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Amado has recently conjectured the following extension of Watson's 6nal-state-interaction theorem:
The phase of an amplitude leading to a final state with three strongly interacting particles, when considered
as a function of the relative energy of one pair, in a given-pair partial wave, all other variables being held
constant, is the scattering phase of that pair, 8. This conjecture is investigated in two simple, complementary
models. In the 6rst, a 6nal-state interaction is grafted on to a speci6c production amplitude; as expected,
if the production amplitude is real, the phase of the total amplitude is B. The question of the phase turns
out to be intimately related to the question of whether triangle singularities are observable or not; Amado's
results on this point are corrected. In the second model, the production mechanism is ignored and attention
is focused on the possibility that there may be two ("overlapping" ) resonances in the anal state. Here the
theorem does not hold, in general (however it does turn out that the corrections are either small or easi1y
calculable). In this case too, the phase question is linked with the observability of triangle singularities, and
the rather negative conclusions reached by Schmid (who also treated this second model) are criticized. A
basic tool is a theorem that the on- and off-shell parts of a rescattering graph contribute equally near a
singularity which is near the physical region.

I. INTRODUCTION

ET Ti(s) be the /th partial-wave amplitude for a
& reaction 3+8—+ 2+3, where the particles 2 and

3 are strongly interacting, with s the square of the 2-3
energy in the center-of-mass (c.m. ) system. Let t2g'(s)
be the 3th partial wave amplitude for elastic 2-3
scattering, with phase b. Then unitarity and time-
reversa, l invariance imply Watson's theorem': That part
of the phase of Ti(s) which arises from the 2-3 final-
state interaction (f.s.i.) effects is 8, for s in the region of
elastic 2-3 scattering. %hen combined with analyticity
assumptions, this result implies' that Ti(s) can be
factored into a part which varies slowly with s, and a
part (the "enhancement factor") which is rapidly
varying, and which, to a good approximation, is pro-
portional to 123'(s). The y1V~7r1V reaction near the
(3,3) elastic m1V resonance is a well-known example of
this eGect.

What happens when there are three strongly inter-
acting final-state particles? Phenomenologically it is
certainly the case that two-body resonances do show up,
essentially undistorted, in three-body final states
(compare the 1V~ seen in 1V1V —+iV"1V~ 1V1Vm- with
that in y1V~ 1V*—+ Nor). The hope that this is'always
the case is indeed the basis of most measurements on
unstable mesons, for example. But a detailed theoretical
justification is still lacking. A full analysis is com-
plicated, for a start, by the fact that a production pro-

* Supported in part by the National Science Foundation under
Grant No. NSF GP 6036.

~K. M. Watson, Phys. Rev. 88, 1163 (1952); an excellent
modern discussion is contained in Ref. 2.' J. Gillespie, Final State Interactions (Holden-Day, Inc. , San
Francisco, Calif. , 1964).

cess 2+8~ 1+2+3 needs five kinematic variables
to describe it. To make the problem as much like the
A+8~ 2+3 case as possible, we can imagine fixing
three of these variables (for instance, the total energy in
the over-all c.m. system, and two invariant momentum
transfers), and then performing, in the 2-3 c.m. system,
a partial-wave analysis with respect to an angle vari-
able, leaving ourselves with partial amplitudes Fi(s)
to consider. ' We can now ask, what is the phase of Fi(s)?

Amado has recently conjectured4 that, just as in the
A+8 +2+3 case, the —phase of Fi(s) arising from
the f.s.i. is that of t23 (s). At first sight this is a sur-
prising thing to hope for. The work. of Faddeev'
showed the value of thinking of a three-particle ampli-
tude as a sum of three pieces, each consisting of all
possible rescatterings in which a given pair interact
last. Surely it is only the piece Fi (s), in which particles
2 and 3 interact last, that has a signi6cant phase varia-
tion as a function of s, its phase being just b. Amado
shows that this is false: First, the multiple scattering
formalism shows that although the final factor in Iit'
is the 2-3 amplitude t23', preceding this there is a factor
Go, the free three-particle Green's function, which does
rot have a slowly varying phase. Thus Got»' does not
have the phase b. On the other hand, Amado shows
that in the complete amplitude F&, for every term ending
in Got23' there is another (which he calls the "feeding
term"), identical except that it does not have the final

3 It is true that this is somewhat artificial experimentally, since
a projection on one axis of the Dalitz plot sums over all l; but
if one 2-3 wave dominates (e.g., is resonant, or at low energies),
our discussion is adequate.

