation relations. The oddness in the iso-
spin indices of the commutation. relations require that
the Ex(e,x} be zero for the isospin components (0) and.

(+). We also note that the extrapolated amplitude
Gx(e,x) does not satisfy a divergence-zero condition in
its isospin (—) part. The commutation relations are
consistent with attributing this nonvanishing diver-
gence to both Ex' '(e,x) and Rx' &(e,x) parts of the
amplitude. The total amplitude can be made diver-
gence-free by means of the trick of FNW. ' In this case,
a new extrapolated amplitude is defined in terms of the
present extrapolation by means of the formula

the next order in the expansion parameter. In our case,
we find that the single-nucleon-pole diagrams give the
entire contribution to the lowest-order parts of Ep+ and.

Lo+ for the (+) and (0) amplitudes while for the (—)
amplitude the poles and equal-time commutator give
the total contribution.

It was noted in Ref. 3 that the combination of multi-
poles which is free of the threshold unitarity cut is the
proper function to use for defining an OMS. This
function is a regular function of If, at threshold. Thus in
analogy with the treatment of photoproduction we
define the on-mass-shell quantities with q'= 2xe+e' as

—',LEo„(e,p)+Eo„"(e,p)$= ei(p)+ fi(p)q'+0(q')
=ei( )+2vfi(i)e+0(C'), (3 ga)

otLw(e 11)+Lo+ (e I1)j=~i(11)
+2pmi(p) e+0(q'), (3.8b)

where Eo+ri (Lo+ir) is the continuation of Eo+ (Lo+) to
the second sheet reached by encircling the threshold
unitarity cut. For simplicity, we neglect the elastic
unitarity cut. Then, the functions with superscript II
are identical to those without it, and we can replace
the left-hand side of the above equations by the 6rst-
sheet functions. Using the method of Ref. 7, the effect
of this simplification can be estimated and found to
introduce an error of less than about 15jz. Thus we
define the extrapolation

1 8Eo+(e,x)
e, (x)=Eo~(o,x), fi(x)=-

2@ 86

where

V i, ( , )e=xeG'(e, x—) = e G(e,x) (3.'I)
1 BLo„(e,x)

li(x) = L,o+ (O,x), mi(x) =-
2p BE

The Ex(e,x) term is a covariant with the usual analytic
properties of a retarded commutator. The noncovariant
Schwinger terms and seagull graphs'' cancel to allow
the usual analysis of Ex(e,x) into a covariant pole term
and continuum. The pole term can be computed
exactly. The continuum contributions are the unknowns
which limit the range of validity of the ~,~ expansion.
Following the analysis of Balachandran et a/. ,

' we find
that the continuum will have contributions to the lowest
nonvanishing order in g and e in the lowest moments.
Therefore, we find that by neglecting the continuum
contributions we can calculate the lowest moments
exactly. This result is reminiscent of the low-energy
theorem of Lowl and of Gell-Mann and Goldberger"
In their case, they found that the low-energy or
Thompson limit of the Compton scattering amplitude
was given exactly by the pole contributions and that
the continuum or excited states contributed only in

8 I . S. Brown, Phys. Rev. 150, j.338 (1966}.' S. I.Adler and V. Dothan, Phys. Rev. 151, 1267 (1966).
'0 F. E. I os, Phys. Rev. 96, 1428 |',1954}.
"M. Gell-Mann and M. L. Goldberger, Phys. Rev. 96, 1433

I&954).

where E~(e,x) and Lo+(e,x) are the OMS moments
calculated from the amplitude discussed. above. Denot-
ing the separation into continuum (C) and noncon-
tinuum (Ã) parts, ei and li, e.g., have the form

ei (IC) —el (K)+e1 (I)
li(x) =1P(x)+lie(x) .

Using the method of Ref. 3 with k'&0 for estimating the
continuum contributions, we find

eie(x) =0(x), fie(x) =0(1)
l,e(x) =0(x), m, c(,} 0(1)

The OMS extrapolation of the higher moments, i.e.,
Mz /q, Ei+/q, and Mi+/q, as defined in Ref. 3, are
found to be 0(1).