4 R. D. Amado, Phys. Rev. 158, 14i.4 (1967).
5 L. D. Faddeev, Zh. Eksperim. i Theor. Fiz. 39, 1459 (1966)

)English transl. : Soviet Phys. —JETP 12, 1014 (1961)g.
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Fxo. 1. The peripheral, or
stripping, graph for the process
1+(23}-+ 1+2+3. The mo-
menta are referred to in the
text.

ag
(as)=

FH:. 2. The rescattering correction
to Fig. 1.

factor 60123'. The combiNOHON therefore has a factor
(1+Got2q'), and this, Amado shows, does have the phase
8. Amado s main point, in fact, is that it is the coherent
combination of the "1"and the GO/23' which is essential
to give the total amplitude a final factor with the phase
8; more speci6cally, it is the imaginary, or on-shell
(5-function) part of Go which combines with the "1"
to produce the phase 8.

But this does not constitute a proof of the conjecture,
as Amado points out, because the rest of the total
amplitude (i.e., the bit preceding the 1+Got2s' factor)
is, in general, complex. The hope is that this part
varies slowly with s. It is fairly clear that one cannot
decide whether this is so or not by a general argument;
it is a question of dynamics, i.e., of models. Our purpose
here is to investigate Amado s conjecture in two simple,
complementary models, to see how the presence of the
third 6nal-state particle may modify Watson's theorem.
In both cases, as we shall see, the question of the phase
of F~ is to some extent bound up with "triangle singulari-
ties"; we hope that our discussion will correct some
confusions in the literature on this subject.

8(s')
F(s)=ea C exp — — ds'

ps —s

F 8(s')
+B(s) cos8+ exp — ds'

gs —s

g (s')D(s')B(s')
X — — — — — ds', (3)

g s —s
where

1 8(s')
D (s) = exp —— ds')

gs —s—$e

is the denominator function of p, and P stands for
"principal part. "C is an arbitrary constant not deter-
mined by Eq. (1).Equation (3) ls obtained from Eq. (2)
by separating out the 8 function and principal-value
parts of the integral in (2), using the identity

+is8(—a)—
x l6 x

g*(")F(s')
F(s)=B(s)+— ds', (e —+ 0) (1)

m'g s —s—$e

where g= e*' sin5 (our previous pt23'), and where B(s)
is some "driving term"~ which does not have the right-
hand cut Ii. : s& (m2+ms)' of g(s). Equation (1) just
says that there are terms in P', namely the part F'„
which have the elastic-scattering cut E, with a dis-
continuity given by unitarity, and other terms B(s)
which do not have the cut E. although they may be
complex. The role of Go is played by the d.ispersion
denominatory (s' s ie) '——

The solution of Eq. (1)may be written in either of the
two following forms (assunllng convergence):

C
F(s)= +B(s)+

D(s) m.D(s)

g (s')D(s')B(s')
ds' (2)

s —s—ze

6 R. Omnes, Nuovo Cimento 8, 3'76 (1958}.
YWe prefer this to "feeding term"; the choice is a matter of

taste.

II. GENERAL FORMULATION

We use dispersion theory. In these terms, the general
problem is to determine the function F(s) (we drop
the t now, taking s waves for simplicity) from the
integral equation

From Eq. (3) we can already draw one simple, and
indeed venerable, ' conclusion: If B(s) is real throughofst
It., F(s) has the phase 8. Hence in any model in which the
"driving term" is real, P will have the phase 6 exactly.
On the other hand, if B(s) is complex, no immediate
deduction about the phase of F can be made.

To proceed further, we must therefore specify a
particular B(s).We will consider two cases—one a real
B(s), the other a complex one. In the fjrst case we
shall of course recover the result that the phase of E
is 5; but the calculation is instructive, and complements
(and corrects) the similar calculation presented by
Amado in Sec. III of his paper. In the second case,
our choice for B(s) will produce essentially the model
considered by Schmid'; it will turn out that there are
circumstances in which the phase of J"is definitely not b.

III. FIRST MODEL: PERIPHERAL GRAPH
AS DMUING TERM

Consider the process 1+(23)—+ 1+2+3 where (23)
is a bound state of particles 2 and 3.A familiar approxi-
mation to this amplitude is the peripheral, or "strip-
ping, " term shown in Fig. 1. Ke consider the s-wave
projection of this in the 2-3 c.m. system, as our driving
term B(s); it is the driving term for Fig. 2, which is the

8 See, for instance, G. F. Chevy, M. L. Goldberger, P. E. Lour,
and Y. Nambu, Phys. Rev. 106, 1345 (1957).

9 C. Schmid, Phys. Rev. 154, 1363 (1967).
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igA q+ Q+inq-ln-
2Qq q Q+in)—

(5)

Our model is now to let F(s)=¹+Eq.As can be
seen from (4) and (5), both S'z and X& actually depend
on Q as well as on q (i.e., s). However, we shall consider

Q to be fixed, which is why only s has been written as
the argument of F.

'0A detailed discussion of the relation between rescattering
corrections in dispersion theory and Feynman triangle graphs is
given by I. J. R. Aitchison, Nuovo Cimento Bs, 434 (1965).The
relevant nonrelativistic triangle graph for our presen. t purposes
is discussed in this reference, and in the works cited in Ref. 11.

'~ See, for example, R. Karplus and L. S. Rodberg, Phys. Rev.
115, 1058 (1959);also V. V. Komarov and A. M. Popova, Zh. Eks-
perim. i Teor. Fiz. 45, 214 (1963) LEnglish transl. :Soviet Phys. —
JETP 18, 151 (1964)j; and A. M. Popova and V. V. Komarov,
Nucl. Phys. A90, 625 (1967).The result is derived by evaluating
the integral in Eq. (2) in the nonrelativistic limit.

same as Fig. 1, except that a anal 2-3 scattering is
tacked on, so that we call it the rescattering correction
to Fig. 1. I.et us call the amplitudes of Figs. 1 and 2,
respectively, Eq and Eq, and denote the s-wave pro-
jection of fez by i%& Th. e approximation. F=Ez+X',
is then the model considered by Amado in Sec. III
of his paper.

In our dispersion theory formulation of Sec. II
above, the terms Ez and E& are, respectively, the second
and third terms on the right-hand side of Kq. (2); C is

set equal to zero. To avoid mistakes, it is best to work
with explicit expressions for these terms. For Fig. 1,
this is straightforward; for Fig. 2, we can get an ex-

plicit expression if we use nonrelativistic kinematics
and assume that the 2-3 amplitude g is such that
gD=Ep, where p is the 2-3 phase space factor and A

is a constant. "%e let all the particles have equal mass

m, and assume that tii, the 1 3amplitude -appearing il
Figs 1and .Z is constant (though not necessarily real).
This last assumption is the key one in this model; the
second model we consider will go to the other extreme
and ignore the single-particle-exchange pole of Fig. 1
but will consider a resomaet amplitude t~3. Our driving
term is then (taking the s-wave projection in the 2-3
c.m. system of the pole term indicated in Fig. 1)

(q+Q+in) (q+Q —in)
Eg In ————,(4)

4Qq (q
—Q+i )(q Q i )

where A stands for the product of the vertex (23)~ 2+3 and t». Also, /nims the (23) binding energy,
and Q= P p,—pi~, where p;, pi are the 3-momenta of
the incident particle 1 and of the Anal particle 1 in
the 2-3 c.m. system; q is the magnitude of the 3-momen-

tum of particle 2 or 3 in the 2-3 c.m. system.
For Fig. 2, i.e., the third term on the right-hand

side of (2), we obtain"

Inspecting Kqs. (4) and (5), we see that we can
rewrite F as

i~ (q+Q+in) (q
—

Q
—in)F=e" 1qq cosh+ In . (6)

4Qq (q-Q+'.)(q+Q-'-)—
In this form it is not immediately obvious that F has
the phase 5. But the argument of the logarithm in (6)
has modulus unity, while that of the logarithm in Nz
has zero phase, so that (6) can also be written as

de" (Q+q)'+n')F= cosh ln
4Qq- (Q—q)'+n'&

+2 sin&(tan '
I q-Ql

tan—-' — . (7)
q+Q-

It follows that only if A is real will the phase of Ii
be 8, but in so far as A is approximately constant as a
function of s, the phase variation of F will be given by
that of b.

We would now like to comment on Eq. (7), which
is to be compared with Eq. (16) of Amado's paper,
from the point of view of triangle singularities. The
first term on the right-hand side of Eq. (7) comes from
combining the driving term IVY with the b-function part
of the (s' —s—ie) denominator in Eq. (2): It is the
"1+on-shell part of Go" for Arnado. This combination
results in a factor cosh multiplying a term which has a
logarithmic singularity ("triangle" singularity) close
to the physical region at q=Q —in. Notice that this
singularity is present in the complete expressions for
both S'q and 1Vq. Amado claims that it follows that if
the 2-3 amplitude resonates, the singularity will
disappear, being multiplied by cos5=0. This is not
true, however; for although this term is of course zero
if cos5=0," the other term in Eq. (7) is also singular
at q=Q in, as can—easily be verified. In other words,
the og shell Lprincipal--value part of (s' s ie)—'j —con-
tribution to Eq is also singular at q= Q in: -Th—e
triangle singularity is sot uniquely contained in the
on-shell (8-function) part. Further, since the oII-shell
part is multiplied by sinb, it will certainly be present
even if 6= 2'.