IV. CALCULATION OF Ep+ AND Lp+
AT THRESHOLD

To obtain Ep+ and I.p+ using the method described
in Sec. III we first evaluate (3.4) taking the covariant



GLEESON, GUNDZIK, AND KURI YAN

single nucleon pole Rnd cqURl-tllTlc colmInutator contIl-
butions We 6nd that the V'+" of (2 2) then have the
following form:

tllell 'to tile lllultlpole IllollleIlts of ecjuatl oils (2.9) ~

Taking the noncontinuum part of the multipoles as an
approximation to the nonvanishing physical-threshold
multipole moments, we 6nd

Vl'+'&= —-,'BE(q') (I(q')FI(P B) (k') +
PB P—PB+P go+ (+,0) (0 )I)~BI(+,0) («—0)—

BE(0)g~o k'

4M (2M2+k')

—(1/M)GI(q')Fp(" B)(k'), {4.1a)

VI( &= ——,'Bilr(q') (I(q')FI(P)(k')

XLFI(P B) {k')+F2(P B)(k')g {4.4a)

BX(0)ggok'
1,~(+,o) (() )I)~EI(+,O) (« =0)—

4M (2M'+k')

k'
X FI(P B)(k')— Fg(P B) {k') (4.4b)

4M'

Vg(+ 0) = (e/4M pB)$(q')

X g( )F, '(k') W, (4.1)
PB P PB+P

Va(+ '& = (e/4M)N(q')

4M2FIP(k') 3k'
X GI,P(k')—

(2M'+k') 2 (2M'+k')

X O{q'» ""{k)
PB—P PB+P

XLFIP(k') ——,'Fgv(k')1, (4.4c)

V4(+ '& = (B/4M)X(q') 1.0+( &(0P)~ll( &(«=0)=
—BX(0)ogg

(I (q')F ~(P B& (k') a (4.1e)
PB P PB+P

(4.1f)

FIP (k') (2k'+5M2)
X 2GI,0(k')—

(2M2+k')

B(q')
V '-'= ( /k')X(q') F (k')+G (/) {41g)

F2P (k')k'
(4.4d)

8 (2M2+ k')M2

V6' '= (&/k')&(q')LGI(q')FI"(k') —GI(&)l (4.1h) 0 = (4M2+k')'",

In the above, the (+) and (0) parts have the same

signs Rnd we have made the following replacements: Gl, o(k') =GI,O(&=0,«=0) =-', GI()!)(h, (4.5)

FI'"'(o)=FI'(0) =1

F2P (0)= «P «"=3.70, —
(4 2)

F2B(0)= «P+«"= —0.12. (4.3)

z~ and. I(,
" are the anomolous proton and neutron

magnetic moments.
The V s of Eqs. (4.1) can now be used with the

results of Ref. 5 relating them to the 5 s of Sec. II and

B(q') Gl(q') =—(q'/2M—)G2(q'),

&(q') = ('+q')/C. —
Here f= —

(q
—k)', Gl and G2 are the axial-vector and

induced pseudoscalar form factors with Gl(0) =g&
=1.18 FI(P B) and F2(P B) refer to the isovector (V)
and isoscalar (5) electromagnetic charge and magnetic
form factors; they are normalized as follows.

with 2' the cosine of the angle between k Rnd. q in the
mE c.m. System.

We now consider the application of our above results

for the threshold multipole moments to the analysis of

pion electroproduction data near threshold. It is clear

that if the experimental data are sufficiently well

dctcrmlnccl, then OUl cxpI'csslons foI' go+ Rnd I0+ Rt

thrcshoM should provide us with information about
the vector and axial-vector form factoI's.

FlI'stq Yvc dlscUss the pl opcl'tlcs of thc vcctoI Rnd

Rxlal-vcctol form factoI's Rs R fUnctlon of k Rnd whRt ls

known of them from analysis of various experiments.
Ihen, we consider the form for the rhKcrcntial cross
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section for pion electroproduction near threshold as a
function of I.o+ and Eo+.