This seems to be a new, or at least little-known result.
It is amusing to check explicitly what is going on. The
on-shell part of cV& is, from Kq. (2),

Eg,. igEg, —— (g)

so that the total on-shell contribution to F is

P, =X~+N~„=e"

costs%~.

But subtracting (8) from (5) to obtain the remainder

"The fact that the on-shell part of the rescattering term ex-
actly cancels the driving term at b= ~~~ leaving only the oB-shell
rescattering, is actually an old result; it was noted by P. A.
Carruthers, Ann. Phys. (N. Y.) 14, 227 (1961); and by C. J.
Goebel and H. J. Schnitzer, Phys. Rev. 123, 1021 (1961).
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qs

Ay

Nd

FIG. 3. The positions of the
singularities of Ng and Nil. (a)
Singularities of 1V& in the q plane;
(b) singularities of Eg in the q'
plane; (c) singularities of Nq in the
q plane; (d) singularities of N& in
the q' plane. In the q' (s) planes,
broken diagonal crosses refer to
the second sheet in s, Imq&0. Note
that qs*= —qx, and qg*= —qs. ~4)

qs

(4 )

qs
2

4 2
N

(b)

END OF PHYSICAL
REGION

qs 4s2

(c)

of E&, namely the off-shell part Eg ff we 6nd

it,A (q+Q+in) (q Q i—n)—
Eg, ff= - ln

4Q~ (q—o+) )(~+9—~ .))
which is also singular at q=Q —ia. Furthermore, near
the singular point q=Q —iu, the contributions Xi,,„
and E$, ff are exactly eqmul.

In a "Note added in proof" at the end of Sec. III of
his paper, Amado acknowledges that the principal-value
part of the triangle-graph integral also has the triangle
singularity. But he deduces from this, and the work
of Schmid' (see Sec. IV below) that "near" the triangle
singularity the behavior of the amplitude will be essenti-
ally e"'E&(s), and hence that since

t
e"'ill&(s) ~'

= ~Sz(s)
~

' no special effect of the singularity will be
felt, whether 8= —,'w or not. This deduction is false. The
fallacy lies in the word "near": In discussing the question
of the observability of the triangle singularity, one
has to restrict q to the real axis. Then for q real and
near Q (i.e., as near Q

—in as we can get), we have

A igA
F — — in/(Q —q)'+n'j — ln(q —Q+in). (9)

4Qq 2Qq

In (9), the first term comes from I)Te, the second from
X)), both are singular at Q in, but —the first is also
singular at the equally near point Q+in. Thus we cannot
meaningfully isolate the point Q in as far—as the com-
plete amplitude P on the real q axis is concerned. As
(9) shows, when we remember this we see that the
true triangle singularity (that in X&) is in principle
observable by distinguishing between the two terms

in (9). This is true, despite the fact that, as (9) shows,
for corap/ex q near Q

—in, the amplitude P is indeed
e"'B(s).
In summary, then, our investigation of this model

(which parallels Amado's Sec. III) shows that, as
expected, if the driving term B(s) is real the phase of
F is 5, and that if A (i.e., ti3) is constant the phase
variation of F is given by that of 8, as Amado claims.
On the other hand, we do not accept his statements
about the observability of triangle graphs.

We have seen that near the singularity q=Q in of-
Ãq the on- and off-shell parts of E~ contribute equally.
We shall now show that this is a general result, using
the proper relativistic expression in Eq. (2); indeed
the result is another form of a theorem first proved by
Schmid. '

IV. THEOREM ABOUT TRIANGLE
SINGULARITIES

We consider the third term on the right-hand side
of Eq. (2); letting, as before, gD=1Vp with X a con-
stant (or a function which has singularities very far
from the cut E). The singularities of this term"are
precisely those of the Feynman amplitude for the
triangle graph pictured in Fig. 2."Such a graph has two
singularities in the variable q (in addition to the usual
threshold branch point q=0), conventionally denoted
by qe and q)) . (In terms of our explicit nonrelativistic
expression (5), qs=Q in, q~= Q—ia )—In g—ener. al,
only one of these qz may be singular near the physical
region (i.e., in the lower-half q plane with Req)0).
Introducing sq ——4m2+4qq' and s~=4m +4q~', sg and
s& are, when s& is near the physical region, disposed as
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and CI, «rFIG. 4. The cuts R and I and the contours
the function x(s).

in Fig. 3. LThe g' and s vanables an pd lanes are related

( '+ ').) Now let. x=gDB; where in this model
still B(s)=6~8(s). We prove the followmg eo

Theorem:

{a) {b) {c)

the rocess of Fig. 3. (a) A 2-3 final
3fi 1 t ' ' ()state interaction; (b) a resonant 1- na -s a

rescattering correction to (b).

Thus, near sq,

x 'd'—=—f—f(s)D (s)]
(1o) 2~i „s'—s 2~i

B(s') ds'

/s —s

=a.= DB b Cauchy's theorem for CL,

I' x(s')
iX(s)=— —, for s=ss

gS —$
~ ~

when s& is a singularity near the physical region i.e.,
&pi.

in ularities of iVd, namely logarithmic singularities a

lf f this in eneral] as shown in. Frg.
The left-hand singularities qf gD, name y ose
are ne lecte, in a m tion t atl d

'
ccordance with our assumption t at

ESceg has si. ngularrtres at ss, s~,they are far from E.. ince
we define it by means of a branch cut joining s~ o s&,

F' .4. Then by Cauchy's theroemcalled I., as shown in ig.

x(s')ds'
x(s) = +

2 z gg
~ ~

4 .Tow the cut R iswhere Cg, Cg are shown in Fig. . .,o
t (from the phase-space factor q),square root in nature &

rom
so that

=x(s)

proving (11) and hence (10).(
Since the on-shell part of the integral

x(s')ds'

$ —s—2e

1 x(s')ds' 1 x(s')ds'

2 —s mz g $ —s—2e4x'z gg s-
tin s a roach the real axis from above, to obtain

us to prove the theoremthe physical amplitu e. us o
we have to show that, near sq,

—1 x(s')ds'
(11)x(s) =

2vrz |.L s'—s—ze

But near sq, the integral over Cl, p'icks out that part of

outside the integral, remembering, iiowever, a
to be evaluate e om ed b l the cut R and hence must carry
a minus sign.

r slowl varying N. Now E&' is exactly the Feynman
which the 2-3 amplitude is merely

f Cutk. os''s rules. But near the
'

gu-p, as follows from u os y
$ of Fig. 2, the intermediate particles prop g

would ield the result thatdescribed by N&' near s&, wou yie e

this result was within the frame-"Schmid's own derivation o s
work of the model we shall describe in Sec.

Fre. 5. A production process in
hi h the momentum-transfer de-

pendence is suppressed.

tl A,s„we obtain a simple corollary.
d off-hllp of i l

te e uall at a triangle singularity wheng p o ' " q y

hold whenever a triangle graphhasa
'

g

e a
has a sin ularity qa wit

Re qs&0 and mqsI &0. In particular, it is clearly not
all necessary that ss should equal s~ .[

m
' '

h t th total contribution ofm this it follows t a e

complete amp
. ,2 . This result as eenh b derived previously

b Schmid, who emphasize t e ess
t 8 contains 8 as i sthe rescattering correction o

13discontinuity.
'X~s~ is 'ust the discontinuity of I acro

~ ~ ~

cross R

thi fo th h 1e ual toits owndiscontinuity. In t is orm
i i . The rescattering correction Xqinterpretation is c carer. e r
is given by

1V B ds' 1V 1 (pB/2i)ds'
=2i—Eg', Eg' ———

71Dx' ~$ —$—Zc
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(q)

e qs
X

(q )

FIG. E. The positions of the singu"
larities of Mg and of Sf' for the case
in which q8 is near the physical
region (reseat tering kinematically
allowed). (a) Singularities of Mn in
the q plane; (b) singularities of Mg
in the q' plane; (c) singularities of M~
in the q plane; (d) singularities of M~
in the q' plane. In the q' planes,
broken diagonal crosses refer to the
second sheet in s, Imp&0.

(o) (b)

END OF PHYslcAL
REGION

the amplitude facforises into two parts: the erst, B,
describing the knock-out of particle 3, and the second,
p, describing the anal 2-3 scattering. That is, at s8 we
expect the physical sequential process to have an
amplitude X~'= Bp. But at the singularity we measure
the singular part of the amplitude; hence on physical
grounds we expect the singular part of the complete
amplitude to be 2s(X/D)Bp=2sgB, exactly the result
obtained. The essential qualitative point is that near
s8 the graph is determined by its discontinuity, which,
by Cutkosky's rules, is related to products of physical
amplitudes.