We 6nd that the experimental data near threshold
place a strong restriction on the charge-neutron form
factor Fi"(k') and the axial-vector form factor Gi(k')/gg

F~—(ks). Using a simple model for F~(k') which is
consistent with the recent Argonne neutrino experi-
ment, ~ we find that for values of k' between 0.2 and
0.6 BeV', Fp(k') is small and consistent with zero.

of Grossetete et al." analyzed by Hasselmann and
Kramer'~ give G," consistent with thermal neutron
scattering but with rather large errors. The data of the
last two experiments appear in Fig. 2.

Since in our range 0.2 &~ k &~ 0.6 the situation regarding
the value of G,"(k') is not clear, we leave this as a
parameter to be determined by our analysis. The re-
maining electromagnetic form factors are given by the
dipole fit (5.3).

Fi p (k')=Fi sp(k') —F],, s (k')

Fl, ss(ks) Fi sr (k )+Fi P(k )

(5.1a)

(5.1b)

by the form factors"

G " "(k') =F " "(k')+F " "(k') (5.2a)

G r, n(k') Fip, e(k') (k'/4M')Fsp, n(k') (5 2b)

A. Vector Form Factors

The electromagnetic form factors used above are
more conveniently related to experiment through the
various proton (p) and neutron (m) parts

B. Axia1-Vector Form Factor

The axial-vector form factor is not very well known,
though several measurements of it have been made in
recent experiments"" of neutrino elastic scattering,
i.e., i+re ~ p +p. In these experiments, the data are
fitted using the form factor F~(t) in the form

F~(i)=Gi(&)/g—~= (1 &/~~') —", (5 5)

where t is the momentum transfer squared and x= 1 or
2 with correspondingly different values of 3fz' deter-
mined.

In our analysis we take e= 2 for convenience. Then,
Gi p(k') of (4.5) becomes

p„=-2.79, p = —1.91. (5 4)

Experimentally, one 6nds that G,", G ", and G & are
determined and are well represented by the dipole fit'4

G "(k') G "(k') k'
Gp(k')= = = 1+ —,(5.3)

p& p& Sf'
where Mv'=0. 71 BeV' and p~ and p„are the proton
and neutron magnetic moments, respectively;

a'+k'+2k pgp)
'

G, ,(k')= lim g,
e=p, z=p 31 2 j

ks
p „(k')=r (1+Mg')

(21k l I
el)'- '

Mg4

(5.6)

On the contrary, G,"(k') is not very well known for a
large range of values of k'. The present evidence'4

indicates that G," is small and &0.2 but not zero.
Elastic electron-deuteron scattering below k'= 0.2 BeV'
analyzed by an appropriate model" is found to be
consistent with the slope

dG, "/dk'
l p s=p ——10.0193&0.0004 F',

determined from scattering of thermal neutrons on
atomic electrons. " Inelastic and quasielastic electron-
deuteron scattering experiments have also provided
information about G,". The Stanford data of Hughes
et a/" lead to complex values for G,"(k') for k'&0 5
BeV' and values consistent with zero for higher k'. '7

The data of Stein et c/." leads to values of G,"(k')
between 0.1 and 0 below k'= 0.6 3eV'. Finally, the data

"T.B. Novey, Invited talk at Washington, D. C. meeting of
the American Physical Society, 1968 (unpublished); (to be
published).

'8 F. J. Ernst, R. G. Sachs, and K. C. Wali, Phys. Rev. 119,
1103 (1960).' See, e.g. , G. Weber, in Proceedings of the 1967 International
Symposium on Electron and Photon Interactions at High Energy,
Stanford, 1967, p. 59 (unpublished)."V. E. Krohn and G. R. Ringo, Phys. Rev. 140, 1303 (1960).

(~~/kaid v)'= (»—
1 .)/g~= 3 99 (5.7)

where My is the mass parameter used in the double-
pole 6t of the vector form factors; see Eq. (5.3).
Schecter and Venturi" obtain the same result using
the SU(3) &&SU(3) chiral symmetry.