It was Schmid's result I' e"'8 to which we referred
in Sec. III above, and which led Arnado, in his "Note
added in proof, " to suggest that there would be no
observable CGcct of the triangle singularity in I'ig. 2.
As we have seen, this is false: Indeed, if it were not
we should have the paradoxical result that on the real
axis "near" s8 the phase of P is not 5 but 25, if 8 is real,
whereas we have already proved that it is always 8
in that ease. As expla, ined above, the error lies in for-
getting the singularity at Q+in of B(s)=gq, which is
as near the real q axis as is Q

—in.
It is, however, quite easy to construct a model where

Schmid's form of the theorem does play an important
role in the question of the phase of F. We simply start
from a 8 which does not have two singularities equa, lly
near the real axis. We turn therefore to our second
model, which is of this kind.

of a pair of particles in the 6nal state other than 2-3
may be strongly energy-dependent, whIle we Ignore
production mechanisms entirely. In other words, we
are now going to let the amplitude t'~3 in Fig. 1 vary
rapidly as a function of the 1-3 c.m. energy, ignoring
the momentum-transfer pole in the 6gure. This model
therefore complements the erst one (for simplicity only,
we are assuming that the pair 1-2 do not interact). The
complete process is now represented pictorially as Fig. 5,
since all momentum-transfer dependence is suppressed.

Retlll'lllilg again to olll' basic solutloll EKq. (2)j tile
various terms on the right-hand side are now reinter-
preted as follows. The 6rst represents the production
of particles 1, 2, and 3 into the final state (CAO) with
anal-state interaction (D ') between 2 and. 3; this is
shown in Fig. 6(a). The second. term, B(s) represents
the s-wave projection, in the 2-3 c.m. system of the
"parallel channel resonance" shown. in Fig. 6(b); i.e.,
hcI'c thc thI'cc particles RI'c pI'oduccd Rnd particles 1
and 3 scatter resonantly in the final state. The third
term, shown in Fig. 6(c), represents the rescattering
correction to Fig. 6(b) and is precisely the triangle
Feynamn graph indicated, with an internal rcsonance. '4

Once Rgain wc can usIng nonI'clRtIVIstlc klIlcmatlcs
obtain explicit expressions for all these terms. Figure
6(a) is already known, and calling the s-wave projection
of Fig. 6(b) DID, we And

V. SECOND MODEL [PARALLEL FINAL-STATE
RESONANCE FOR B(s)], AND APPLICATION

OF THE THEOREM
where we are following the notation of Ref. 14—

' For all the details associated with such graphs we refer to
I. J. R. Aitchison and C. Kacser, Phys. Rev. 142, 1104„(1966);

pay attention to the fact that the scattering amplitude see also ibid. , 152, 1518(E) (1966).
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FIG. 8. As in Fig. 7, but for the
case in which qz moves away from
the vicinity of the physical region
(rescattering kinematically forbid-
den). (a), (b), (c), and (d) as in
Fig. 7.

{c}

that is, C2' is a constant representing the production
amplitude for producing the resonance in t~3 in the
fmal state, y is related to the width of the resonance, p
is the magnitude of the momentum of particle I in
the 2-3 c.rn. system, and (=rni/(nti+nt2+rn3). In this
formula, p~= p(q~), p& p(q&), p( ——q) =p(q), —and the
positions of the singularities qg and q~ are complicated
functions of the masses and total energy'; they are
the singularities of the triangle graph of Fig. 6(c),
and that is why we have kept the same labels for them
as we used for the singularities of Fig. 2—the algebraic
details being of course different in the two cases.

For the amplitude represented by Fig. 6(c), call it
M~, we have given the expression"

zgC2'y q qN+((p pir—)t—
cV,= -In

2pq q
—qs —k(p —ps)&

Thus for the complete amplitude in this model we have

F(s) =C/D(s)+3lg+Mg,

with M'n, Mz given by (12) and (13). (In practice, an
"over-all background" constant Co might have to be
added also. )

What is the phase of F in this model? The essential
point is that now the driving term is rot real. This is
because the location of the branch points of M~, &qg,
&q~ are such that, unlike the previous case of Xq,
qq*&q~. Thus even without the rescattering correc-
tion Mq, the phase of F will not be 6. Of course, this is
not serious; indeed it corresponds to the well-known
phenomenon of "reQected resonances" —namely, the
projections on one channel of the Dalitz plot of true
resonances in other channels; this is just what 2lIIz is.
In all isobar-model analyses such terms are always in-
cluded; but it is important to realize that these terms
already violate the simple extension of Watson's
theorem proposed by Amado.

The rescattering correction does, however, produce
one de6nite modification to this simple picture. The
quantity M& has singularities at q8 and q&, of which only

qs can ever be near the physical region (Reqs)0),
Imqs(0), and that only for a limited range of total
c.m. energies. The prescription ' "is that if the total
energy is such that Fig. 6(c) can occur as a real process,
qz is near the physical region, while q& is far away; for
larger values of the total energy qz leaves the vicinity
of the physical region.

The positions of the singularities of SIC~ and of M~
are shown in Figs. 7 and 8. It is helpful to consider
the situation on the Dali' plot also; this is shown in
Fig. 9.The low- (high-) energy intersection of the reson-
ance band E with the Dalitz plot boundary is essentially
Ress (Res&); only if the band R cuts the plot on the
top left-hand arc will sz be near the physical region. ' '

Since qq*&q~, it does make sense, now, to ask about
the behavior of F(s) for real s near ss. Applying the
theorem of Sec. IV (which is equally applicable in this
case; cf. the corollary), we see that near ss, when ss
is near the physical region, the sum of 2II/z and 3E&

must be e"'SIC&. This is exactly Schmid's result. The
total amplitude is then

+e"'i9g
D(s)

near ss, when ss is an (isolated) nearby singularity.
On the other hand, without M& we should have simply

C
F Mg.

D(s)

We see that the triangle graph modifies the interference

"S. Coleman and R. E. Norton, Nuovo Cimento 38, 438
(1965); the result for the triangle graph is in the paper by J. B.
Bronzan, Phys. Rev. 134, B689 (1964).
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driving term.
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FIG. 9. The singularities on the Dalitz plot; the intersections
of the resonance band E with the boundary of the plot are,
approximately, the real parts of s8 and s~. (a) The case in which
the total c.m. energy is such that sz is near the physical region
(c.f. Fig. 7); (b) a larger c.m. energy, such that sp has moved away
from the vicinity of the physical region (cf. Fig. 8).

between the 2-3 and 1-3 contributions in the vicinity
of sa. We feel that Schmid was too negative when he
implied that mo effect peculiar to M~ would be ob-
served in ~F ~' (as would indeed be the case if C=O:
[.2'im~]2= [iV.[2).

We may check explicitly, as before, that near sz
the on- and off-shell parts of 3f& contribute equally.

In summary then, the fact that the projection of a
parallel-channel resonance is complex (and energy-
dependent) is one, well-known, reason why Watson's
theorem will not hold. A,n additional reason is the
presence of the rescattering term M~,. this, though
complex, is slowly varying in the physical region,
except when ss is nearby. When it is, Eq. (14) shows
that Mz modifies the phase of the (projected) parallel-
channel resonance, and hence affects the interference
between the two channels. In the interference region,
no simple statement can be made about the over-all
phase, but Eq. (14) provides a formula to describe the
situation. One might wonder when this modification is
likely to be most important. From (14) we see that the
greatest effect will come when the factor e"' varies
rapidly near ss. But, referring to Fig. 9(a), ss is always
towards the low-energy end of the spectrum. Thus to
see the Mz effect best, we need a strong low-energy
2-3 interaction coupled with a 1-3 resonance cutting
the Dalitz plot as in Fig. 9(a)."Quite possibly such
circumstances arose in the ABC experiment. '
"I.J. R. Aitchison, Nuovo Cimento S1A, 249 (1967); 51A,

272 (1967).
'~V. V. Anisovich and L. G. Dakhno, Phys. Letters 10, 221

(&964).

We began by reiterating the old result that a final-
state rescattering correction to a real driving term
produces an amplitude with the scattering phase. We
then examined how this came about explicitly in a
simple model, which concentrated on the production
mechanism whereby the particles were produced into
the final state, ignoring the phase of the parallel-
channel amplitude (or assuming it to be slowly varying,
at least). The corresponding driving term was then
real, so that the previous result held (or held as regards
the variation in phase). We confirmed that the on-shell
part of the 1+Got» factor of Amado did produce the
term cos8&((triangle singularity), as he claimed, but
we also found that the singularity was present equally
in the off-shell part (which went with sin5), and there-
fore was observable, in principle, in this model even if
8—2m.

We then proved that, quite generally, on- and off-

shell parts of triangle graphs contribute equally at the
triangle singularity when it is near the physical region.
This turned out to be a restatement of an earlier
result of Schmid, and we used it, as Schmid did, to
examine the phase question in a second model, which

concentrated, in contradistinction to the first model,
precisely on the phase variation of the parallel-channel
amplitude assuming, in fact, that it was resonant. We
found that here the simple generalization of Watson's
theorem does not hold. Partly this was because of the
(trivial) fact that the projection of Fig. 6(b) has a
varying phase. A nontrivial correction comes from
Fig. 6(c), which, though generally small, may con-
tribute significantly in certain circumstances, which we
described.