This result is in agreement with the preliminary

"E.B.Hughes, T. A. Gri6y, M. R. Yearian, and R. Hofstadter,
Phys. Rev. 139, 3458 (1965);P. Stein, M. Binkley, R. McAllister,
A. Suri, and W. Woodward, Phys. Rev. Letters 16, 592 (1966);
B. Grossetkte, S. Jullian, and P. Lehmann, Phys. Rev. 141,
B1435 (1966)."D. Hasselmann and G. Kramer, DESY Report No. 67/21,
1967 (unpublished).

'8 Enoch C. M. Young, CERN Report No. 67-12, 1967, (un-
published). A previous summary of results for the heavy liquid
chamber by C. Franzinetti, CERN Report No. 66-13, 1966
(unpublished), gave M'g=0. 9 0.26 "BeV for the dipole fit to the
form factor. Earlier published results for the CERN experiment
are in the list of Refs. 1—7 in the latter report.

"Fayyazuddin and F. Hussain, Phys. Rev. 164, 1864 (1967);
J. Schechter and G. Venturi, Phys. Rev. Letters 19, 276 (1967).

The value of Sf' can be determined in several ways.
The simplest approach is to utilize again the properties
of the chiral algebra. Assuming that the current algebra
is a manifestation of an exact asymptotic SU(2) )&SU (2)
symmetry, Fayyazuddin and Hussain" show that
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AI'gonQc Qcu trino clastic scattcl'lng I'csults where a
dlpolc 6t to thc cxpcllIncntRl dRtR glvcs Es+ +"=%20 iI„G.&(ks)+ 26FI(k')

Mg= I.j.&0.3 HCV.

However, it does not agree so well with the results of
thc recent analysis of the CERN'8 data. A dipole 6t
to their experimental neutrino elastic scattering data
gives

3f@=0.8j. 0.2o~' BCV.

+0th QUInbcrs RI'c obfalncd from Qormallzatlon-inde"
pendent 6ts. ' This difference in the two cxpenments as
mell as other results are as yet unresolved.

i — 1, 5.10C

k'
r~'"=%2s ()+ (y,—~.))@.'{4')4'

k'—kP (k')()+ + ,'EFi(k'-)-
4%2

C. Differential Cross Section for Electrolpion Production

The form of the difkrential electropion production
cross section near threshold in terms of the multipole
moments~ Using thc notRtlon of Scc. IIq ls glvcn by

H(ks, SIsz) —=

Iql dadSMz

2 4 1 0

I),F1(k')=—F Iv(k') —FI"(k'),

k' ()a') (4MI+k')I(s
0=—+— gg

C 2M (2M'+k')

(5.10d)

(5.11a)

(5.11b)

o. 3f 52o~ I 2m, '
H(ks, SIsz) =

2(2)r)s W SIsz k' k'

+ (sks —2SIsSs())
&o'&'

(5.8)

Here e= 1/137=es/4r and a/)| quantities are in the c.m.
system of the anal mE except those quantities with the
(L) superscript which are in the laboratory system. We
consider the slope of the differential cross section
H(ks S»z) as a function of the three-momentum

I q I.
In the pion electroproduction experiment2' which wc

shall Usc, only thc 6QRl electron ls observed. Thus
H(k', SIsz) is an incoherent sum of the Ir+Is and IrsP

final states Noting . that the corresponding )rsp and
x+e multipoles are given by

F~(+)+jvs„(s)
w+n ~P(Fs (—)+g~s (s)) (5 (i)

and the same for I.o+
'& and I.o+ ", then in terms of the

form factors of (5.1), (5.2), and (5.5) and using the
results of (4.4) for Fs+ and Ls+, we have the following:

(5.10a)

(5.10b)

20In addition, the data are Gtted in the CERN experiment
assuming FI"(k')—=0 to obtain F~I,'k'), vrhile in the Argonne
experiment it is assumed that G,"(k2)=0.

~» M. Gourdin, Nuovo Cimento 2I, 1094 (1961);Ph. Salin, ibH.
32, 521 (1964)."H. L. Lynch, J. V. Allaby, and D. M. Ritson, Phys. Rev.
I64, 1635 (1967).

TAex,E I. Experimental upper bound on II (k', 810~) at threshold
as weH as coeihcients of Eq. (5.8). Here we have A 0'$n/2(2s)'=—g
X (M/W) (Ssss/5)os) (1/k') and 8 =—Lk'/ko'(h)'g($k' —28)sSss).