We should like, in conclusion, to stress that the
differences between the two models are entirely due to
the different aspects of Fig. 1 that each treats. The
first model contracts the $~3 blob to a point and retains
only the single-particle pole (the production mech-
anism); the second contracts the single-particle line
to a point and replaces the 3~3 blob by a resonance.
Doubtless a better model would start from a 8 such
as Fig. 10. This is not the only, possibility, however, as



1708 I. J. R. A ITCH I SON AN 0 C. KACSE R

Deck" and others have pointed out, the assumption
of extreme forward peaking of the $13 amplitude leads
the 2-3 c.m. projections of Fig. j. to be peaked in the
low-s region, producing, or quite possibly distorting,
low-mass enhancements in the 2-3 channel. Further

'8 R. T. Deck, Phys. Rev. Letters 13, 169 (1964).

work on rescattering corrections to the Deck mechanism
is desirable.
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Threshold electropion production on nucleons, e+X—+ e+E+x, is studied by current-algebra tech-
niques using the hypothesis of partially conserved axial-vector current, which have proved useful in describ-
ing low-energy meson-baryon elastic scattering and photopion production on nucleons. The electric and
longitudinal multipole moments Eo+ and Lo+ are calculated at threshold in terms of the form factors of
the electromagnetic and weak axial-vector currents. The experimental upper bounds on the slope of the
differential cross section as a function of (u(, the momentum in the slV c.m. system, i.e. , (f/)u(l (d a/
dOdS&0~), where S&0~ is the laboratory energy of the Gnal electron, are suKciently strong to relate the form
factors for various values of —k', the momentum transfer squared of the electrons. More precisely, in this
way one can relate the neutron charge form factor 6,"(k') to normalized axial-vector form factor Fz(k').
If one takes F~(k') to have the dipole form Fg(k2) = (1+k'/M~') ~ with Afar'= 1.42 BeV' which is given
by arguments based on chiral SU(2) XSU(2) and consistent with recent neutrino experiments, then the
resulting values of G,"(k') in the range considered, 0.2&k'&0.6 BeV', are consistent with information
about 6,"(k') from electron-deuteron and thermal-neutron-electron scattering.

I. INTRODUCTION

'N the past few years much activity in elementary-
- ' particle physics has been devoted to the complete
exploitation of the principle that the equal-time com-
mutators of the weak and electromagnetic currents of
the strongly interacting particles form a chiral SV(2)
&(SU(2) algebra. ' One of the most fruitful branches of
these researches has been the investigation of low-

energy processes involving these currents. The current
algebra together with the hypothesis of partially con-
served axial-vector current (PCAC) leads to simple
models which compare remarkably well with the pres-

*Supported in part by the U.S. Atomic Energy Commission.

t Work performed under the auspices of the U.S.Atomic Energy
Commission.

I Supported in part by the National Science Foundation.
~ For a complete review of the references on current algebras,

see S. L. Adler and R. F. Dashen, Current Algebras (W. A. Benja-
min, Inc. , New York, 1968); and B. Renner, Current Algebras
and Their App/ications (Pergamon Press, Inc. , New York, 1968).

ently available data on meson-baryon scattering. '
These methods have also been applied to the case of
pion photoproduction. ' Here we consider the extension
to pion electroproduction.

Electroproduction provides an interesting problem
both theoretically and experimentally, and has received
considerable attention. Earlier analysis utilized the
static model and stressed the importance of the electro-
production process in describing the nucleon form
factors. 4 Fubini, Nambu, and Wataghin' (FNW) noted

2 A. P. Balachandran, M. G. Gundzik, and F. Nicodemi,
Nuovo Cimento 44, 1257 (1966); Y. Tomazawa, ibid. 46, 707
(1966); K. Raman and E. C. G. Sudarshan, Phys. Letters 21,
450 (1966);Phys. Rev. 154, 1499 (1967);S. Weinberg, Phys. Rev.
Letters 17, 616 (1966).' A. P. Balachandran, M. G. Gundzik, P. Narayanaswami, and
F. Nicodemi, Ann. Phys. (N.Y.) 45, 339 (1967); M. S. Bhatia and
P. Narayanaswami, Phys. Rev. (to be published).

4 G. F. Chew, F. Low, M. L. Goldberger, and Y. Nambu,
Phys. Rev. 106, 1345 (1957); S. Fubini, Y. Nambu, and A.
Wataghin, ibid. 111,329 (1958);R. Blankenbecler, S. Gartenhaus,
R. Huff, and Y. Nambu, Nuovo Cimento 42, 775 (1960); P.
Dennery, Phys. Rev. 124, 2000 (1961).