B'(O',810J )
k SM Upper boand at

(BeV') (MeV) threshoM (p, =1)

0.1
0.2
0.3
04
0.6

200
400
200
400
400

11.0 X10 I

3.65X10~
j..05X10-7
1.40X10 7

0.27X10-~

2.7'0X10 "
6.35X10-"
5.55X10 "
9 18X10-I0

10.7 X10 '0

—11.15—230—415—322—18.9

Thc rather large systematic errors that occur in

pion-electroproduction measurements near threshold
because of the relatively large contribution due to the
radiation losses of the electrons make it impossible to
obtain accurate values of H(ks, Sion). The best one

might hope for is an upper bound obtained by taking
the measured points for H(k', SIsz) with the smallest
systematic errors, as near to threshoM. Rs possible, Rnd

making a linear extrapolation to threshold. The re-
sultant upper bound provides information only for those
values of k' and S~o~ where the values of the kinematic
coefficients in (5.8) place a strong restriction on Ls+
Rnd/oI' Fs+.

In Table I we give the upper bounds for H(ks, SIsz)
at threshold in Units of A=a= @=l determined. by the
above method from the data of Lynch ek al."These
values include their estimates for the systematic errors
as well as the values of the kinematic coeKcients that
appear in (5.8) for various k' and Sist. In all cases
except that for 42=0.j. BCV' and 5Io~=200MCV, we

find that ILs+ +"I' must be very nearly zero in order
thRt the bound bc satis6ed. This I"cstrictlon lcRds to
val'lolls valijcs fol ()FI(k ) givcil Mg RIld vlcc vclsa. III
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Figs. 2 and 3 we present the resulting values of G."(k')
and Fp(k'), respectively, for different values of M~'.
The error bars correspond to values allowed by the
experimental upper bound on the threshold value of
H (k',Sion).

It is interesting to note that the result of the models
of Ref. 19 which give M~'= 1.42 BeV' lead to values of
G,"(k'), which are positive and small and consistent
with results of thermal neutron scattering (dotted line
in Fig. 2) and other results'4"" for G "(k') in the
region 0.2~&0'~&0.63eV. Furthermore, the values of
M~' from the Argonne experiment, " in terms of this
analysis, are also consistent with what is known about
G,".

VI. CONCLUSIONS

In our approach we have related the vector and axial-
vector nucleon form factors to the threshold pion-
electroproduction amplitude by an OMS extrapolation
using PCAC and the algebra of currents. The mass-shell
electroproduction amplitude was then obtained by a
suitable smooth extrapolation of the OMS amplitude
back to the mass shell. Thus if one assumes that the
form factor G,"(k') defined above is approximately zero
in the range 0.2~&k'&~0.63eV' and that the axial-
vector form factor is given by a dipole fit Eq. (5.5),
then our analysis seems to suggest that 3f&~1.2—1.3
BeV, which is consistent with other estimates'8 of
Sf' and present neutrino experiments. "The fact that
such a technique has been successful in calculating
threshold effects in meson-baryon scattering' as well as
in pion photoproduction suggests that this pion-electro-

FIG. 3. Plot of Pl" (k') versus k' for various values of Mg'
determined by analysis of e+N —& e+N+m at threshold.

production analysis provides a useful relation between
G,"(k') and F~(k') for values of k' where electropro-
duction data can provide a useful restriction.

The question of continuing these results to the k'= 0
limit of photoproduction is intimately related to the
problem of gauge invariance in electroproduction. In
our case, we have carefully maintained a gauge-invari-
ant analysis of this process. The earlier calculations4 of
electroproduction retained the photoproduction limit
by including the extra pion-pole subtraction terms which
were implied by perturbation theory. These same terms
made the entire set of pole terms gauge-invariant in
the photoproduction limit. In the calculations using
current algebras and PCAC' ' this has not been possible.
We believe that range of values of k' considered here are
suQiciently far from k'=0 that this gauge-invariant
approach provides a valid description of pion-electro-
production.
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